CHAPTER 6

Summary and Conclusions

6.1 Summary

This dissertation has successfully addressed the problem of the evaluation, design
and sensitivity analysis of a set of colour scanning filters. The approach of Vrhel and
Trussell to the colour correction problem [38, 39] was shown to present a problem in
filter design which is similar to the problem of obtaining tristimulus values. Similarly,
the problem of signature determination in satellite imaging was shown to be parallel
to the problem of determination of tristimulus values. The commonality among these
problems indicated the need for a broader framework for the evaluation of a set of
filters, and hence for the design of a set of filters. Chapter 3 presented a data-
independent measure and data-dependent measures which evaluate a set of filters
from within the broader framework. Simulations on various data sets were reported,
and the results implied that the measures were good indicators of the mean square

error for corrected data.

Chapter 4 dealt with the use of the data-independent measure as an optimiza-
tion criterion in the design of sets of scanning filters. The results obtained were very
encouraging, and filter sets with high values of the data-independent measure were ob-
tained. Given the filter designs, Eastman Kodak and Barr Associates responded with
closest filters that they were able to manufacture. These filters were also presented

in Chapter 4.
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A sensitivity analysis of the filters with respect to filter fabrication errors was
presented in Chapter 5. The second differential was used for an estimate of the
change in the data-independent measure and the mean square AFE}q, error over the
data set due to filter fabrication errors, and to thus provide a bound on these errors.
Simulations indicated that the bounds provided reasonable estimates of the change

in the mean square AFy,, error and in the data-independent measure.

6.2 Contributions

The major contributions of this dissertation are:

1. A data-independent measure was developed to evaluate a set of three or more
scanning filters which span a space of dimension three or larger. The measure
was derived directly from the mean square fundamental error over a data set
consisting of spectra with independent, identically distributed components,
and was shown to be a generalization of Neugebauer’s g-factor. Simulations
indicated that this measure predicts accurately the mean square fundamental
error, the mean square tristimulus error and the mean AFEp,;, error over a data
set if the data are corrected. Unlike other existing measures, the measure may
be used in applications like colour correction where the space to be spanned is

in general of dimension larger than three.

2. The data-independent measure was extended to a set of data-dependent mea-
sures based on mean square tristimulus errors. In the experiments performed,
the average AEpL,, error was monotonic as a function of the data-dependent

measures.
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3. The data-independent measure was used to choose the set of three best fil-
ters from an existing set of filters. The filters were installed in a scanner at
the Imaging Concepts Laboratory, Eastman Kodak, where they performed far
better than an existing set of filters which was chosen using another evaluation

criterion.

4. The data-independent measure was used as an optimization criterion to design
filters that could be fabricated. The filters were modelled as smooth non-
negative functions like the gaussian. This lead to a parametrized optimization
problem which was easily solved through existing optimization algorithms.

The results were extremely good.

5. The gradient of the mean square AFp., error was used to trim the best
parametrized filters obtained, in order to obtain filters thatwere closer to opti-
mal with respect to perceptual error. The results indicated that such trimming
decreases the mean square AEp,;, error considerably. Filter sets with slightly
higher values of the data-independent measure were also obtained through

trimming with respect to the gradient of the data-independent measure.

6. The second differential of the data-independent measure and of the mean
square AE},, error with respect to filter transmissivities provided a basis for
the sensitivity analysis of filter designs. Bounds on the largest allowable er-
ror at all wavelengths and at a single wavelength given a maximum allowable

change in the measure or the mean square A E,; error were derived and tested.

194



6.3 Directions for Further Research

In research the solution of a particular problem often leads to further questions and the
definition of directions for further research. The work presented in this dissertation

indicated that the following additional topics and problems would be worth pursuing.

1. The method of filter design to obtain realizable filters that span a certain space
has only been implemented for three-dimensional spaces in this dissertation.
The design procedure may be extended easily to spaces of more than three
dimensions, particularly for applications like colour correction and satellite

imaging.

2. The requirement of ‘most orthogonal’ filters may be imposed during the design
procedure to obtain ‘most orthogonal’ filters with a large value of the data-

independent measure.

