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Abstract We describe a single framework in which to view the end-to-end-
independently-verifiable (E2E) polling-place voting systems with a mixnet
back-end. We use the framework to invent new systems that combine front and
back-ends from existing systems.
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1. Introduction

New voter-verifiable voting systems provide strong integrity and privacy guarantees [4,
7, 9, 11, 19, 20, 22]. In contrast to previous voting systems—where voters voted
remotely using trusted computers—these voting systems are meant for use in polling
booths, without access to trusted computational power at the time of voting. The secur-
ity guarantees rely on the provision of paper receipts to voters. A receipt does not reveal
the vote, but it can be used to ensure that votes are tallied correctly. The systems use
different paper-based front-ends (for ballot preparation and the voting ceremony)
and back-ends (for vote tallying and tally auditing); most of the existing literature
on these systems describes a single, complete mechanism that does not typically address
the components separately. This paper describes the existing paper-based E2E voting
systems in a single framework, and by combining hitherto uncombined front and
back-ends, presents new systems with hitherto unachieved properties. To keep the dis-
cussion focused, this paper presents back-ends that use some form of mixnet, and the
corresponding front-ends. However, there is no reason why the front-ends presented
cannot be combined with suitable back-ends that are not based on mixnets. For
example, Scratch and Vote [3] uses a back-end based on homomorphic counters and
can use either the PunchScan [21] or the Prêt à Voter [11] front-end.

The approach of the work is as follows. The paper-based voter-verifiable schemes
use an innovative presentation of a two-part paper ballot—one part contains the
encryption key, and the other the encrypted vote. The manner of ballot presentation
enables a voter to check correct encryption through simple visual examination. The
encryption is a symmetric-key encryption: either a stream cipher, or encryption with
a simple substitution cipher. Inside the booth, the voter checks that the symmetric-key
encryption is correct. The use of audits before, after, and=or during the election
ensures that the keys are generated and printed correctly; the verifiable generation
of keys is based on asymmetric-key or symmetric-key cryptography. Thus, the
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front-end provides different ways to generate the key and encrypt the ballot, and the
back-end to decrypt the ballots in a verifiable manner while preserving voter privacy.

The contribution of this work is two-fold: firstly, it is a survey of front-ends and
back-ends of these systems. Secondly, it presents a single framework of which each
of these systems is a special case, and it describes how front and back-ends can be com-
bined (see Table 1) in ways that yield hitherto unachieved properties. The paper surveys
three back-ends: mixnets using public keys and onions [14], punchscanian mixnets
using precommitted paths and onions [21], pointer-based mixnets [10], with precom-
mitted paths and no onions. Re-encryption mixnets are not studied as a separate case
of mixnets; hence, for example, while the paper studies the original Prêt à Voter system
[11], which uses encryption mixnets, it does not study in as much detail a variation
which uses re-encryption mixnets [24]. The back-ends differ in the simplicity of the
design, robustness and efficiency. Note that a mixnet-based back-end can be audited
using a non-interactive zero-knowledge protocol (NIZKP) or a more efficient but less
private protocol such as a randomized partial audit [16]. This paper briefly describes
both types of audits, though the systems surveyed have, for reasons of efficiency, typi-
cally used a variation of the randomized partial audit. We also survey four front-ends:
visual cryptography [7], shuffling the order of the candidates (Prêt à Voter [11]),
indirection-based encryption (PunchScan [21]), and a front-end that is an overlay to
the current optical scan (Scantegrity II [9]). In order to maintain its focus on the use
of mixnet-based back-ends, and on the use of paper ballots as a means of vote encryp-
tion, this paper does not cover in asmuch detail several excellent voting systems such as
the remote voting system (Helios [2], or Scratch & Vote [3]), which uses a back-end
based on homomorphic counters. Proofs are outside the scope of this paper.

The paper is organized as follows. Section 2 presents related work. Section 3
presents a front-end model that generalizes the front-ends of the various existing
example systems; Section 4 demonstrates how the front-ends of existing voting sys-
tems are specific instances of the general front-end. Section 5 demonstrates how exist-
ing back-ends are specific instances of a generalized back end. Section 6 presents new
systems obtained by combining front and back-ends, and Section 7 presents con-
clusions. Table 1 presents the existing systems and the contributions of this paper.

An early draft of this paper appeared in WOTE 2008 [22].

2. Related Work

In Scratch & Vote [3], Adida and Rivest explain how their homomorphic scheme
would work with two types of front-ends (Prêt à Voter and PunchScan). Van de

Table 1. Recent mixnet-based voter-verifiable voting systems and the components
they use. X stands for work that has already been done while $ represents new
concepts proposed in the current work

Onion mixnets Punchscanian mixnet Pointer mixnet

Visual Crypto X $

Pret a Voter X X $

PunchScan $ X $

Scantegrity II $ $ X
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Graaf [25] notices similarities between PunchScan and Prêt à Voter and describes a
detailed mechanism that allows the use of a Prêt à Voter front-end with a PunchScan
back-end. Lundin [18] provides a framework for all the aspects of voting—including
registration, election method, election mechanics, election management, and transfer
methods—and decomposes the voting system in its totality into components that can
be interchanged. Chaum [5] suggests writing a common XML format for represent-
ing the results of the scanning of PunchScan and Prêt à Voter ballots to allow the
interchange of scanning technologies.

Our work looks at a larger numbers of systems and is more general than that of
Van de Graaf [26] and Scratch and Vote [3], looking at a larger number of systems.
We also present a clear distinction between front and back-ends, and suggest general
ways of interconnecting them to obtain voting systems with properties distinct from
voting systems previously presented. At the same time, our work is more focused
than that of Lundin [18]. We look only at two of the components that make an elec-
tion process work from start to finish, and providing details about each possible
combination of front and back-ends.

