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An Information-Theoretic Approach to Inference Attacks
on Random Data Perturbation and

a Related Privacy Measure

Poorvi L. Vora, Member, IEEE

Abstract—Random data perturbation (RDP) has been in use for several
years in statistical databases and public surveys as a means of providing
privacy to individuals while collecting information on groups, and has re-
cently gained popularity as a privacy technique in data mining. This corre-
spondence provides an information-theoretic framework for all inference
attacks on RDP. The framework is used to demonstrate the existence of a
tight asymptotic lower bound on the number of queries required per bit of
entropy for all inference attacks with zero asymptotic error and bounded
average power in the query sequence. A privacy measure based on security
against inference attacks is proposed.

Index Terms—Data mining, data perturbation, information-theoretic
security, noisy channel, privacy, statistical database security.

I. INTRODUCTION

In several instances, it is necessary to provide information on groups
while protecting the privacy of individuals. The most common example
is that of the statistical database, whose purpose is to provide statis-
tics (in the form of mean, median, mode, variance, etc., on health,
and demographics, for example) to researchers, while keeping private
sensitive information regarding specific individuals. Other examples
include censuses and public surveys. While direct disclosure of sen-
sitive individual values can be restricted through appropriate access
control mechanisms, it is well known that these values can often be
indirectly determined through knowledge of well-chosen statistics, see
Example 1.

Example 1: Consider a statistical database that holds the salaries,
departmental associations and ethnicities of all faculty at a university.
The access control rules of the database prevent it from revealing sta-
tistics over groups of size smaller than, say, five. Suppose that there
is only one African-American faculty member in the Department of
Computer Science. While the database may not be directly queried for
the salary of the single African-American faculty member in Computer
Science, this value can be determined indirectly as follows. The data-
base can be queried forC1, the average salary of all African-American
faculty, and for C2, the average salary of all African-American faculty
who are not in the Department of Computer Science, assumingC1 > 5
andC2 > 5.C1�C2 is then the salary of the single African-American
faculty member in Computer Science.

Information on sensitive variables may also be revealed when non-
sensitive individual database variables (not statistics), are revealed, see
Example 2.

Example 2: Consider a database which stores sensitive bits S1 and
S2 on individuals, and also nonsensitive bits Q1; Q2; Q3; Q4.
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S1 “Gender.”

S2 “Over forty years of age.”

Q1 “Losing Calcium.”

Q2 “Balding.”

Q3 “Greying.”

Q4 “Gaining weight.”

Suppose an adversary wishes to determine bits S1 and S2, but is
only allowed to query bits Q1; Q2; Q3; and Q4. Because the bits S1
and S2 are not independent of bits Q1; Q2; Q3; and Q4, the adversary
will be able to reduce the uncertainty of bits S1 and S2. For example,
women over forty are more likely to be losing Calcium than any of the
three other categories. Hence,Q1 reveals information about S1 and S2.
Similarly, men over forty are almost the only category balding, hence
Q2 also reveals information on both S1 and S2.

Attempts—such as those in Examples 1 and 2—to indirectly deter-
mine private information have been extensively studied in the database
literature [1], [13], [7]. They are termed inference attacks (a more pre-
cise definition may be found in Section III-A). As a determined data
miner can obtain several related values through several distinct sources,
this correspondence’s model of the problem of inference attacks does
not limit the number of queries or the relationship among them, except
to require the queries to be discrete-valued and of bounded power to
model the finite precision of digital systems. The model can be used to
represent as precise a discrete representation as desired.

The general technical problem may be modeled as follows (the term
variable is used to denote a database variable and random variable or
r.v. to denote a random variable; upper case letters represent an r.v.;
lower case letters a specific instance of the r.v.).

• Database A contains a set of (binary, discrete-valued or contin-
uous-valued) variables: Q = fQ1;Q2; . . . ; Qi; . . .g. Each of the
Qi may also be considered an r.v.

• Let f be any discrete-valued function of database variables.1 Data
collector B queries the value of

X = f(C1; C2; . . . ; Cj ; . . .)C 2Q

X is an r.v. but need not be a database variable, and is computed
by the database upon request.

• The number of queries made by B is not limited, and the ith query
is denotedXi. The query sequences have bounded average power,
denoted �2—i.e., those for which E[X2

i ] � �2.
• The individual variables Qi are to be “protected” from B.