3. The set of acceptable colour scanning filters are all members of the intersection
of the two sets:

The set of smooth filters shown to be convex in Chapter 4,

c, =
M = [my,..m,]|lm;(j+1) + m;(j—1) — 2m;(j) < 6;1<i<r2<j<N-1}

and the set of filter sets consisting of non-negative filters with large enough

measures,

Cun = {M|v(AL,My) > 1-6M;; >0}

It was shown n Chapter 4 that the set

C,, - {MlV(AL,MH) Z 1*6}
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is not convex. It appears that the constraint of non-negativity could result
in a convex set, C,,. As a good physically realizable set would lie in the

intersection of the two sets
Me(C, NC,

the method of Projection Onto Convex Sets (POCS) [1, 32] or the more gen-
eral Method of Successive Projections (MOSP) [4] could be used profitably in
scanning filter design. It would be worthwhile to determine if the set C,,, is

convex.

4. Further analysis and experimental work could provide a bound on the euclidean
norm of the error vector vec dM, such that for all error vectors with euclidean
norm smaller than the bound the second differential would provide an accurate

estimate of the change in measure or mean square AE[,; error.

5. The sensitivity analysis presented may be used to provide a criterion for the
design of ‘least sensitive’ filters. The sensitivity analysis provides an explicit
formula for the relationship between eigenvalues of the matrix H and maximum
allowable fabrication errors. The matrix H may itself be directly related to
the set of scanning filters M, and this relationship may be used to define least

sensitive filters.
6.4 Conclusions

The vector space approach has proved very useful as a framework for the design and
analysis of optimal colour scanning filters. It allows the extension of the problem

of the determination of tristimulus values to the problem of the determination of s-
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stimulus values (s > 3). The data-independent measure developed to evaluate a set of
three or more filters that are to span a space of dimension three or larger proves very
useful as a coarse optimization criterion, and as a coarse measure of the performance
of a set of colour scanning filters. The data-independent measure may be used as
an optimization criterion to produce very good filter sets which are non-negative and
smooth, and hence physically realizable. The gradient of the filter sets with respect
to the data-independent measure or the mean square AE}4, error provides a means
of improving the performance of the designed filters considerably while maintaining
the smooth nature of the curves and hence their realizability. The second differential
provides a reasonable estimate of the change in the data-independent measure and
in the mean square AE,;, error, and hence provides good estimates of the maximum
allowable error in filter fabrication. The method of designing colour scanning filters
and estimating their sensitivity may be used to produce exceptionally good results
when the scanner characteristic is available and the space that is required to be

spanned is known.
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Appendix

Theorem 1. Given scanning filter measurements MEf and correlation matriz R = E[ffT],
the linear minimum mean square error estimate of the s-stimulus values t = VTf
8
t = (VIRMu(MERMy)")(M5f)
and the mean square error of this estimate is

E[llt — t]]’] = Trace(VIRV — VIRMy(M5RMy)"MZRV)

where X~ represents the generalized inverse or the g-inverse of matriz X [26]
Proof:

Let t = BMZ%f be a linear estimate. Then,
Elllt — tl]’] = E[(VTf — BMLEHT(VTf — BM%S)]

is the mean-square error of the linear estimate. To simplify manipulation the above

mean square error may be written as:
Ell|t — ’EHZ] = E[Trace(VTf - BMgf)(VTf - BMf,f)T]

which is

E[llt — t])’] = Trace(V' — BML)R(VT — BMZL)T

which may be rewritten as
E(llt — &[] = Trace(V'RV — BMLRV — VTRMyB” + BMLRM;B7)
As TraceXYZ = TraceZXY |21, pg. 10],

E(llt — t1’) = Trace(VIRV — 2BMLRV + BMZRM,B7) (.1)
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Differentiating the above expression gives

D)
OF(lle — I _ 2V'RMy — 2BMjRMy
oB
A necessary condition for expression (.1) to have a minimum at B = By is [27]

2VIRMy — 2BMLRMy = 0

which implies that
BML,RMy = VIRMy

All solutions of the above equation are of the form
By = VIRMy(MERMy)~ (:2)

where (M7;RMy)~ is the generalized inverse (g-inverse) [26] of ML RMy. In gen-
eral, By is not unique because (M;RMp)~ is not unique. When MLZRMy is non-
singular, the g-inverse is unique and (M;RMpy)~ = (MLRMpy)~L. In either case,
the value of ; = BoM%f is unique (see Theorem 7). The Hessian of the error
expression is [27]