There is an entire body of work on the use of verifiable mixnets for the purposes
of voting. Ben Adida’s doctoral dissertation [1] provides an excellent recent survey.
Related to the classical mixnet back-end described in Section 5.1, is the re-encryption
mixnet of Park et al. [13], where the random value for each mixnet server is
algebraically combined with the existing numerical values, and not concatenated;
this leads to onions that do not increase in size with the number of mixes used.
Key contributions in the area of mixnet verification include the universally verifiable
mixnet of Sako and Kilian [25], which was the first to provide a proof of correctness
for the mixnet output that could be verified by anyone, including non-voting obser-
vers. Later work provides more efficient proofs that exploit the underlying algebraic
structures of the particular cryptosystems; see, for example, the proofs of Furukawa
and Sako [16], and Neff [20]. The randomized partial audit of Jakobsson et al. [17],
provides a more efficient correctness proof that is, however, not zero-knowledge.
The two types of audits are described in more detail in Section 5.1.

3. The General Front-End

The front-end represents the manner in which the ballots are presented to the
voters and the voters interaction with the system. In the voting protocol, the
front-end represents a voter-verifiable encryption of the vote; the receipt bears
the encrypted vote. The ballots presented in this work fall in two categories. The
first category is that of symmetric ballots: those that have two parts, each of which
is sufficient to recover the vote (the original scheme using visual cryptography [12,
27] described in Section 4.1, and PunchScan described in Section 4.2). On visual
examination of the two parts appropriately laid out, the voter is able to confirm
that each part bears the encryption of her vote. The second category is that of
asymmetric ballots: those that have two parts, of which a specific one is needed
to recover the vote (Prêt à Voter described in Section 4.3 and Scantegrity II
described in Section 4.4). In this category too, the voter visually examines both
parts of the ballot laid out in a particular manner (side by side) to confirm that
the encrypted vote represents her ballot. Scantegrity II requires an indirection
not present in other schemes, we discuss this in more detail later. We define sym-
metric and asymmetric ballots more formally below.
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Definition 1 (Symmetric ballot). A symmetric ballot is a ballot that has n parts and

– when combining the n parts the clear text vote is available;
– a single part or a combination of any number of parts strictly less than n does not

reveal anything about how a voter voted; and
– any single part can become the receipt.

Definition 2 (Asymmetric ballot). An asymmetric ballot is a ballot that has n
parts and

– when combining the n parts the clear text vote is available;
– a single part or a combination of any number of parts strictly less than n does not

reveal anything about how a voter voted; and
– a designated part always becomes the receipt.

3.1. The General Receipt

We now describe more formally a receipt. In all the voting systems we study in this
paper, the voter gets a receipt of serial number s2S, where S is the set of all serial
numbers. A vote is v2V, where V is the set of all possible votes. E is the encryption
cipher used to generate the receipt, E¼ (V, R, K, E, D), where R is the space of all
ciphertexts for E; K the keyspace, and E: K�V!R and D :K�R!V the
encryption and decryption functions respectively. Finally, a function f: S!K pro-
vides the association between the key and the receipt. Note here that the encryption
schemes used are deterministic; serial numbers are unique, keys are rarely, if ever,
reused, and the encryption cipher is a symmetric key encryption. The private func-
tion f may itself be a keyed function, with a keyspace that is distinct from K.
Additionally, the inverse of f may be a public function; however, neither condition
is necessary—in particular, f need not be bijective. It is important, however, that,
given k0 and s, it can be checked that k0 ¼ f(s) with high probability. Using the
previous notation, the receipt obtained by a voter in a correct instance of the voting
protocol is the triplet (s; x; E(f(s), v)), where v is the vote; and x represents any other
information, such as onions and commitments made by the voting system. Note that
E(f(s), v)) denotes the encryption of vote v using the encryption key f(s) associated
with serial number s. This receipt is the only vote-related information to enter the
back-end of the voting system, and the tally is constructed from this information.

Definition 3 (Receipt). A receipt is the triplet (s, x, r), where s is the serial number, x
any additional information on the receipt, and r the purported encrypted vote.

Note that we are not always assured that r¼E(f(s), v) and that x is correctly
formed.

3.2. The General Printing Audit

All front-ends discussed here are based on paper ballots; this enables the voter to
retain a physical artefact of the voting process (a paper receipt), and provides some
resemblance to voting with paper ballots, a process familiar to most voters. (We do
not claim that all the E2E voter-verifiable voting systems are as easy to use as regular
paper-ballot voting, we simply indicate that the choice of a paper receipt, as opposed

Secure Electronic Voting—A Framework 239

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
o
r
a
,
 
P
o
o
r
v
i
 
L
.
]
 
A
t
:
 
0
8
:
4
3
 
2
6
 
J
u
l
y
 
2
0
1
0



to any other type of receipt, has not been arbitrary by the inventors of the protocols).
At some point, hence, the ballots and=or receipts need to be printed. Verifying the
correctness of the printed ballots is referred to as a printing audit, and is carried
out either before, during, or after the election.

A correct printing provides a Correct Encryption, which enables the system to
correctly decrypt the vote. There are two possibilities for the mixnet-based decryp-
tion.

1. The key may be referenced through s—either through a lookup table with entries
individually committed to and indexed by s (these commitments are opened at
the time of the audit); or by the use of similar commitments to keys for the keyed
function f. In this case, a printing audit checks that the key used for encryption is
indeed f(s).

2. The receipt may bear additional information in the form of an onion that is used
by successive mixes to effectively decrypt the receipt using the correct key. In this
case, the printing audit checks that the key represented by the onion(s) is that
used for encrypting the vote.

Definition 4 (Printing Audit). A printing audit is a process that ensures each voter,
with high probability, that the entity that produced the ballot did so correctly
(consistent with the other published data about the election).

The most general printing audit allows each voter to choose a number of ballots,
one to vote with, and the others to spoil and verify. Because the choice of which bal-
lots to spoil is made at random by the voters, the probability that an incorrect print-
ing is undetected drops exponentially as the number of misprinted ballots increases.
Variations on this method are possible, for example the voter does not actively spoil
a ballot, as it becomes a natural result of the voting process: some voters simply
make mistakes when filling them in, spoil them, and ask for a second ballot; the
spoilt ones may be checked by the auditors. Unfilled ballots may be checked at
the end of an election. This type of audit works for both symmetric and asymmetric
ballots.