A. Random Data Perturbation (RDP)

One technique for reducing the impact of inference attacks is the
addition of independent noise to the queried value X before it is re-
vealed.2 The larger the probabilistic perturbation, the more privacy pro-
vided to the database variablesCi, and the less accurate the response to
the query. This technique is known as random data perturbation (RDP)
and has been in use for about twenty years in statistical database se-
curity [1], [13]. It has recently been proposed as a means of personal
privacy protection in data mining applications [2], [3], and has elicited
considerable interest [4], [8], [10], [9], [12], [14], [17], [18].

1For example, f can be: “the most common gender among records 1, 2, and
3”, or “the average salary of records 1, 2, and 3, quantized to a hundredth of a
cent.

2While the added noise need not be independent, this correspondence focuses
on independent noise, the subject of several papers—see, for example, surveys
[1], [7], [13]. An advantage of independent noise is the speed and ease of im-
plementation, though it is known, in general, to be less secure [10].
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RDP proceeds as follows (PZ(:) represents the probability mass
function of discrete-valued r.v. Z , and pZ(:) the probability density
function (pdf) of continuous-valued r.v. Z):

1) B requests random variable X from A, where X =
f(C1; C2; . . . ; Cj ; . . .)C 2Q.

2) A responds with the random variable �(X) = Y generated as
follows:

a) Discrete-valued RDP: When the noise is discrete-valued (and
X takes on n possible values)

PY jX(yjx) =
�; y = x
1��
n�1

; y 6= x

for some value � such that 0 < � < 1; � 6= 1

n
.

b) Continuous-valued Gaussian RDP: When the noise is con-
tinuous-valued Gaussian, and the average signal power
bounded: E[X2

i ] � �2

pY jX(yjx) = pN(y � x)

where pY jX(:) is the conditional probability distribution of
Y given X , and pN(:) is the probability distribution of the
added noise, which is zero-mean, Gaussian with variance �2n.

B. Inference Attacks on RDP

As described in [19], RDP provides a communication channel with
input X , output Y , and transition probability PY jX for the discrete
case, or pY jX for the continuous case. It does not provide perfect se-
crecy, and does not render inference attacks completely useless. To see
this, consider the following examples.

Example 3: A simple inference attack on RDP consists of repeated
queries of the same variable: B repeatedly asks for the same quantized
value of continuous variable C;X = quant(C), where quant(:) rep-
resents a quantization function. (C can be, for example, the annual
salary of an individual, and quant(C) its value rounded off to the
nearest one hundred dollars).

A responds, each time, with yi = X + ni, where ni is an instance
of a zero-mean gaussian r.v. with variance �2n.
B obtains the maximum likelihood (ML) estimate of X .
The probability of error of the ML estimate of (discrete-valued) X

can be decreased without bound by increasing the number of queries
without bound.
A can avoid this attack by keeping track of all queries and the cor-

responding responses, and by simply providing the same value of yi
whenever queried for quant(C). However, all inference attacks are not
as easily avoided, see Example 4.

Example 4: Consider a survey conducted on individuals in the USA
who are over forty years of age. Consider a query sequence that con-
tains some of the variables of Example 2:

Q1 “Female.”

Q2 “Losing Calcium.”

Q3 “Balding.”

Affirmative responses to Q1 imply an affirmative response to Q2

(all women over forty are losing Calcium), and, with high probability,
a negative response to Q3 (a large fraction of those balding are men).
Suppose the responses are perturbed with RDP, and B receives an af-
firmative response toQ1, a negative response toQ2, and an affirmative
one to Q3. This indicates to B, with high probability, that at least one
of the responses was flipped due to the perturbation. Thus the relation-
ship among the queries has enabled B to detect an error. (Notice that

inference attacks such as this one cannot be avoided by keeping track
of past queries, because B need not repeat Q1 to obtain information on
its correct value.)

Inference attacks have been common in statistical databases in spite
of data perturbation. If data mining becomes widespread, it is likely
that inference attacks will provide a large privacy threat in data mining
as well. Several recent papers provide measures of the privacy of per-
turbation [3], [2], [6] in data mining. Each paper studies the case when
several instances of a single r.v. are perturbed. None of the papers ex-
amines the effect, on privacy, of the availability of the perturbed values
of several related r.v.’s, such as in an inference attack. This correspon-
dence examines the most general inference attacks, and their costs, in
terms of the number of queries required per bit of entropy. The costs
are important indicators of the privacy of RDP—the larger the cost to
B, the more difficult it is for B to obtain accurate values of the desired
variables, and the more secure or private the perturbation.

