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Abstract

Surveillance applications often capture video over long
time periods; interpretation of this data is facilitated by
background models that effectively represent the typical be-
havior in the scene. Capturing statistics of the spatio-
temporal derivatives at each pixel can efficiently model sur-
prisingly complicated motion patterns. Considering the
video as a function of space and time, the mean 3D struc-
ture tensor at each pixel characterizes local image varia-
tion, the most common local motion, and whether that mo-
tion is consistent or ambiguous. Furthermore, this struc-
ture tensor field — the structure tensor at each pixel — is
interpretable as a constrained Gaussian probability density
function over the derivatives measured across the entire im-
age. In scenes with multiple global motion patterns, a mix-
ture model (of these global distributions) automatically fac-
tors background motion into a set of flow fields correspond-
ing to the different motions. The models are developed on-
line in real time and can adapt to changes in background
motion. We demonstrate the ability to automatically dis-
cover the different motion patterns in an intersection.

1 Introduction

Online detection of motion patterns in video footage is use-
ful in a variety of applications, such as visual surveillance,
dynamic background subtraction and real-time video com-
pression. In this paper, we address the question of detecting
and modeling persistent patterns of background motion. A
model of common motion patterns allows higher-level pro-
cesses to ignore common motions in the scene, and provides
a natural basis for discovering anomalous objects, the essen-
tial first step in any automatic surveillance system.

The problem of statistical background modeling has
been approached mostly in the context of visual surveil-
lance and anomaly detection. In one of the first papers to
move beyond naive frame-differencing or constant back-
ground approaches, Stauffer and Grimson use a Gaussian
mixture model to approximate a multi-modal color distri-
bution at each pixel. This method is highly successful on

static and quasi-static backgrounds [10]. While their model
does not attempt to handle backgrounds that contain regular
motion, it does demonstrate the power of mixture models as
a real-time background modeling technique.

Another notable system, W4, uses a background model
consisting of a maximum and minimum intensity value at
each pixel, along with the maximum temporal derivative
[3]. W4’s background model produces a crude initial seg-
mentation that is then postprocessed by code specific to
finding and recognizing humans. While it is true that back-
ground modeling is usually just a first step in a larger sys-
tem, we believe that local spatio-temporal statistics are pow-
erful enough to provide both intelligent anomaly detection
and more useful semantic cues for higher level processes.

Recently, there has been increased interest in back-
ground subtraction in dynamic scenes. It is widely recog-
nized that background motions such as waving trees and
ocean waves create insurmountable difficulties for conven-
tional algorithms. Moreover, while the definition of ”back-
ground” varies from application to application, there are
certainly times when it is desirable to consider cars obey-
ing traffic laws or pedestrians following common patterns
part of the background.

Surprisingly, most of the attempts to model dynamic
backgrounds have been appearance-based, rather than
motion-based. Zhong and Sclaroff treat the entire video as
a single dynamic texture, classifying anomalous pixels as
those in which the current frame deviates from the predic-
tion of a Kalman filter defined on the coefficients of a PCA
reconstruction [11]. Monnet, et al. perform incremental
PCA on image blocks and then classify anomalies based on
the magnitude of the component normal to the firstN eigen-
vectors [7]. Because they are solely intensity-based, both of
these methods fail in video sequences where the motion is
repetitive, but image appearance is not. For example, the
motion of a car in traffic is a strong indicator of whether it
is behaving anomalously, while its color is not. Futhermore,
in most traffic sequences, there is no discernable pattern to
the color of the cars, rendering time-series prediction of the
appearance of a given frame difficult at best.

A few prior works have discussed methods that model
motions in background scenes. Mittal and Paragios model
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background statistics by combining optic flow (computed
from image derivatives) and color cues in a kernel density
estimation framework [6]. While this method does explic-
itly model image motion, Pless et al. have success model-
ing background motions simply as distributions of spatio-
temporal image derivatives at each pixel [9].

This paper describes the first real-time method for fac-
toring background motions into multiple flow fields, based
on the aggregation of simple local statistics in the form of
one or more tensor fields. Furthermore, we introduce the
use of the 3-D structure tensor in background modeling as
a convenient tool for representing the joint distribution of
x, y, and t derivatives at each pixel. The structure tensor
has been applied to a variety of problems local video anal-
ysis such as road detection [8], specularity removal [2], and
motion estimation [5]. This work illustrates the use of the
structure tensor field as tool for representing global patterns
of local motions, which may be of broader interest.

Next, we review useful properties of the structure ten-
sor, including its relationship to the Gaussian distribution of
spatio-temporal derivatives. Section 3 discusses the struc-
ture tensor field as a global model and methods for factoring
streaming video data that arises from different global mo-
tion patterns. Finally, Section 4 show results from real-time
analysis of an intersection, showing surprisingly accurate
decomposition into flow fields.