B[t — &[] T

which is the negative of a quadratic form for all solutions of the form of equation(.2).
This implies that all solutions of the form (.2) give local minima for the error expres-

sion [27]. Substituting (.2) in the error expression (.1), gives
El|lt — t||}] = Trace(VIRV — 2VIRMy(MERM ) "MLRV +

VI'RMy(MERMy)"MERMy (MLRMy )" ML RV)
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The properties of the g-inverse imply that [26]
(MERMpy) " MERMy(MERMy)™ = (MERMpy)™

and

Elllt — t|]’] = Trace(VIRV — VIRMy(MLRMy) M%LRV) (.3)

Theorem 2. The reconstruction error, or the error between the true and the recon-
structed fundamental, e = V(VIV)=(t — t), is 0 for every R if and only if
R(Mpy) 2 R(V) .

Proof:

To prove the ‘if” portion of the theorem, note that
R(Mpy) 2 R(V)

implies that
V = MyX

for some matrix X. Substituting the above in equation (.3) gives
Ellt — ] = 0

which implies that t = t, which implies that e = 0.

To prove the ‘only if’ portion, note that
e = 0 foreveryR =e = 0 forR =1
which implies that (from Theorem 1)

e = V(VIV)"(VT — VIMy(MEMy)"ME)E = Py(I — Py, )f = 0 (4)
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Showing that R(Mpyg) D R(V)is equivalent to showing that
Null(V) 2 Null(Mpg).

In the special case where R(V) is the HVSS, this means that the ‘black space’ of the
Human Visual System includes the ‘black space’ of the scanning filters. Let f lie in

the black space of the scanning filters, f ¢ Null(Mp). This implies that [26]
Py,f =0

From equation (.4) this implies that
Pyt =0

and f ¢ Null(V) [26]. This completes the proof.

Theorem 3. E[|le||’] = Trace(NTRN — NTRMy(MLRMy)"MELRN) when N
represents an orthonormal basis for R(V) and E[ffT] = R.

Proof:

From the definition of the reproduction error e in Theorem 2, the mean of the sum
of the squares of the reproduction (or fundamental) error components, or the mean-

square reproduction (or fundamental) error, is:
Elllel’] =

E[TraceNN"(I — RMy(MjRMp) Mp)ET(1 — My(MERMy) MELR)NNT]

Using the fact that Trace(XYZ) = Trace(ZXY) and NTN = 1, the above
equation is

Elllell’] =

E[TraceN"(I — RMy(MyRMy) "M (1 — My(MLRMy) MLR)N]
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which can be expanded and rewritten as:
E[lle])’] = TraceN"RN — 2NTRMy(MLRMy) MLRN
+N"RMy(M5RM )~ (MERM ) (MERM ;) ML RN)
if E[ff’] = R. Clearly, the above equation is

E[lle|]’] = TraceNTRN — NTRMy(MLRMy)"MZLRN) (.5)

Theorem 4 0 < E[||le||)] < Trace PR < Trace R

Proof:

E[||e||?] is the expected value of a non-negative quantity and is hence non-negative.
Further, the second term in equation (.5), N'RMg(MLRMpy)"MELRN, is of the
form NTRMpX~(NTRM7},)” where X is a quadratic form. This implies that the

term is positive semi-definite [12]. This implies that
Trace(N"RMy(MERMy)"MERN) > 0

and

0 < Eflle]])] £ Trace NTRN

Further, from Py = NN, and the fact that Trace(XYZ) = Trace(ZXY),
TraceNTRN = Trace PyR < TraceR
from [12]. Hence,

0 < Elle|]|’] £ Trace PyR < TraceR

Theorem 5. Ellle|’] = o®(Xi,(1 — M(OTN))) = o?Trace(Py — PyPy,,) when
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E[ff"] = R = 01, N is an orthonormal basis for R(V) and O is an orthonormal
basis for R(Mpy).
Proof:

Substituting R = oI in equation (.5) gives
El|le|]’] = o*Trace(N'™N — N™My(MEMy)"MLN).
which may be rewritten as
El|le]’] = o*(a — TraceNTPy,N). (.6)
Using Py, = OOT, the above equation may be rewritten as
El|le|’] = o*Trace(I, — NTOOTN).

where I, is the a-dimensional identity matrix. This simplifies to

(6]