C. Contributions

This correspondence makes more general the main ideas of [19],
[20]. It provides a theoretical understanding of a) the extent to which in-
ference attacks on RDP can improve estimation error, and b) the limits
of inference attacks. Its main contributions are as follows.

• A framework for the study of the security of RDP, and the cor-
responding definitions and associations with information theory
and coding. This includes a general characterization, in informa-
tion-theoretic terms, of inference attacks.

• The use of the framework in deriving a very general efficiency
result; in particular, showing that the following are true.
— In all inference attacks that have zero asymptotic error and fi-

nite average power, the number of queries required per bit deter-
mined is asymptotically bounded below by a finite value. This
value is denoted �min.

— The bound is tight: inference attacks with zero asymptotic error,
bounded average power and asymptotic cost �min exist. The
attacks are based on Shannon codes and are not expected to be
realistic (models of realistic attacks do not exist).

• The definition of a privacy measure based on security with respect
to inference attacks, and the relationship of this measure with that
of [2].

The results are consistent with those of others who predict that the ad-
dition of independent noise is insecure [10], while the information-the-
oretic characterization, the consideration of inference attacks, the con-
nections with coding theory, and the derivation of the tight, finite lower
bound on asymptotic cost are, to the knowledge of the author, only
found earlier in [19], [20], which are conference versions whose re-
sults are incorporated in this correspondence.

D. Organization of the Correspondence

Section II provides a review of existing work. Section III contains
preliminaries, including the model and definitions. Section IV presents
the results with proofs. The conclusions are presented in Section V.

II. RELATED WORK

The database community has measures of the privacy of RDP [11],
[3], [2]; these are, however, not motivated by a security analysis. The
security analyses that do exist [13] focus on the variance of the estima-
tion error.

The first use of randomization to provide privacy during data mining
is found in [3], which uses perturbed training data to estimate a data
distribution, and uses the estimated distribution to build decision tree
classifiers. The classifiers thus built have accuracies close to those built
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from the true data itself. [3] also proposes a privacy measure based on
how closely a true value may be estimated from its perturbed value. If
X can be estimated to lie in the interval (xl; xu) with c% confidence,
then the privacy is xu�xl at c% confidence level. This privacy measure
does not take into consideration, however, the fact that, in addition to
the perturbed data points, the estimated data distribution is also avail-
able to estimate the real data values.

Reference [2] proposes the use of an expectation maximization (EM)
algorithm to determine a data distribution from perturbed data values,
and shows that it converges to the ML estimate. [2] is also the first data
mining publication to point out that a tradeoff exists between privacy
and accuracy, and proposes the following measure of conditional pri-
vacy loss:

P(XjY ) = 1� 2�I(X;Y ) (1)

where I(X;Y ) is the mutual information between r.v.’s X and Y .
Recall that mutual information may be expressed as the average loss
of entropy in r.v. X due to knowledge of Y , over all values of Y

I(X;Y ) = E[H(X)�H(XjY = y)]

Thus, for a given r.v. X; I(X;Y ) may be seen as the average value of
r.v. Z(y) = H(X) � H(XjY = y), termed privacy loss by [6]. A
problem with the measure P , pointed out in [6], is that it is not able to
detect large values of Z(y) that occur with small probability, PY (y).
This would be a natural limitation of a measure based on an average
value of a r.v.—it cannot be expected to represent well the maximum
value. However, large values of Z(y) correspond to privacy breaches
[6] (where certain properties of the true data are revealed with great
accuracy) and are undesirable, even though low values of PY (y) imply
that the breaches arise only rarely.

The measure proposed in [6] is denoted worst-case information, and
is defined as the maximum value of Z(y)

Iw(X;Y ) = max
y

[H(X)�H(XjY = y)] (2)

A large value of this measure implies a large worst-case privacy viola-
tion. [6] also defines a methodology, called amplification, for limiting
privacy breaches. This methodology limits the value

max
y;x ;x

P (Y = yjX = x1)

P (Y = yjX = x2)

and is proven to limit privacy breaches.
Iw is able to identify large privacy violations that occur with very

low probabilities, while P is not. On the other hand, P , unlike Iw , is
able to distinguish cases where large privacy violations are the norm
from those where they rarely occur. (Note that the values of Iw and I
are identical for RDP, because, in RDP, the r.v. Z(y) is constant for all
y. Hence measures Iw and P do not provide different evaluations of
RDP). The following example, similar to one in [6], demonstrates the
strengths and weaknesses of both P and Iw as privacy measures.