2 The Structure Tensor Field

The structure tensor has been widely used in the image anal-
ysis field for optic flow estimation and segmentation. In
these cases, the structure tensor at a pixel is defined based
on the spatio-temporal image derivatives measured in a re-
gion around that pixel [1]. In the case of surveillance, the
camera is stationary and viewing a scene containing motion
patterns that may be consistent or recur over long time pe-
riods, it is reasonable to combine data through time instead
of over a region in the image.

2.1 The Structure Tensor

Let ∇I(~p, t) = (Ix(~p, t), Iy(~p, t), It(~p, t))T be the spatio-
temporal derivatives of the image intensityI(~p, t) at pixel~p
and timet. At each pixel, the structure tensor,Σ, is defined
as

Σ(~p) =
1
f

f∑
t=1

∇I(~p, t)∇I(~p, t)T

wheref is the number of frames in the sequence and~p is
omitted after this for clarity’s sake. Except as described

in section 3.2, we consider these distributions to be inde-
pendent at each pixel. To focus on scene motion, the mea-
surements are filtered, only considering measurements that
come from motion in the scene, that is, measurements for
which |It| > 0. For the sake of the clarity of the exposition
in section 2.2, we assume the mean of∇I to be zero (which
doesnot imply the motion is 0).

Under this assumption,Σ defines a Gaussian distribu-
tion N (0,Σ). Previous work in anomaly detection [9]
can be cast nicely within this framework: anomalous
measurements can be detected by comparing either the
mahalanobis distance,∇IT Σ−1∇I, or the negative log-
likelihood ln((2π)3/2|Σ|1/2) + 1

2∇IT Σ−1∇I, to a pres-
elected threshold [9].

In real-time applications, computing with the entire se-
quence is not feasible and the structure tensor must be es-
timated online. Assuming the distribution is stationary,Σ
can be estimated as the sample mean of∇I∇IT ,

Σt =
(n− 1)

n
Σt−1 +

1
n
∇I∇IT

However, it is unrealistic to assume that the distribution
at a given pixel will be stationary throughout an entire video
sequence. The model can be allowed to drift by instead as-
signing a constant weight,α ∈ [0, 1], to each new measure-
ment:

Σt = (1− α)Σt−1 + α∇I∇IT .

This update method causes the influence of a given mea-
surement onΣ to decay exponentially, with decay constant

−1
ln(1−α) .

2.2 Relationship to 2-D Image Motion

The structure tensor field’s value as a background model
comes from the strong relationship between optic flow and
the spatio-temporal derivatives, via the optic flow constraint
equation,Ixu + Iyv + It = 0 [4]. This equation constrains
all gradient measurements produced by a flow(u, v) to lie
on a plane through the origin inIx, Iy, It-space. The optic
flow vector,(u, v, 1), is normal to this plane.

Suppose the distribution of∇I measurements comes
from different textures with the same flow, and one mod-
els this distribution as a Gaussian,N (0,Σ). Let ~x1, ~x2, ~x3

be the eigenvectors ofΣ andλ1, λ2, λ3 the corresponding
eigenvalues. Then~x1 and ~x2 will lie in the optic flow plane,
with ~x3 normal to the plane andλ1, λ2 � λ3. In fact, it
can be shown that the~x3 is the total least-squares estimate
of the homogeneous optic flow,(u,v,1)

‖(u,v,1)‖ .
The covariance matrix permits deeper analysis than just

computing an estimate of the optic flow at each pixel. One
simple confidence measure for the optic flow estimate is
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S = 1 − λ3/λ2. This measure takes on values in[0, 1]
and is large when the second eigenvalue is much larger
than the third. When the texture along the direction of mo-
tion is insufficient to uniquely determine the true optic flow
(the aperture problem), the Gaussian distribution will ap-
pear long and thin, with comparableλ2 andλ3. Since the
distribution does not provide a strong indication of the true
orientation of the optic flow plane, our confidence in the to-
tal least squares solution,~x3, should be low.S satisfies this
intuition, since it approaches0 asλ3 approachesλ2.

Figures 1 and 2 show estimated flow fields for several
scenes, along with plots ofS. Note that in areas with mul-
tiple motions,S drops dramatically. This is indicative of
the fact that the distribution of derivatives from two differ-
ent motions does not fall on a plane in the spatio-temporal
derivative space. The next section describes how the model
can be expanded to handle scenes with multiple motions at
a given pixel — by generating multiple global motion pat-
terns.

3 Multiple Structure Tensor Fields

3.1 A Single Joint Distribution

The previous section showed how a structure tensor field de-
fines a zero-mean Gaussian at each pixel. If the inter-pixel
covariances are constrained to be zero, this set of distribu-
tions may be considered as a single joint Gaussian,Nglobal

over the entire image. LetΣi be the structure tensor at the
i-th pixel. Then the covariance matrix of the global distri-
bution is the block-diagonal matrix

Σ̃global =


Σ1

Σ2
0

0
...