Efllell"] = o*(3_(1 — N(OTN)))

=1

where \;(O"IN) denotes the i** singular value of OTN. Equation (.6) may also be
rewritten as
El|lel|’] = o*Trace(Py — PyPyy,)
using TraceXYZ = TraceZXY and P, = NNT.
Theorem 6. Y31 A2(OTN) = Y2, ¢(0;).
Proof:

The proof follows from simple matrix algebra:

> M(O'N) = Trace(O'NNTO) = Trace(OTNNTNNTO)

=1
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B B B
= Trace(Py(0))TPy(0) = ;Hpv(oi)ll2 = ;lloillzq(oi) = > q(o;)

i=1

Theorem 7 Given a non-singular correlation matriz R, let < x,y >' = xRy define
an inner-product. Let Py define the projection operator with respect to the norm ||.||".
Then, Pyf;, = PyRMy(MLRMy)"MZ% = Py Ppyr, £. Further, this implies that
t = VTPVP,'EMHf, and hence that the expressions for }Sv\fl and t, are well-defined.
Proof:

To show that Pyf, = Py Pgy, £ the following lemma is needed.

Lemma 7.1 Py = X(XTR1X)"X"R™!

Proof: Let Py(m) = m. Then m € R(X), and m = Xa for some a.
<m-m m-m> < <m - x,m — x> forall x ¢ R(X)

implies that
(m — Xa)’R™'(m — Xa)

has a minimum at a = a. Differentiating this with respect to a and setting the
result to zero gives

2X"R™'(m — Xa) = 0

A necessary condition for the minimum is that it must satisfy the above equation.
A minimum exists because the minimum represents the projection of a point in a
finite-dimensional Hilbert space onto a subspace [12]. Hence the required minimum
is of the form

m = X(X'R!'X)"X"R'm

This gives a well-defined value for m [26]. The result follows.
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ace(MT, -1MT -
Theorem 8. d(v(Ap,My)) = 2Zrece®™MyMn) NIgHPV(I Paryy JHdM

Proof:

The following laws of matrix differentials are used to obtain the required differentials:
d(aX) = adX (.7)
d(AX) = AdX

d(XY) = XdY + dXY
d(TraceX) = Trace dX
dX™) = - X"1(@x)X?
d(XT) = (dX)"
Using the above rules,
d(v(AL,My)) =
(Trace(NNT (dMy(MEMy)" ML —
My (MEMy) " ((dMe)" My + MEdMy)(MEMy) )M +
My (MiMp) ™ (dMy)")))/3
Using TraceX = TraceX”, and TraceXYZ = TraceZXY and expanding the

above equation gives

d(v(AL, Mp)) =

Tmce(2((M%}MH)‘1MHPV — (MJI;MH)—lMHP‘/PMH)dMH) (8)
3 .

the result follows from dMy = HdM.
Theorem 9 If K is such that

vec dM = vec dIMTK
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and,
2
A = g{H(—(MgMH)_l@(I = Puy)Py(I — Puy,)
+ (MEMy) "MLy My(MEMy) @ (I — Pyy)

+ 2K(I — Pup, )PyMy(MuMp)™ @ (MEMy)'ME)H)

Let
then, d’v = — vec AIMTHvec dM
Proof:

Differentiating equation (.8) using the rules in equations (.7),

d*(v(AL,Mpy)) =
2
ngce{—(MEMH)_ldMgMH(M:ZMH)_lMgPV(I — Py )dMpy

— (MEMp) "ML dMy(MEM ) "ML Py (I — Py, )dMg
+ (MEMp) 'dME Py (I — Py, )dMpy
— (MEMy) "M% PydMy(MEM ) "M% dM
+ (MpMp) "ML PyMy(MEMy) " {dMEM g (ME My )~ *M% dM
+ (MEpMp) "M PyMy(MEMy) "M% dM (M5 My ) "M% dM
— (MEMp) "ML PyMy(MEM ) tdME dM )

Combining the terms (.9) and (.11) above gives:

(MEMp) YdME@T — Py, )Py — Py, )dMp
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Terms (.13) and (.15) combined give:

— (MEMpy) "ML PyMg(MEM ) HdME (T — Py, )dMy (.17)
Terms (.12) and (.14) combined give:

— (MEMy)"MEPY(I - Py, )dMy(MGMy)'MGaMy (18

Term (.18) is identical to term (.10) as Trace XYZ = TraceZXY. From the
above simplifications the expression for the second differential of the data-independent
measure is the sum of terms (.10), (.16), (.17) and (.18):

d*(v(Ar,Mp)) =

2
ngce{(M;QMH)—ldMg(I — Puy)Py(I — Py, )dMy
— (MEMy) '"MEPyMy(MEM ) tdML (T — Py, )dM g

— 2(MEMpy) "ML Py (I — Py, )dMy(MEMy) "M% dM )}

Notice that each term in the expression for the second differential is of the form
TraceXdMYdMT or TraceXdMYdM. Each expression may be simplified to the
form (vecdM)"ZvecdM using the following formulae [21, pg. 192-193]:

TraceBdX"CdX = (dvecX)T(BT @ C)dvecX (.19)

and

TraceBdXCdX = (dvecX)'K(BT @ C)dvecX (.20)

Using the above equations, the second differential of the data-independent measure

may be written as:

dz(V(Ab MH)) =

2
gTrace{(vechH)T(MI}}MH)*lGB(I — Puyy)Py(I — Py, )vec dMy
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— (UGCdMH)T(MgMH)_lMgp‘/MH(M:’}}MH)_l &) (I - PMH)'UGC dMH
— 2(’UECdMH)TK(I — P’]\/[H)Ijv].v.[y(lv.[:};h/.[y)_1 &) (MgMH)_lMJI;vec dMH}

From which

d*(v(AL,Mp)) = — (vec dM)T AvecdM)
Further,

dv = —;—{(vech)T.Avech + (vecdM)' ATvecdM}

from which the result follows.
Theorem. 10 Let
© = (MFRMy)™!

v =1- My(MERMy)"'MER

500(a—ay ) 0 0
9(15:6")1/3
A = 9 0 116(L—L1) —9522(;;1—)3/13) + 200(b—b1) 0
0 0 ‘ —200(b—b1)

9(252,)173
and

G = 2RA(QYTTQ — A)ATR

Then the second differential of the mean square AEL,, error is (vech)T'Hvech

where

H = %(A + AT

and

A = (H[©8 \IJT(;;—E)\II) + 23 (KEGM, 0 @ OMLATY)
f

+ %Z(@MggMHG ® UTHT) + % 2_(OMLF MO & ¥TGY)
N f
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Zf

—2 (KRM 0 @ @M}Q(—E;—“

)W) — (OML(=—

——)My® & R¥)|H)

Proof: Differentiating the expression for the first differential of the mean square AFEy

error

d(ZI AE%ab(f)) —

=(f
Trace(Mf,RMH)“lMg(z—fﬁQ)(I — My(MLRMp)'MZR)dMy
term by term using the laws of matrix differentials stated in (.7) gives:

d2f — d2EfAE£a,b(f) _
n

Trace{(MERMp) tdM?% ;f—:)(l — My(MLERMp)"'MZR)dMy

~ {(MERMy)™ (@M RM ) (MGRM, )~ M (EL

)
(I — Myp(MRMy)"MLR)dMy}

A=)

— {(MERMy) ' (MERAM ) (MERM ) M ( -

)
(I — My(MERMp)'MER)dM ;)

+ (MERMy) ML )T — My(MLRMy) *MER)dIM

2 dE
n

+ (MERM)~ M7 (=2
n

)(— dMy(MERMpy)'"MLR)dMy

+ {(MFRMy) M (EEE

)

(MH(MERMH)"I(dMi}RMH)(MiRMH)‘lMﬁR)dMH}
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+ {(MERM,) Mg (2 E

) (.28)
(My(MEzRMp) " (MERIMy)(MLERMy) "ML R)dM 4 }

+ (MERMp)'ME(

%—3)( — My(M5RMp)~'dMZR)dM (.29)

Combining terms (.22) and (.23) of the expression for the second differential gives:

@de,\IIT(—Z—:;—:)\IldMH (.30)

Combining terms (.24), (.26) and (.28) gives

-2 @(MﬁRdMH)@M}Q(E;“)wMH (.31)
Combining terms (.27) and (.29) gives:
- @M“,;(-Z—:—;—':)MH(-)dMﬁR\IldMH (.32)