The printing of symmetric ballots may also be audited by examining, for correct-
ness, the ballot half chosen for a receipt. Because the system cannot predict before-
hand which half will be chosen, the probability that an incorrect printing is
undetected decreases exponentially with the number of incorrect ballots.

3.3. Other Proofs of Correct Encryption

Several of the voter-verifiable systems do not perform vote encryption through the
use of paper ballots. While we do not focus on these in this paper, in this section
we describe briefly how a voter may check for correct encryption in these techniques.
Consider, for example, the front-end of the Helios voting system [2], based on
Benaloh’s Simple Verifiable Voting protocol [4]. In this voting system, an encrypted
vote is generated by a ballot preparation system. A voter, or anyone, can generate as
many encrypted votes as he or she wishes, and spoil several in order to audit the
encryption. If the ballot preparation system cannot predict which encrypted votes
are audited, it will be caught with high probability if it cheats on a few encryptions.
The voter casts an unspoilt encrypted vote at a different, ballot casting, machine. As
should be clear, these audits are very similar to the printing audits described above.
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3.4. Types of Receipts

After all ballots are cast, the voting system makes available all receipts on a public
bulletin board. The voter can check that the triplet (s, x, r) is among these. If she
notices a discrepancy, she can file a complaint. There are two types of receipts the
voter can get: proof receipts and indication receipts.

Definition 5 (Proof Receipt). A proof receipt is a receipt held by the voter that is
non-repudiable by the voting system.

A proof receipt is one that is produced and ‘‘signed’’ by the voting system itself
(or by an election official). If the signature is a digital signature, the voter should be
able to check it for correctness at a time when he or she can challenge the signature.
On the other hand, the signature could correspond to a physical seal or stamp, which
a voter may more easily verify without recourse to trusted computation. When a
voter holds a proof receipt that is inconsistent with the information on the public
bulletin board, and the digital signature scheme used is assumed secure, it is suf-
ficient evidence that the bulletin board contains erroneous information. This, in turn,
is an irrefutable indication that something went wrong with the election.

Definition 6 (Indication Receipt). An indication receipt is a receipt held by the voter
and that, in case the voter notices a discrepancy between the proof receipt and the
public data, can be used to trigger additional investigation.

Indication receipts provide only a hint that something might have gone wrong,
but additional evidence needs to be provided in order to prove that something went
wrong. Indication receipts can be produced by voters themselves and are not
‘‘signed’’ by any election authority; these receipts are hence not non-repudiable.

We now describe in more detail the ‘‘voting ceremony’’ for several front-ends,
and indicate how the front-ends are specific instances of the general description
above. The voting ceremony consists of the specific steps a voter needs to take to cast
a ballot, and, eventually, to verify later that the ballot was printed correctly and
recorded as cast. We will describe the receipt; in particular, we will describe the
encryption process. We will intentionally not describe the value in x, as that depends
on the back-end.

4. Example Front-Ends

In this section, we describe the existing front-ends of four paper-based voter-verifi-
able voting systems with mixnet-based back-ends, and demonstrate how they corre-
spond to specific instances of the general front-end of Section 3.

4.1. Ballots using Visual Cryptography

Chaum [6] describes a ballot made of multiple parts, such that the combination of all
parts makes the text readable; but no information is revealed about the vote when
only a subset of the parts is available. The layer used as an encryption of the vote
can later be decrypted by a mixnet to recover the vote unambiguously. The first
instantiation of this idea used visual cryptography [19].
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A detailed explanation of how the layers are built may be found in [12, 27]. On
the top layer, the odd pixels are generated pseudo-randomly, while on the bottom
layer, the even pixels are generated pseudo-randomly. The rest of the pixels are gen-
erated in a way that constructs the clear text image of the ballot only when the two
layers are overlaid. The voter is able to read her vote when the two pages are overlaid
(Figure 1a), but when looking at a single layer, no information is leaked about the
voter’s choice (Figure 1b).

A more formal description is as follows. A correct receipt is of the form (s,
x,v� ka) where � denotes bitwise XOR, ka represents the key for the layer corre-
sponding to the receipt. The other layer is encrypted using key k�aa. The keys are
generated using different seeds for a pseudo-random number generator;
ka¼ fa(s)¼F(Sign(s, pa)), where Sign(s, pa) is the deterministic digital signature of
the serial number using the private key of the polling machine that corresponds to
layer a, and F the public pseudo-random number generator. If the two receipts
are (sa, xa, ra) and ðs�aa; x�aa; r�aaÞ, because of the manner in which the bits in each layer
are presented, the voter can visually check that ra � r�aa ¼ v; sa ¼ s�aa. The information
in x depends on the back-end used.

The Voting Ceremony
On election day, the voter goes to her assigned polling place, authenticates herself as
a legitimate voter and uses a touch screen to make the desired selections. When fin-
ished, the computer prints the two layers, the voter checks that, when the two layers
are overlaid, her vote is shown. The voter chooses one of the layers as a receipt and
watches the other one being destroyed. The computer prints additional information
on the receipt, that allows anyone to check that the pseudo-random pixels on the
chosen layers have been constructed correctly. A digital signature is also printed.
After election day, any voter can go to the election authority web site, enter the serial
number for her ballot, check that the ballot is there and that it matches the page she
possesses: the pixelized image and the strings on the receipt should be the same as
the ones posted on the web site. This voting scheme hence provides a proof receipt
if voters can check digital signatures inside the polling booth, and uses a symmetric
ballot. Correct printing is checked by auditing the ballot half that forms the proof
receipt.

Figure 1. A sample ballot using visual cryptography. (a) A ballot containing a vote for ZERO.
(b) One layer can represent with equal probability a vote for either ZERO or X, depending on
what the other layer is.
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Advantages and Disadvantages
The advantages of this approach are: the high degree of generality (it can accommo-
date any type of contest, including write-ins), that the receipt is created automatically,
that it allows a fixed order of candidates, that it offers excellent privacy (except for the
fact that the voting machine knows the clear text votes), and that there is no need for a
strict chain of custody of the ballots. The disadvantages are: the voters are not familiar
with the receipt interface, the order of events must be precise, the alignment of pixels is
difficult, the receipt is difficult to check by the voter, it is very difficult to implement
in practice (one reason is the alignment of the two pages), it does not accommodate
disabled voters, it does not allow manual recounts, the cost is very high (because
one machine per booth is needed), and the administration of the system is difficult.