Σp


Let ∇̃I be the concatenation of the gradient vector at

each individual pixel: ∇̃I = (I(1)
x , I

(1)
y , I

(1)
t , I

(2)
x , . . .).

Then the likelihood of the observation at a given frame is

P (∇̃I|Nglobal) = k exp(−1
2
∇̃IT Σ̃−1

global∇̃I)

where k is a normalizing constant. BecauseΣ̃ is block di-
agonal, this can be rewritten as:

P (∇̃I|Nglobal) =
∏

i

P (∇Ii|Ni(0,Σi)).

3.2 Mixture Models of Joint Distributions

In Section 2.2, we discussed the strong relationship between
the structure tensor and the optic flow at each pixel. This

leads directly to a relationship between the optic flow field
and the constrained Gaussian distribution over all derivative
measurements.

The background model can therefore be modified to han-
dle multiple motions. Each motion field is treated as a joint
Gaussian distribution over the entire image as described
above. These large Gaussians are combined in a single mix-
ture model,

w1N1(0, Σ̃1) + . . . + wMNM (0, Σ̃M ) + wunkMunk

whereM is the number of unique background motions.
Munk is the prior distribution of(Ix, Iy, It) vectors for mo-
tions not fitting any background model – including anoma-
lous events and objects that do not follow the background.
Munk may be chosen as a uniform distribution, or as an
isotropic Gaussian, with little qualitative effect on the mix-
ture estimated. One advantage of choosing a uniform fore-
ground prior is that anomalous objects can be detected by
simply thresholding the negative log-likelihood of the back-
grounds.

The model is a Gaussian mixture model and can be up-
dated according to the standard adaptive mixture model up-
date equations (as used, for example, in [10]), although
here it is applied to a very high-dimensional distribution.
The special block-diagonal structure simplifies the compu-
tations. The mixture model can be updated online, by first
calculating the likelihoods:

P (Ni|∇̃I) =
wiP (∇̃I|Ni)

wunkP (∇̃I|Munk) +
∑M

j=1 wjP (∇̃I|Nj)

Each of the fields can then be updated as:

Σ̃i,t = (1− βi)Σ̃i,t−1 + βi∇̃I∇̃IT

with a weighting factorβi = αP (Ni|∇̃I), which combines
the probability thatNi is the correct model, with the fac-
tor α chosen as earlier according to the desired adaptivity.
However, if the maximum likelihood model isMunk, there
is a strong probability that the image motion does not come
from any of the current models, and so we use this measur-
ment to initialize a new tensor field,NM+1(0,ΣM+1). The
complete update of the adaptive mixture model requires that
the weights of the components be adjusted. The weightswi

can be updated aswi,t = (1− βi)wi,t−1 + βi.
The constraint on the derivative measurements at each

pixel represented by the structure tensor is independent of
the measurements at other pixels, and the block-diagonal
form of each of the components of the mixture model main-
tains this independence. The mixture model implies that all
measurements at a given time in the image come from one
of the components. LetWi(t) be the event ”the motion in
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(a) Video (b) Estimated Flow (c) Confidence

Figure 1: Flow estimated from 3-D structure tensor for 10 minutes of video of an intersection. Multiple motions at the middle
of the intersection cause a circular pattern in the estimated flow field. The confidence decreases in the parts of the middle of
the intersection where the angle between the two major motions is larger.

(a) Video (b) Estimated Flow (c) Confidence

Figure 2:Flow estimated for a moving Ferris wheel. Pixels that have not experienced much motion (e.g., the lower left
of this image) may have nearly rank-deficientΣ, resulting in falsely elevatedS values.

the world comes from modeli at timet”. Then for pixels
p, p′, p 6= p′, our covariance constraint can be rewritten as

Pp,p′(∇Ip,∇Ip′ |Wi(t)) = Pp(∇Ip|Wi(t))Pp′(∇I ′p|Wi(t)).

That is, measurements at different pixels are conditionally
independent, given that motion in the world comes from
model i. Using this choice of a global model to express
all of our knowledge about inter-pixel dependencies allows
the model to be maintained efficiently. One final note, be-
cause the motion fields are generated by discrete objects, in
no frame is the entire component motion field visible, even
if single frame optic flow measurements were reliable, it
would not be possible to generate these components (with a
standard EM type approach).

3.3 Obtaining a Meaningful Clustering

Figure 3 shows the mixture model estimated by the simple
adaptive mixtures aglorithm described in the previous sec-
tion. The algorithm clearly discovers the two major modes

of this scene. However, finer features such as cars turning
left are lost in the clustering process. The main difficulty
in producing a clean segmentation is that while flow fields
are defined over the entire scene, at any given frame there is
unlikely to be motion everywhere. This leads to difficulties
in bootstrapping and initializing new models.