Example 5: Suppose X is binary, and PX [0] = PX [1] = 0:5. Sup-
pose e represents the empty record. The randomization R1 produces
perturbed response Y1 as follows:

PY jX(y1jx) =

0:5; y1 = e

0:4; y1 = x

0:1; else

Compare this to randomization R2, producing output Y2:

PY jX(y2jx) =

0:9999; y2 = e

8� 10�5; y2 = x

2� 10�5; else

It can be seen that Iw(X;Y1) = Iw(X;Y2) � 0:278; I(X;Y1) �
0:139 6= I(X;Y2) � 0, and PR � 0:9 6= PR � 1. Thus, while

P clearly indicates that R1 is worse than R2; Iw is not able to do so.
On the other hand, P implies that R2 is very close to perfect, while Iw
clearly shows that R2 does violate privacy. It appears that a combina-
tion of the two measures would be most useful in assessing the privacy
impact of single instances of data perturbation.

Neither [2] nor [6] examine how the uncertainty in X may be re-
duced further if the data collector has access to perturbed information
about other r.v.’s that are not independent of X . That is, neither ex-
amine the privacy of data perturbation with respect to inference attacks.

III. PRELIMINARIES

A. The Model

We assume that B wishes to determine the values of k discrete-
valued random variables: S = (S1; S2; . . .Sk). (Note that these
may be continuous-valued variables that have been quantized as
finely as desired.) For this purpose, B makes a set of m queries
to A : X = (X1;X2; . . .Xm). A provides perturbed responses,
Y = (�(X1); �(X2); . . .�(Xm)). B uses these to obtain a ML
estimate of S, denoted Ŝ = (Ŝ1; Ŝ2; . . . ; Ŝk) = g(�(X)), where g(:)
represents the ML estimate.

We now provide a few definitions (a list of symbols is in the
Appendix).

Definition 1: An inference attack is a set of queries X such that X
and S are not independent, i.e., I(S;X) 6= 0.

The definition of an inference attack is intentionally broad, as
we wish to demonstrate a limit on the capability of inference at-
tacks. The definition also assumes nothing about the relationship
between queried value Xi and previously received responses:
�(X1); �(X2); . . .�(Xi�1), and hence includes adaptive inference
attacks.

We now define two important measures of an attack, the probability
of estimation error and the query complexity per bit.

Definition 2: Given a particular query sequence X of size m;!m
denotes the maximum probability of error of estimate Ŝ, over all pos-
sible values of x of r.v. X. That is, if Ex = Pr[S 6= g(�(x))], then
!m = maxx Ex.

Before we proceed to define the query complexity per bit, we es-
tablish some more notation. Let the alphabet of the queries be denoted
M, and its size jMj. The number of possible values ofX need not be
jMjm. This is because certain symbol combinations may not be pos-
sible, as the queries are not generally independent. We denote the size
of the set of all possible values ofX byM . AsB would want to correct
for the RDP, X would consist of more than logjMjM queries.

Definition 3: The query complexity per bit, of query sequenceX of
lengthm, whenX takes onM possible values, is �m = m

log M
queries

per bit.

Clearly, !m and �m are related, and a lower value of !m would re-
quire a higher value of �m. Because several attackers can collude to get
as many queries as desired, we do not bound m, and, instead, examine
the relationship between limm!1 !m and limm!1 �m. To simplify
exposition, we define the inference attack with zero asymptotic error.

Definition 4: A small error inference attack is one in which
limm!1 !m = 0.

The behavior of �m is well understood for the repeated query attack
of Example 3, which is a small error attack

lim
m!1

!m = 0) lim
m!1

�m = lim
m!1

m =1
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However, the attacker is not limited to the repeated query attack. It is
possible that small error inference attacks may have finite values of
limm!1 �m. The lower bound, over all possible inference attacks, on
limm!1 �m represents the best efforts of B: with the “best” designed
queries, B is forced to expend more than a minimum cost, in queries
per bit, to obtain information. The larger this cost, the more the privacy
provided by the RDP. We, hence, propose the following.

Definition 5: The privacy of RDP is the tight asymptotic lower
bound on �m for a small error attack.

B. Our Approach and the Results of [19], [20]

[19] views RDP as a communication channel. Inference attacks con-
sist of communication of S over the channel. The values input to the
channel are X, and the output values Y. PY jX and pY jX represent
the transition probabilities of the channel for discrete and continuous-
valued noise respectively.