4.2. Ballot with Indirection

To allow the same separation of information as in the previous case, the following
technique can be used: on one page each candidate is associated with a random sym-
bol; on another page the same set of symbols appears in a random order. For con-
venience the two pages can be overlayed, with the top page having holes and the
symbols on the bottom page being visible through the holes. (Figure 2a). This tech-
nique was first proposed in PunchScan [8] and therefore this style of ballot is known
as a PunchScan ballot.

In PunchScan, the voter uses a dauber to mark the selection of candidates. The
diameter of the ink disc is greater than the diameter of the hole punched through the
top page, therefore the dauber leaves a mark on both the top and the bottom ballot
pages. Figure 2b contains a ballot voted for ‘‘Yes.’’ Because the order of the symbols
on the two pages of a ballot is different (and independently and uniformly distribu-
ted), one cannot determine which mark is for which candidate by viewing only one
voted page. The association of candidates with symbols, and the order of the sym-
bols on the bottom page, can be uniformly random, or pseudorandom.

Thus, in PunchScan, the receipt is of the form: (s, x, E(f(s), v)) where E is viewed
as a permutation of the plaintext space (all encryptions are trivially permutations of
plaintext space) composed of two distinct permutations: the first is the association of
candidate choice with dummy variables (viewed as a map of candidates in canonical

Figure 2. PunchScan’s ballot. (a) A sample Punch-Scan ballot. When the two pages are
over-layed, the symbols on the bottom page are visible through the holes. (b) A voted ballot.
Looking at each layer individually, one cannot say that the mark is for ‘‘Yes’’ or for ‘‘No.’’ (c)
Given only one layer of the ballot, the marks on that layer are equally likely to represent a vote
for any candidate.
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order, such as alphabetical order, to dummy variables in canonical order) and the
second the association of dummy variables with positions (again the map can be
between canonical orderings). With abuse of notation, using the same notation for
the key and the encryption function it represents, the key f ðsÞ ¼ paðsÞ � p�aaðsÞ is
the composition of two permutations, pa and p�aaðsÞ, one for one of the layers a
and the other for the other layer ā, each a well-defined function of s.

The Voting Ceremony
On election day, the voter goes to her assigned polling place, authenticates herself as
a legitimate voter, and before seeing the ballot, commits to which page to keep as a
receipt. In the privacy of a booth, the voter marks the hole that contains the symbol
associated with her favorite candidate, and, when done, scans the page chosen in the
first step, keeps it and shreds the other one. After election day, any voter can go to
the election authority web site, enter the serial number for her ballot, check that the
ballot is there and that it accurately resembles the page she possesses: her marks are
recorded correctly and the order of the symbols on her receipt is the same as the
order posted. The receipt is signed, and this method provides a proof receipt using
a symmetric ballot if voters can check digital signatures inside the polling booth.
Correct printing is ensured through the auditing of the receipts.

Advantages and Disadvantages
The advantages of this method are: the receipt is created automatically and is easily
checkable by the voter, it allows a fixed order of the candidates on the ballot, it offers
excellent privacy (the scanner does not know the clear text votes, however the printer
does know all clear text votes), the cost is low, the dispute resolution is easy, and it
accommodates disabled voters (see the PunchScan website for a brief description of
such capability, which also follows for Prêt à Voter; this capability is also described
in more detail in [13]). The disadvantages are: it does not accommodate write-ins
(but it accommodates most types of contests), the voters are not familiar with the
voting interface (the indirection may cause usability problems), its privacy properties
require a strict chain of custody before the ballots reach the voters, and it does not
allow for a manual recount.

4.3. Permuting Candidate Order

Prêt à Voter [11] proposes a simplification of the two-part visual cryptography ballot
presented in Section 4.1, see Figure 3a. The ballot is printed on a single page of nor-
mal paper, with the names of the candidates on the left and the places to mark on the
right. A voter makes a mark next to her favorite candidate (Figure 3b). The names of
the candidates are permuted on each ballot and when the left part is separated from
the right part, the marks on the right are no longer associated with candidates
(Figure 3c). This ballot style is an example of a ballot that has two parts (left and
right) but the information is distributed asymmetrically in the two parts. Thus the
Prêt à Voter receipt is of the form (s, x, E(f(s), v)) where f(s) is a permutation.

The Voting Ceremony
On election day, the voter goes to her assigned polling place, authenticates herself as
a legitimate voter, gets two ballots from the election officials and chooses one to
audit (for the printing correctness check) and one to use for voting. In the privacy
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of the voting booth, the voter makes an X on the right side of the ballot, next to her
favorite candidate. The voter separates the list of candidates (on the left) from the
marks (on the right), destroys the left side and scans the right side. The marks are
recorded and made public. The scanned side is kept by the voter and anytime after
election day, the voter can go to the election authority web site, enter the serial num-
ber for her ballot, check that the ballot is there and that it accurately resembles the
page she possesses. The receipt is signed, and this method provides a proof receipt
using an asymmetric ballot if voters can check digital signatures inside the polling
booth. Correct printing is ensured through audits of spoiled ballots.

Advantages and Disadvantages
The advantages of this method are: the voters are somewhat familiar with the inter-
face,the receipt is created automatically and is easily checkable by the voters, it
accommodates disabled voters, and it offers excellent privacy (the scanner does
not know the clear text votes) at a low cost. The disadvantages of the method are:
it does not accommodate write-ins (but it accommodates most types of contests);
it does not allow a fixed order of candidates; its privacy properties require a strict
chain of custody before the ballots reach the voters; and it does not allow for a man-
ual recount.

4.4. Standard Optical Scan Ballot, Encoded Receipt

Scantegrity [10] and Scantegrity II [9] address the usability concerns of Punch-Scan
while keeping the order of candidates fixed on all ballots. A Scantegrity ballot con-
tains two asymmetrical parts, but because the two parts are never separated, it is
printed on a normal piece of paper that will not be divided in any way. One part
of the ballot is a normal optical scan ballot, which can be scanned and used by
any certified optical scan voting system. The other part is a set of confirmation
numbers associated with the candidates (e.g., printed next to the candidates). The
association is different on each ballot. See Figure 4 for a sample Scantegrity II ballot.