We address this problem by considering sequences of
coherent motion within the video, and assigning these se-
quences to a single model. Suppose measurementsA =
{∇̃It−L, ∇̃It−L+1, . . . , ∇̃It−1} have already been judged
to come from a single motion. We can determine whether
the next measurement,̃∇It, comes from the same discrete
mode aggregating the measurementsA into a single Gaus-
sianNnew(0,Σnew). Then,∇̃It is judged to belong to the
same discrete motion ifP (∇̃It|Nnew) > P (∇̃It|Munk).
If ∇̃It is judged to come fromNnew, we use it to update
Nnew. Otherwise, we initialize a new GaussianN ′

new =
N (0, ∇̃I∇̃IT ) and assignA to one of the mixture compo-
nents,N1, . . . ,NM .
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(a) Intersection (b) N1 (c) N2

Figure 3: The two highest-weighted mixture components found by the algorithm of section 3.2. The two major motions in
the center of the intersection are clearly differentiated.

Treating frames as independent, the neg-
ative log-likelihood − log P (A|Ni) is just∑t−1

i=t−L− log P (∇̃Ii|Ni). The posteriors P (Ni|A)
can then be calculated as in the previous section. All ofA
can be assigned to the mixture component that maximizes
the posterior or used to initialize a new mixture component,
if Munk is the maximum aposteriori mixture component.
Let Nj(0, ˜Sigmaj) be the best mixture component andα
the weight given to each new frame, as in Section 2.1. We
can updateNj wholesale as̃Σ′

j = γΣ̃j + (1 − γ)Σ̃new.
Setting γ = (1 − α)L preserves the exponential decay
process by producing the same weightings as if each frame
was added sequentially. SincẽΣj can be updated directly
from covarianceΣ̃new, it is not necessary to keep every
∇̃Ii ∈ A in memory.

4 Results

Because the algorithm only considers pixels with nonzero
It, the computational cost is somewhat data-dependent.
However, on a 2.3 GHz Pentium 4 PC, our C++ implemen-
tation achieves real-time performance (20 fps at 360x240
resolution) on every dataset we have applied it to. When
run on video of a water scene with motion at almost ev-
ery pixel, it maintained up to 6 tensor fields, a rough lower
bound on the real-time capability of the algorithm. The ”In-
tersection” dataset is more typical of actual surveillance ap-
plications and contains sparser motion. On this dataset, our
system can maintain up to 10 tensor fields in real time, far
greater than the actual number of modes of motion in the
scene. The only specific optimization applied in generating
these results was to amortize the cost of matrix inversion by
only recalculatingΣ−1 every 10 frames.

The main free parameter in our algorithm is the prior
model for foreground motion, or the choice of threshold if
the prior model is a uniform distribution. In scenes with

sparse motion, the segmentation of gross features such as
the two principal directions of motion in the intersection is
relatively insensitive to the specifics of the foreground prior.
However, finer features such as motions that occur in only
a small part of the image or motions that occur infrequently
require some hand tuning of parameters. The result in Fig-
ure 3 was generated using a foreground prior realized as a
threshold mahalanobis distance of 17 per moving pixel. The
result in Figure 4 was generated by the block-clustering ap-
proach of Section 3.3, using an Gaussian prior,N (0, 80I),
at each pixel.

In practice, the image derivatives are calculated using
Sobel filters applied to Gaussian (spatially) blurred images,
and differences between image to calculateIt. This causes
the magnitude of noise inIt to be far greater than that
in Ix and Iy. The derivation of the third eigenvector as
the maximum-likelihood optic flow assumes white noise in
Ix, Iy, It. In practice, we have found that computing optic
flow from the matrix equation:( ∑

I2
x

∑
IxIy∑

IxIy

∑
I2
y

) (
u
v

)
= −

( ∑
IxIt∑
IyIt

)
provides a more robust estimate than the third-eigenvector
solution. All plots in this paper have been generated in this
manner.

5 Conclusion

We have demonstrated the use of the structure tensor field
as a model of background motion. We have shown how
a set of tensor fields can be viewed as a single Gaussian
mixture model, leading to compact and computationally ef-
ficient representation of inter-pixel dependencies. The algo-
rithm runs in real time and can adapt to both slow drift and
abrupt changes in motion patterns. Because it considers co-
variances between filter responses, rather than intensity it-
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(a) Intersection (b) N1 (c) N2

(d) N3 (e) N4

Figure 4: Four mixture components estimated using the block clustering approach of section 3.3.

self, the algorithm is somewhat robust to lighting changes in
the scene. The factoring of image motion into component
fields is important for potential applications in anomaly de-
tection and tracking.
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