The relationships among the values ofXi, and betweenX andS, are
controlled by B, through the choice ofX. In a rare inference attack, B
can choose X to form a channel code in S, though this is not typical.
In these attacks, X is a function of S, and ��1

m are the rates of the
codes. When such attacks are zero-error with constant �m = �, they
correspond to reliable codes, and the inverse of channel capacity is the
minimum value of �, achieved by attacks that correspond to Shannon
codes for binary Xi and Si. All inference attacks do not correspond to
channel codes, and [20] addresses the case when the inference attack
is not a code (that is, X is not a deterministic function of S), is not
reliable (that is, �m is not constant), and Xi and Si are binary.

The results of this correspondence generalize those of [19], [20] to
discrete-valued Xi and Si and continuous-valued gaussian noise when
the query sequence has finite average power. The methods of proof
are almost identical to those used in [20], though the framework has
been modified considerably to correctly incorporate discrete-valued
and continuous-valued Xi and Si and continuous-valued Gaussian
noise. The results are not direct consequences of Shannon’s theorems,
which hold for a) queries X that are deterministic functions of the
desired variables S, and b) queries corresponding to reliable codes
(small error attacks with constant �m), for which there is no analogy
in this correspondence. The bulk of this correspondence shows that
the channel capacity is an asymptotic limit on the rate of any small
error inference attack when the queries have bounded average power.
Hence, the inverse of channel capacity provides a tight asymptotic
bound on �m for any small error attack. Similar results have been
shown for binary X in [20]; in this correspondence these results are
shown to hold for binary, discrete and continuous RDP, and binary and
discrete-valued Xi and Si.

C. Some Channel Capacities

In this section, we present the channel capacities of some specific
types of RDP for illustrative purposes. We denote the channel cor-
responding to the randomization � by �, and its channel capacity
by C(�). The channel corresponding to n-ary RDP defined in Sec-
tion I-A is denoted �n(�), and the corresponding channel capacity by
C(�n(�)). Its value in bits is

C(�n(�)) = log2 n+ � log2 �+ (1� �) log2
1� �

n� 1
:

When the perturbation has a small bias, i.e., � = 1
n
+ � for small

�, its capacity is determined by the second-order term of the Taylor
expansion (zeroth- and first-order terms are zero)

C �n
1

n
+ � �

n2

2(n� 1)ln2
� �

2
; � small: (3)

The channel corresponding to the continuous RDP with small signal
to noise ratio �

�
= �2 is denoted �p (�) and the corresponding

channel capacity C(�p (�)). Its value in bits is the maximum value
of the mutual information between X and Y . This is the difference be-
tween the maximum differential entropy of Y when its average power
is bounded by �2+�2

noise, and the differential entropy of the noise pdf
pN . The value of the first is 1

2
log 2�e(�2+�2

n), and that of the second
1
2
log 2�e(�2

n) [5], hence, the capacity is

C(�p (�)) =
1

2
log(1 + �

2) �
�2

2ln2
for small �: (4)

IV. OUR RESULTS

In this section, we demonstrate an asymptotic lower bound on �m
for a small error inference attack. We use the methods of [20], which
addressed only binary RDP, while we address binary, discrete-valued,
and continuous-valued RDP. [19] implies that the bound is tight for bi-
nary RDP; it is easily shown to be tight for binary, discrete-valued, and
continuous-valued RDP. To illustrate the rare attack where a determin-
istic relationship exists among the queries, we first provide an example
and then proceed to prove our results.

A. An Example of an Inference Attack That Corresponds to a Channel
Code

Example 6: Consider a database of records of all residents of a
county. From each record, consider the set of the following bits.

X1. Tuberculin Skin Test: “1” represents “Positive,” and “0”
“Negative”;
X2. Chest X-Ray: “1” represents “Positive for TB” and “0” rep-
resents “Negative for TB”;
X3. Lab Test: “1” represents that a laboratory test was performed,
and “0” that it was not.

A lab test follows only if the other two tests were both positive, and
not otherwise. Hence

X3 = X1 AND X2 (5)

for all records.
Suppose B chooses as desired bits S = (X1;X2) for all records,

and designs an overdetermined query sequence by also requesting
X3. Without RDP, B would not need to do so; with RDP, X3 serves
as a check for the values of X1 and X2, or, in the communica-
tion channel framework, as an error-detecting symbol. The queries
X = (X1; X2; X3) may be thought of as the code bits. In general,
one can have an overdetermined sequence of m queries whose values
are completely determined by S - through a set of m equations known
to be satisfied by S andX. Equation (5) is one such equation.