Further, from the definition

(1]

(f) = £"(£)TQE)ATR + RAQ(E) Y c(f)f”
the first differential of the matrix = is

d= = fd(c"TQ)ATR + RAd(QYTc)fT
The above differentiation is made easier by the following observation:

T =

500(a —a1) 116(L — L;) — 500(a — a) 4+ 200(b — b;) —200(b — b,)

2
[3(1'2xn)1/3 ’ 3(y2yn)1/3 ) 3(z2zn)1/3 ]
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Differentiating the above expression term-by-term gives:

d500(a— a;) _ 500(z2z,)3da — 2500(a — a1)(z~/35Y/)dx

3(x2x, ) /3 3(22z,)2/3

116(L — Ly) — 500(a — a;) + 200(b — b;)
3(y2yn)1/3

{(y%yn)"/*(116dL — 500da + 200db)

d

= SUP)UIS(L ~ Ly) — 500(a — @) + 200(b — b))dy} /3(0y,)

and,

—200(b — b))  —200(222,)/3db + 2200(b — by)(2~1/321/3)dz

d —

3(222,)1/3 3(222,)2/3

This gives an expression for the required differential:

0 3(x251 2E 0
d(CTTQ)T = 2 3(y21;f)1/3 3(y;y53;)1/3 3(y2212?)1/3 dj:(t)
0 0 3(z;33;)173
S 0 0
4 0 116(L—L1) -95(22233/13) + 200(b—b1) 0 di
: o s
This implies that
dc™rQ)T = = 2QYTTQ — A)di

and
d= = 2RA(QYTYQ — A)dtfT + £fdt7"(QYTTQ — A)ATR)
Using the expression for dt in equation (4.22) gives:

dE = GdMyzOMLAT — GMyOMLRIMOMZF7
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— GMyOIMRM;OMERT + gMy0dMEL T
+ ff'MpOdM}G — #"MyOdMLRM ;0M%LG
— f"MyOMLRIMyOMEG + fTdMyzOMLG
Combining the above terms pairwise gives:
d2 = GUdMyOMLfFT + GgMyOdMLwTHT +
' MyOdMELYTG — KT wdMyzOMELG
Term (.25) in the expression for the second differential is:

%Trace@Mgg‘I’dMH@Mgﬁ‘T‘I’dMH +
%—f-Tmce@Mf,gMH@dM:frI‘I’Tﬂ-T‘I'dMH +
%Tmce@M}FIﬂ'TMH@dMg‘I’Tg‘I'dMH +

%Tmce@Mgﬂ'T\I’dMH@Mr}rfg‘I’dMH

The first and fourth terms are identical in the above expression and the expression

for the second differential may be rewritten as the sum of the above expressions and
expressions (.30), (.31), and (.32):

2 =
42 2r AET,(f) — @dMZ‘I’T(;t)\I’dMH + (.35)
n

n

2y Trace®OMEGUIMyOML AT TIM; +
f

S > TraceOMLGMpOdIMLUTHT W dM +
f
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1
— Y TraceOMLF ' MyOIME¥TGO M, +
n

f

p—

—2 ©(MLRIMy)OM?, -Zf—:)wMH

- eM?% (Zf “YMyOIMLRUIM

Using equations (.19) and (.20), expression .35 may be rewritten as

d2 Zf AE%ab (f)

- = (vecdMpg)T(© @ \IIT(%E)\II)vechH +

(vecdM )T Z 2K¥"'GM ;0 @ OMLAT W)vecdMy +

1
(vecdMpg)* - Z OM}GMyO ¢ VT W)vecdMy +

(veecdM )T Z OMELF MO @ UTGW)vecdMy

—2 (vecdMpg)"(KRMy® @ @Mg(%)@)vechH +

— (veedMpy)T (OME &)MH(-D ® RW¥)vecdMpy

and,

&f = (vecdM)T AvecdM
where

A= (HO s \I!T(EfE)\IIH)

2
+ > H2K¥'GMy0 & OMff ¥)H
f
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+ (% Y"HOMLGM ;0 ¢ ¥THTwH)
f

- (% > _HOMLA"M ;0 ¢ ¥TGUH)
f

2 H(K,,RMy© & @Mf,(%:‘”—)\m)

I

— (HOMZL( "

)My © & RYH)

The result follows.
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