Figure 3. Prêt à Voter ballot. (a) A sample Prêt à Voter ballot. A permuted list of candidates is
on the left. (b) A voted Prêt à Voter ballot. When the right side is separated from the left side
the mark is not a clear vote anymore. (c) Given only the right side, the mark is equally likely to
represent a vote for any candidate.
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The difference between Scantegrity and Scantegrity II is that the voter only gets the
confirmation numbers for the candidates she is choosing in Scantegrity II, while in
Scantegrity the voter is able to see the confirmation numbers for all the candidates.
The immediate benefit is in the dispute resolution process: voters that claim to have their
ballots registered improperly must provide the confirmation numbers, which are ran-
dom and hard to predict. The election authority can then discard the complaints that
contain confirmation numbers that do not appear on the indicated ballot and race.
In Scantegrity the receipt is of the form (s, x, E(f(s), v)) where f(s) is a permutation of
some standardly ordered symbols (alphabetically ordered letters), whereas in Scantegr-
ity II f(s) is a mapping between candidates and randomly chosen codes.

The Voting Ceremony
On election day, the voter goes to her assigned polling place, authenticates herself as a
legitimate voter, gets two ballots from the election officials and chooses one to audit
(for the printing correctness check) and one to use for voting. In the privacy of the vot-
ing booth, the voter marks the ballot as a normal optical scan ballot. On a separate
piece of paper, she writes down the confirmation numbers associated with the voted
candidates, tears off the bottom part of the ballot, (which also contains the serial num-
ber of the ballot) and keeps it. The ballot is scanned by a regular optical scanner. After
election day, any voter can go to the election authority web site, enter the serial
number and check that the symbols she wrote down are on the web site.

Because the receipt the voter gets is an indication receipt (as opposed to a proof
receipt), if the voter sees on the web site a different set of symbols then the ones on
her own piece of paper, she has to have a way of challenging the records on the bull-
etin board. Depending on the length and unpredictability of the confirmation num-
bers, a set of dispute resolution techniques are possible; see [9] and [10] for details.
This method hence provides an indication receipt using an asymmetric ballot.
Correct printing is ensured through the auditing of spoiled and unused ballots.

Advantages and Disadvantages
The advantages of Scantegrity II are: the voters are highly familiar with the interface; it
is highly usable by the election officials, the voters can easily check their receipt, the dis-
pute resolution process is easy; it allows for a fixed order of the candidates, it accommo-
dates disabled voters; it allows a manual recount, the cost is very low; and it is very easy

Figure 4. Scantegrity Ballot: Blue is the ballot form, and Yellow is the receipt. Typically, the
indication receipt may contain the serial number and the confirmation number. (a) A sample
Scantegrity ballot, just like a regular optical scan ballot. (b) A voted Scantegrity ballot. When
the oval is filled in, a confirmation number appears. (c) The symbols on the receipt may
correspond to any candidate.
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to administer. Another advantage is that the voting machine can compute an inde-
pendent tally; while this is also true of the visual cryptography based system, it is more
important in this instance because it allows the voter-verifiability to be an unobtrusive
aspect of a regular voting system based on optical scan. In such a system, it is possible
to compute vote tallies at the precinct or scanner levels. The disadvantages of themethod
are: it does not accommodate write-ins, the voting machine knows the clear text votes,
and it needs a strict chain of custody after the votersmark their ballots toprotect privacy.

Table 2 summarizes the advantages and disadvantages of the four types of
front-ends.

5. Example Back-Ends

The back-end is responsible for producing clear text ballots from the encrypted receipts
produced during the voting ceremony. The process is typically fully auditable by any-
one, yielding universal verifiability, while preserving the secrecy of the votes. While
the verifiability of the election depends on voters verifying their receipts, and is hence
not completely universally verifiable, it is possible to have a back-end that is universally
verifiable. In a general sense, in mixnet-based back-ends this works as follows: in one
approach the information required for decryption is composed of two or more parts,
either stored in some form of database, as in PunchScan, or printed on the ballot in
the form of an onion, as with classical mixnets. Ballots are shuffled after the use of each
piece of information; hence the encrypted ballot has a path through the mixnet, based
on its position in each shuffle. When the decryption information is stored on the ballot
the path is chosen on the fly; when it is not, the path is pre-determined and the corre-
sponding information in the database is linked by pointers. In another approach, as
with pointer-based mixnets, in Scantegrity, the shuffle (a permutation of ballot order)
is combined with decryption (a permutation of candidate order).

In two of the three cases presented here, the back-end is also responsible for
initially creating the blank ballots.

Three main techniques are presented:

. classical mixnets using public keys and onions. The path followed by a vote is
determined on-the-fly.

. punchscanian mixnet using pre-established and committed paths and onions.

. pointer-based mixnet with pre-established paths and no onions.

We briefly describe each back-end and suggest simple ways to connect hitherto
uncombined back-ends with front-ends in Table 1.

5.1. Traditional Mixnets

Mixnets have been classically associated with onion routing because the payload can
be viewed as an onion, with multiple layers of encryption; each mix strips off one of
the layers. Besides the onion, the payload also contains a value (a ballot in the case of
voting systems). After removing one layer of encryption from the onion, a mix finds
a seed (sometimes called a germ) that is used to transform the value in the payload.
This way, the output value is uncorrelated with the input value.