B. Existence of Efficient Inference Attacks

Attacks that correspond to channel codes satisfy the channel coding
theorem if the value of �m is held constant.

Theorem 1: For an RDP �; 8� > 1
C(�)

, there exists a small error
inference attack on � with �m = �;8m.

Proof: Follows from the channel coding theorem [16].

Attacks that correspond to codes are those where the queries X are
deterministic functions of the desired bits S, as in Example 6. The in-
ference attack does not, in general (see Examples 2 and 4, and Defini-
tion 1), however, consist of queries X that are functions of S. Nor do
inference attacks require constant �m as m increases. We now show
a result on the efficiency of all small error inference attacks, not just
those that correspond to reliable channel codes.
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C. An Asymptotic Bound on �m for All Zero-Error Inference Attacks

[20] shows that the inverse of the channel capacity is also an asymp-
totic lower bound on �m of the small error inference attack (which is
more general than a reliable binary code) for binary RDP. It does so
by modifying the proof of the converse of the channel coding theorem
using Fano’s inequality ([5, p. 205])—the main ingredient for demon-
strating channel capacity as a bound on the rate of a code. Thus, Fano’s
inequality and [20] provide the asymptotic lower bound on �m, and the
result in [19] and the channel coding theorem provide the existence of
small error inference attacks that achieve it. Theorem 2 presents the
proof from [20] for binary RDP, which also holds for discrete-valued
RDP in our general framework. The proof for continuous-valued RDP
simply involves replacing the entropy by the differential entropy.

Theorem 2: Given an RDP �; 1
C(�)

is an asymptotic lower bound
on �m for a small error inference attack, i.e.

lim
m!1

!m = 0

) 9 strictly increasing sequence f�mg1m=1 such that

�i � �m 8i � m

and

lim
m!1

�m =
1

C(�)
:

Proof: The proof is similar to the proof of the converse of the
channel coding theorem ([5, p. 199 and p. 244]), except for two differ-
ences: a) in an inference attack, queriesX are not necessarily a function
of S, and b) inference attacks do not have constant �m as m increases.

Assume limm!1 !m = 0, i.e., the attack is small error. Then
limm!1 Em = 0 where Em is the average probability of error over
all values x of r.v. X. Then

H(Si) = H(Sij�(X1); �(X2); . . .�(Xm)) + I (6)

where

I = I(Si;�(X1); �(X2); . . .�(Xm)): (7)

From Fano’s inequality: ([5, p. 205, eq. (8.95)])

H(Sij�(X1); �(X2); . . .�(xm)) � 1 +Em log2M: (8)

From (8), and the definition of �m(�m = m

log M
)

H(Sij�(X1); �(X2); . . .�(xm)) � 1 +
Emm

�m
: (9)

Further, when the noise is discrete-valued

I = H(�(X1); �(X2); . . .�(Xm))

�H(�(X1); �(X2); . . .�(Xm) jSi) (10)

and

H(�(X1); �(X2); . . .�(Xm) jSi)

=
i

H(�(Xi) j�(X1); �(X2); . . .�(xi�1); Si)

�
i

H(�(Xi) j�(X1); �(X2); . . .�(xi�1); Si; Xi)

=
i

H(�(Xi) jXi) (11)

and

H(�(X1); �(X2); . . .�(Xm)) �
i

H(�(Xi)): (12)

Equations (10)–(12) give

I �
i

H(�(Xi))�
i

H(�(Xi) jXi)

=
i

I(Xi;�(Xi))

� mC(�): (13)

From (9) and (13), and the fact that the bound of (6) holds for the
maximum value of its right-hand side (RHS) H(Si) � log2M

m

�m
� 1 +

Emm

�m
+mC(�):

Hence

�m �
1�Em
1
m
+ C(�)

= �m

where f�mg1m=1 is strictly increasing if fEmg1m=1 is nonincreasing,
and

lim
m!1

�m =
1

C(�)
:

The proof for continuous-valued noise follows easily by replacing en-
tropy with differential entropy.

D. Asymptotic Bounds and the Privacy of RDP

The values of Si are not necessarily uniformly distributed, and,
hence, the entropy of S is not the maximum possible. From the source
coding theorem, if the entropy of S is H(S), then S is represented by
H(S) bits on average (over many records). This observation can be
combined with a reasoning similar to that in Theorem 2 to obtain a
result similar to that of the source-channel coding theorem, except, as
with Theorem 2, inference attacks are not of constant �m, and do not
consist of queries X that are deterministic combinations of S. Again,
we derive the asymptotic lower bound, and Shannon’s results show it
is tight for query sequences that are deterministic functions of S. As
with Theorem 2, the proof for discrete-valued RDP is very similar to
that for binary RDP in [20]. The proof for continuous RDP is the same
as that for discrete-valued RDP.

