In this module, we present the euclidean algorithm for finding $gcd(x,m)$.

Definition: The greatest common divisor of two positive integers m and n is the largest integer that divides both m and n. It is denoted (m,n) or $gcd(m,n)$.

In other words,

$$g = (m,n) \iff \begin{cases} g|m, g|n \\ x|m, x|n \Rightarrow x|g \end{cases}$$

Here $a|b$ is notation for “a divides b”. Recall that $a|b \Rightarrow b = ka$ for some $k \in \mathbb{Z}$.

Examples: $(6,9) = 3$, $(12,36) = 12$, $(5,9) = 1$.

Definition: m and n are said to be relatively prime if $(m,n) = 1$.

The euclidean algorithm is as follows:

```plaintext
gcd(m, n) /* m > n */
(a, b) := (m, n) /* Initialize */
while (b ≠ 0) (a, b) := (b, a rem b)
return(a)
```

Example Use the euclidean algorithm to determine $gcd(79,551)$.

$$
\begin{align*}
(a, b) &= (551, 79) \\
(a, b) &= (79, 77) \\
(a, b) &= (77, 2) \\
(a, b) &= (2, 1) \\
(a, b) &= (1, 0)
\end{align*}
$$

return(1)
Example Use the euclidean algorithm to determine $\text{gcd}(632, 5056)$.

\[
\begin{align*}
(a, b) &= (869, 632) \\
(a, b) &= (632, 237) \\
(a, b) &= (237, 158) \\
(a, b) &= (158, 79) \\
(a, b) &= (79, 0) \\
\end{align*}
\]

\text{return}(79)

In each recursion, $\text{gcd}(a, b)$ stays the same while a and b change. Further, at each step, we decrease both a and b, and neither is ever negative. Hence the algorithm will end some time, in fact, in at most n steps. Finally, at the last but one recursion, because $a \ rem \ b$ is zero, a is a multiple of b and hence $\text{gcd}(a, b) = b$. At the last recursion, $(a, b) = (b, 0)$ and the returned value a is the correct gcd (it is the value of b from the previous recursion).