We now briefly explain how onion routing works, referring to, for example, [12].
In general, the payload is a pair (Onion, Ballot). Thus, when the back-end is a
traditional mixnet, the value of x for all the front-ends contains the onion. The serial
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number from the receipt is stripped after voters have checked the presence of the
receipt on the bulletin board, and the triplet (s, x, r) is reduced to the pair (x, r),
referred to as (Onion, Ballot). (Ballot hence represents the encrypted vote).
For a particular mix j and a particular input-output pair, the input is Pay-

loadj¼ (Onionj, Ballotj) and the output is Payloadjþ1¼ (Onionjþ1,
Ballotjþ1). The relation between the two onions is

Onionj ¼ EncðPublicKeyOfMixJ Þðseedj; Onionjþ1Þ ð1Þ

where EncðPublicKeyOfMixJ Þ represents encryption with the public key of mix j and the
comma represents concatenation. The (jþ 1)th onion is obtained by decrypting the
jth onion and removing seedj: Onionj ¼ DecðPrivateKeyOfMixJ ÞðOnionjþ1Þn seedj,
where n denotes removal from a string. The size of the onion grows linearly with
the number of layers. One manner in which the relation between the input and the
output ballot may be viewed is [23]:

Ballotjþ1 ¼ FjðseedjÞðBallotjÞ ð2Þ

where Fj(seedj)2G, 8j for group G with operation �, and Fj is a public function. An
important aspect is that the Onion and the Ballot have to travel together through the
mix. Thus

J
j FjðseedjÞðBallotjÞ¼Dðf ðsÞ; BallotjÞ decrypts the encrypted receipt.

Note that seedj is a function of s.
The traditional mixnet is used as the back-end of the voting scheme proposed by

Chaum that uses a front-end based on visual cryptography (see Section 4.1), and by
Pret a Voter (see Section 4.3). In the scheme of Chaum,G is the set of all bitwise XORs
acting on n-bit strings, and Fj(seedj) corresponds to a bitwise XOR using the
pseudo-random string generated using seedj. The composition of the processing of
individual mixnet entities corresponds to the bitwise XOR of the receipt bitstring with
the bitstring used to encrypt it. In Prêt à Voter, G is the set of permutations on sets of
size c, the number of candidates, � is permutation-composition and F¼P � h where h
is a one way function and P is a function that generates a permutation on a set of size c
given a seed. The composition of the processing of individual mixnet entities corre-
sponds to the inverse of the permutation used for encryption. If a mixnet processes
a single rance, computing the permutation that a single mix applies requires
N� log(N) operations (e.g., for sorting the output),N operations for removing a layer
of the onion and another N operations for computing the outputs. This needs to be
multiplied by the number of mixes and again by the number or races.

Amixnetmay be audited by either providing a zero-knowledge proof of correctness
or using a randomized partial checking (RPC) technique [17]. We describe these next.

Mixnet Audits: Randomized Partial Checks
In a randomized partial audit, the mix is required to reveal seedj for a significant frac-
tion of its inputs (or outputs). Having the seed, the auditor (sometimes called the chal-
lenger or verifier) can check Eqs. (1) and (2) for all the revealed input-output pairs.
The inputs or outputs revealed in the different mixes are chosen so as to protect vote
privacy. For example, in one variation, the first mix reveals the input-output pairs
corresponding to a randomly-chosen half of the ballots. The second mix reveals the
input-output pairs corresponding to the other half. Consequent mixes alternately
reveal input-output pairs corresponding to half of the ballots, so that the input-output
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pair of a single ballot is never opened by two or more consecutive mixes. This ensures
that a plaintext vote is not traceable to the corresponding encrypted vote. This audit
does, however, reduce the number of possible encrypted votes a single plaintext vote
can correspond to. In another variation, each mix opens input-output pairs corre-
sponding to half of the ballots, chosen uniformly at random. The probability that
the link between a single output plaintext vote and its corresponding input encrypted
vote will be revealed decreases exponentially with the number of mixes. Several voting
systems use a variation of randomized partial checking, including the voting system of
Chaum based on visual cryptography, Prêt à Voter, PunchScan, and Scantegrity.

Mixnet Audits: Zero-Knowledge Proofs
Unlike randomized partial checks, zero-knowledge proofs of mixnet correctness do
not reveal any additional information about the relationships between encrypted and
plaintext votes than is already available—through the tally, and through other infor-
mation external to the voting system, such as demographic information, and infor-
mation obtained from exit and opinion polls. The first of these proofs is due to Sako
and Kilian [25], who use a cut-and-choose protocol. Benaloh describes a typical gen-
eral zero-knowledge proof of mix correctness [4] as follows. A set of encrypted bal-
lots, B, may be verifiably shuffled to produce a ballot set B0 as follows. The prover
makes several sets of ballots by re-encrypting exactly once each ballot from B, and
shuffling all of them; these sets of re-encrypted and shuffled ballots are denoted
B0;B1;B2; . . . ;Bn. For each Bi, the prover is asked to show one the following, chosen
at random: (a) that Bi is obtained by re-encrypting and shuffling the ballots from B,
or (b) Bi is obtained by re-encrypting and shuffling the ballots from B0. If ballot set
B0 is not an encrypted and shuffled version of ballot set B, the verifier will not be able
to respond correctly to all challenges. The Web-based voting system Helios [2] uses a
non-interactive variant of a zero-knowledge proof. Neff has proposed a more
efficient proof, (which exploits the structure of the ElGamal encryption scheme used
for the mixnet) as well a voting system based on it [20].

Advantages and Disadvantages
The advantages of onion mixnets are their truly distributed nature, support for
dynamic paths and the possibility of setting up the system before the details of the
elections are known. The disadvantage is low efficiency, both when processing the
ballots and during the audit process.

5.2. Punchscanian Mixnet

A punchscanian mixnet [21] has been viewed as an integral part of PunchScan itself,
however we describe how it may be used with other front-ends, after first providing
a brief overview. The path through a punchscanianmixnet is fixed a-priori and commit-
ments to it are published a priori; the paths and permutations are pseudorandomly
generated. The advantage of having pre-set paths is that the onions do not have to
be part of the payload anymore. The notion of an onion gets degraded to a chaining
of secret seeds, which are fixed along the path. The payload becomes only the ballot
itself, which carries the encrypted selection of the voter. In a punchscanian mixnet
Payloadj¼ (Ballotj) and there is no relation between the degraded onions; that
is, there is no variable x in the receipt. Because the paths are pre-committed to, and only
the mixnet knows the seeds, the mixnet itself produces the ballot (as opposed to the
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voting machine producing the onions). In this setting, the mixnet is a single entity, and
not composed of several entities; however, this single entity may be split among several
using standard secret sharing approaches. If RPC is used to audit the mixing, the single
entity consists of two lists for the purposes of the audit and hence:

Ballotj ¼ Fðseedj1Þ � Fðseedj2ÞðBallotj�1Þ; ð3Þ

where F is a public function. Having access to only one of the three elements in the
equation does not leak any information about the other two. The commitments to
the seeds can be independent, or can be blended into the commitments to the paths.
While traveling through the mixnet, the ballot is transformed according to Eq. (2).