Theorem 3: The tight asymptotic lower bound on the query com-
plexity, on average, per record, for a small error inference attack, is
H(S)
C(�)

ifH(S) and C(�) are measured in the same units, and the record
sequence is stationary. That is, if the number of records is Nr , and m
the number of queries per record

lim
m!1

!m ! 0

) 9 nondecreasing sequence f�mg such that

m � �m8i � m

and

lim
N !1

�m =
H(S)

C(�)
:

Proof: H(S)
C(�)

is an asymptotic lower bound. Assume the existence
of a small error attack with asymptotic query sequence length K =
H(S)
C(�)

�� per record on average, � > 0. This means that, given �; � >
0, a query sequence of length at mostm = Nr(K+ �) for Nr records,
Nr large enough, can result in a probability of error at most �. By
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Theorem 2, for any given �; �m for the attack must be at least 1
C(�)

�� ,
for large enough m, and hence the length of S; m

�
, at most

Nr(K + �)

( 1
C(�)

� �)
=
Nr(H(S)� C(�)(�� �))

1� �C

i.e., each record is represented, on average, by a number of symbols
strictly smaller than the record entropy for small enough �; �; � . This vi-
olates Shannon’s source coding theorem ([5, p. 89, Theorem 5.4.2]) and
[16]. H(S)

C(�)
can be achieved from the above (i.e., tightness): straightfor-

ward from Shannon’s source–channel coding theorem [5].

Corollary 1: The tight asymptotic lower bounds on the value of
�m for a small error inference attack on �n( 1n � �), and �p (�) are
2(n�1)ln2

n �
and 2ln2

�
, respectively.

Proof: The result follows from Theorems 1–3 and (3) and (4).

Corollary 2: The privacy of � is 1
C(�)

.
Proof: Follows from Theorems 1–3 and Definition 5.

Corollary 3: The privacies of�B(0:5��);�n( 1n��), and�p (�)
are all �( 1

�
).

Proof: Follows from Corollary 1 and Definition 5.

E. Underestimating �m

The value of �m is not necessarily known toA, becauseA is not even
aware of S, the attributes of interest to B. A only knows the queries
X, and the RDP parameters: PY jX or pY jX . Given Theorem 3, the
parameters can be chosen so as to limit the asymptotic value of �m of a
small error attack. A can think of a single query response as providing
at most C(�) bits of information. We now provide two examples to
illustrate what is not implied by our result.

Example 7: B uses a query sequence of lengthm per record, concen-
trating on k-tuples of desired bits (attributes) for an entire population.
Every k-tuple is possible. B is interested in a small error attack with
constant �m (the equivalent of a reliable code). This is only possible if
�m = m

k
� 1

C
, or C � k

m
.

We now describe cases where our result does not imply that C needs
to be as large as k

m
, even though the number of queries is m, and the

number of variables of interest k. Hence, in the following cases, small
error attacks are possible for RDP with capacity smaller than k

m
.

Case 1) B targets a few types of individuals, those who would re-
spond in a certain way to the queries. This limits the number
of true responses possible, i.e., M < 2k , or log2M < k.
Then, �m = m

log M
� 1

C
implies that C � log M

m
< k

m
.

Case 2) Suppose B is interested only in a subset of the target at-
tributes, in, say, k1 < k bits. Again, the attack requires
C � k

m
< k

m
.

Case 3) Suppose some bits of S are completely determined from
some others: say k1 < k bits are independent. Again, the
attack requires C � k

m
< k

m
.

Our final example is one in which there is a probabilistic relationship
among the queries but not a deterministic one.

Example 8: Consider a last example [15] of a set of k desired
bits, each highly correlated with the first. Assume that none of the
desired bits is completely determined by any of the others, i.e.,
H(Si jS1; S2; . . .Si�1; Si+1; . . .Sk) 6= 08i. Assume that each bit
is queried, i.e., that m = k and S = X. Assume also that, for a
given value of k, all k-tuples are possible. However, as k increases, a
sequence of the desired bits fXig

k
i=1, is “typical”, i.e., most bits are

equal to the first. The value of �m is unity, and the attack cannot be
small error for � 62 f0; 1g (i.e., for channel capacity lower than unity).