After the ballots are produced, they are publicly committed to. To ensure that
the produced ballots are consistent with the seeds used to generate them, a significant
fraction of the ballots are randomly chosen to be opened, and Eq. (3) is checked for
all of them. If the checks are successful, the ballots that were not opened are also
consistent, with high probability, with the paths and the seeds actually used for
the decryption. The ballots that are opened need not be printed on paper. To ensure
that the ballots that survived the audit are printed correctly, another audit (called a
printing audit) has to be performed. If all the ballots are initially printed, then the
printing audit can be combined with the mixnet correctness audit.

If a punchscanian mixnet processes a single rance, computing the two permuta-
tions requires 2�N� log(N) operations (e.g., assuming sorting is used to generate
the permutations), and another 2�N operations for computing the outputs. These
operations are for the entire mixnet (as opposed to each mix) and need to be
multiplied by the number of races.

Advantages and Disadvantages
The major advantage is the high efficiency. Millions of ballots can be tallied in
minutes.1 The disadvantages are the central nature of the authority, and the need
to know the details of the election before setting it up.

5.3. Pointer-based Mixnets, or Mixnets with No Explicit Group Operation

In its traditional form, the payload of the mix consisted of an onion and a ballot. A
first simplification step, as in the punchscanian mixnet, was to separate the two,
absorb the onions into the mixnet and require only the ballot to travel. A second step
is to remove the onion altogether. The onion does not vanish from a conceptual per-
spective, but is absorbed into the other operation being performed by the mixnet: the
shuffle. This is because both the shuffling and the decryption can be viewed as per-
mutations when the number of messages is small, and can be combined into one
essential permutation. Another way of viewing this is to consider the vote for each
candidate in a ballot (a mark or no mark) as a separate entity that travels indepen-
dently through the mixnet (as opposed to being part of a ballot or a contest).

Let N be the number of ballots in an election and let c be the number of candi-
dates on a ballot. Consider three tables: R (stands for receipt values) contains coded

1While conducting a performance analysis of our java implementation of the Punch-Scan
back-end, we tabulated one million cast ballots in under ten minutes using a Dell Inspiron
E1505 laptop, equipped with Intel Core Duo 1.73Ghz and 1Gb of Ram.
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votes; T (stands for tallies and results) contains clear text votes that are countable by
anyone; D (stands for decrypt) connects R with T. R is a matrix with N rows and c
columns; each row represents a ballot. T is a matrix with c rows and N columns; each
row represents a candidate. An element (i, j) is either marked or not marked in R and
T, a mark in table T corresponds to a clear vote for a candidate, while a mark in
table R represents an ‘‘encrypted’’ vote. D is a blob with N� c elements (the number
of rows and columns is irrelevant). Figure 5 gives an example of the three tables for
an election with six ballots and two candidates.

The tables are connected by two permutations, p1 and p2. p1 connects R
(receipts; coded votes) with D (decrypt): Dk ¼ Rp1ðkÞ, where k is some canonical
representation of (i, j); for example, k¼ (c� 1)iþ j. p2 similarly connects D with T
(results or tally): Tk ¼ Dp2ðkÞ. These permutations are constrained to return a mark
for a particular candidate in R to a mark for the same candidate in T.

For c candidates, the properties of the permutation may be formalized as follows:
let p1: [{0, 1, . . . ,N� 1}� {0, 1, . . . , c� 1}]! [{0, 1, . . . ,N� 1}� {0, 1, . . . , c� 1}] be
bijective and let p2: [{0, 1, . . . , N� 1}� {0, 1,. . ., c� 1}]! [{0, 1, . . . , N� 1}�
{0, 1, . . . , c� 1}] be bijective such that no two elements belonging to the same ballot
initially (in the same row in the initial set) are mapped by p1 and p2 to two elements
belonging to the same candidate (the same row in the final set):

8i; j; i 6¼ j having ½i=c� ¼ ½j=c� ) ½p2ðp1ðiÞÞ=b� 6¼ ½p2ðp1ðjÞÞ=b� ð4Þ

where [x] represents the greatest integer less than or equal to x. Note that no group
operation (such as modulo addition or permutation composition) is performed on
the payload. For c> 2, the condition requires that the remainder on division by c
(the candidate for a mark or nomark) be preserved; because the rows and columns
are reversed, one may then wish to view table T canonically as listed column by col-
umn, and R row by row.

The audit checks that one of the two properties hold: Di¼Rp1(i)
or Di ¼ Tp�1

2
ðiÞ

and that the properties of the two permutations p1 and p2 hold; more precisely it is
statistically checked that both p1 and p2 are injective functions and that Eq. (4)
holds. Because the voting system cannot predict which property will be checked, a
successful audit implies that both properties hold with high probability.

If a pointer-based mixnet processes an entire ballot, computing the two permu-
tations requires 2� (c�N)� log(c�N) operations (e.g., assuming sorting is used to

Figure 5. Pointer-based mixnet.
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generate the permutations), and another 2� (c�N) operations for computing the
outputs. These operations are for the entire mixnet and for all races.

Advantages and Disadvantages
The advantages of pointer mixnets are their efficiency and the possibility of setting
up the system before the details of the election are known [10]. Their disadvantage
is the central nature of the authority.

Table 3 summarizes the advantages and disadvantages of the three types of
mixnet-based decryption mechanisms.

6. New Voting Systems

In this section we describe new voting systems formed by combining the front and
back-ends of existing systems.

6.1. New Voting Systems with Onion Mixnet Back-ends

We first describe the combination of the onion mixnet back-end with the front-ends
of PunchScan and Scantegrity.

PunchScan Ballot with Onion Mixnet
Recall that

J
j FjðseedjÞðBallotjÞ ¼ Dðf ðsÞ; BallotjÞ for the onion mixnet, and

f ðsÞ ¼ paðsÞ � p�aaðsÞ for the Punch-Scan ballot. Hence, for a PunchScan front-end
and an onion mixnet back-end, the ballot needs an onion, which will be contained in
x. The onion contains seeds which will generate permutations whose composition will
invert the encrypting permutation paðsÞ � p�aaðsÞ. Thus, in this case,G is the set of permu-
tations on a set of size c, and� is the composition of permutations. In order to generate
the ballot, the ballotmanufacturing facility produces a pseudorandompermutation, say
p, as the composition of several pseudorandom permutations pj (as many as there are
mixes) each generated from a random seed. p is decomposed into two permutations
to be used for the two pages of the ballot, by choosing one of the permutations uni-
formly at random. The seeds for the pj are buried into the onion, which is part of x.
Decryption involves generating the corresponding pj, and performing its inverse. That
is, FjðseedjÞ ¼ p�1

j . This combination requires N onions and 2�N commitments.

Table 3. Properties of various mixnets

Onion mixnets
Punchscanian

mixnet
Pointer
mixnet

Distributed authority Yes No No
Paths Dynamic Static Static
Constructs the ballot No Yes Yes
Efficiency Low High Medium
Lazy ballot style Yes No Yes
Cryptography used Symmetric and

asymmetric
encryption

Commitments Commitments

Secure Electronic Voting—A Framework 253

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
V
o
r
a
,
 
P
o
o
r
v
i
 
L
.
]
 
A
t
:
 
0
8
:
4
3
 
2
6
 
J
u
l
y
 
2
0
1
0



Scantegrity Ballot with Onion Mixnet
The best dispute resolution properties for the indication receipts of Scantegrity are
obtained when the set of confirmation numbers is large, when a confirmation num-
ber is used exactly once among all the ballots, and when the probability of guessing a
valid confirmation number of any candidate in a receipt is low. When the Scantegrity
ballot is used with the onion mixnet, the Scantegrity front-end generates a set of con-
firmation numbers for each ballot and a series of operations (as many as there are
mixes) that transform the confirmation numbers into candidates names in the end.
For example, confirmation number B7KW8! 3! 7! 1! 1!David. This can be
viewed as a permutation (preceded by a substitution) that is generated, as for the
PunchScan ballot, by first constructing as many pseudorandom permutations as
there are mixes, and then composing them into a single permutation. The decryption
is also similar thereafter; each mix applies the inverse of the pseudorandom permu-
tation corresponding to the seed the mix obtains. This combination requires N
onions and N commitments.

6.2. New Voting Systems with Punchscanian Mixnet Back-ends

In this section, we describe the use of the punchscanian mixnet with the other
front-ends. The essential approach is to absorb the onions into the mixnet and to
precommit to both onions and paths. Hence the onions used for the onion mixnet
can also be used for the punchscanian mixnet, with two differences: the onions will
not be carried with the ballots, and using more than two mixes serves no purpose, as
precommitted paths imply that decryption is performed by a single entity. Using a
larger number of mixes provides no greater privacy; the use of two mixes is neces-
sary, however, if tally verification consists of RPC.

Visual Cryptography with Punchscanian Mixnets
Two punchscanian mixnets are constructed, one for each layer. For each layer of
each vote, the pseudorandom component contributed by each mix is committed
to, along with the path the ballot layer will travel. The voter’s choice of receipt deter-
mines the mixnet that will be used to decrypt her vote. From the chosen layer, the
pixels that are generated pseudo-randomly are discarded and the other pixels are
run through the corresponding punchscanian mixnet. This combination requires
2� (2�N)þ 2�N commitments (the first term for the back-end, and the last term
for the front-end).

Prêt à Voter with Punchscanian Mixnets
The onions of the Prêt à Voter ballot are committed to, along with the path the
ballot will take, at the mixnet. The onion is not part of the payload. Such a system
has been described in detail by van de Graaf in [26]. This combination requires
2�NþN commitments.

Scantegrity with Punchscanian Mixnets
The same procedure is followed as for Scantegrity with the onion mixnet, except that
the onion is not carried with the ballot, and is committed to in the appropriate mixes
along with the pre-computed path the ballot will take. This combination requires
2�NþN commitments.
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6.3. New Voting Systems with Pointer Mixnet Back-ends

Visual Crypto with Pointer Mixnet
If each pixel in the vote image is treated as independent of all other pixels, each pixel
is equivalent to a candidate (from the point of view of the back-end). A direct appli-
cation to the pointer-based mixnet would result in a very inefficient system, as the
number of commitments needed for the back-end would be twice the number of
pixels in the image.

Prêt à Voter with Pointer Mixnet
Each candidate, and thus mark position, is treated independently and its path and
ending point in the table with the clear votes are committed to, just as with Scantegr-
ity. This combination requires 2� (c�N)þN commitments (the first term for the
back-end and the last term for the front-end).

PunchScan with Pointer Mixnet
Each position that can be marked is treated independently and its path and ending
point in the clear vote table is committed to, just as with Scantegrity. This combi-
nation requires 2� (c�N)þ 2�N commitments (the first term for the back-end
and the last term for the front-end).

7. Conclusions

We have presented a unified view of four practical, end-to-end, voter-verifiable voting
systems that have been proposed recently as monolithic blocks. We present a concrete
separation between the way the ballot is presented and how the voters interact with
the system (the front-end) and the way the ballots are decrypted and the tally is veri-
fied (the back-end). We present the properties of these front and back-ends, and
describe simple ways to combine them. This gives great flexibility in the choice of a
voting system for a particular jurisdiction that values some properties more then
others (e.g., privacy more than usability). Our work opens a new way of looking at
future voting systems, component-wise. An immediate benefit is the possibility of
designing accessible front-ends for each of the presented back-ends, as opposed to try-
ing to mimic the front-end in an accessible manner. Further research can focus only
on improving or changing a particular component of a voting system (e.g., back-end),
as long as it can interact with the other component (e.g., front-end).
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