However, B can learn a lot from the responses. What B cannot do is
drive error to zero without increasing �m.

F. Discussion

In statistical databases, it is typically assumed that a larger number
of queries (per attribute desired) is required for a lower error. Our work
shows that, while the total number of queries needs to increase to reduce
error, the number of queries per bit of entropy need not.

As our measure is closely related to the conditional privacy loss mea-
sure of [2, eq. (1)] (C = maxP I(X;Y)), it will also fail to detect
privacy breaches that occur with low probability, which would be de-
tected by the worst-case information measure of [6, eq. (2)]. This is
because such breaches would occur too rarely to influence the asymp-
totic behavior of inference attacks. Each individual will see the com-
plete distribution of Z(y) and not just a single value, and the effect of
privacy breaches will be more distributed throughout the entire popula-
tion and not restricted to a few individuals, and the average will indeed
represent the effect on a single individual’s record.

Though our results follow very easily from classical results in infor-
mation theory and coding, our view of RDP as a channel has one impor-
tant point of difference from the view of a channel in communication
theory. The goal of communication theory is to increase information
transfer over a channel given certain constraints. The goal of a privacy
protection technique is to decrease the information transfer given cer-
tain constraints (such as the desired accuracy of the statistics obtained
using perturbed data points). Because of this, A would be interested in
channels with small capacity.3 On the other hand, B is interested in the
efficient transfer of bits, typically over a channel with small capacity,
and a number of the constructive results from the theory of coding are
of interest to B.

V. CONCLUSION

We have treated RDP as a channel, and channel codes as efficient
attacks, to develop a framework for the study of the most general infer-
ence attack on RDP. We have demonstrated the existence of inference
attacks with zero asymptotic error for all costs greater than the inverse
of the RDP channel capacity. We are not aware of any other work that
a) uses the channel coding theorem to study the privacy properties of
data perturbation, or b) connects attacks on RDP to channel codes.

APPENDIX

A Database.

B Data collector.

Qi; C;Ci Database variable.

Q set of database variables

X;Xi a single queried bit

X Query sequence.

m Number of queries or length of X.

Si Bit desired by B.

S Bits desired by B.

k Number of desired bits or length of S

Y = �(X), single perturbed response to query X .

� Probability of correct response, discrete-valued RDP.

PY jX ; pY jX An a posteriori pdf of protocol/channel.

3Our work shows that this is a necessary condition for privacy, though, de-
pending on how one defines privacy, it may not be a sufficient condition.
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pN pdf of noise, continuous-valued RDP.

�2 Maximum average power in query sequence.

�2n Maximum average power in noise.

P Conditional privacy loss.

Iw Worst-case information.

g(:) ML estimate function.

Ŝi ML estimate of Si.

Ŝ ML estimate of S.

!m Maximum probability of error.

M Alphabet for Xi.

M Number of possible values of X.

�m Number of queries per bit determined.

�m Lower bound on �i 8i � m.

�min limm!1 �m.

� RDP channel.

C(�) Capacity of �.

� Small bias of discrete RDP.

Em Average probability of error.

H(:) Entropy.

m Query complexity per record.

�m Lower bound on m 8i � m.

Nr Number of records.
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Single-Symbol ML Decodable Distributed STBCs
for Cooperative Networks

Zhihang Yi and Il-Min Kim, Senior Member, IEEE

Abstract—In this correspondence, the distributed orthogonal space–time
block codes (DOSTBCs), which achieve the single-symbol maximum like-
lihood (ML) decodability and full diversity order, are first considered.
However, systematic construction of the DOSTBCs is very hard, since
the noise covariance matrix is not diagonal in general. Thus, some spe-
cial DOSTBCs, which have diagonal noise covariance matrices at the
destination terminal, are investigated. These codes are referred to as
the row-monomial DOSTBCs. An upper bound of the data-rate of the
row-monomial DOSTBC is derived and it is approximately twice higher
than that of the repetition-based cooperative strategy. Furthermore, sys-
tematic construction methods of the row-monomial DOSTBCs achieving
the upper bound of the data-rate are developed when the number of relays
and/or the number of information-bearing symbols are even.

Index Terms—Cooperative networks, distributed space–time block
codes, diversity, single-symbol maximum likelihood (ML) decoding.

I. INTRODUCTION

It is well known that relay terminal cooperation can improve the
performance of a wireless network considerably [1]–[4]. A source ter-
minal, several relay terminals, and a destination terminal constitute a
cooperative network, where the relay terminals relay the signals from
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