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Abstract—We describe algorithms that use cloud shadows as a form of stochastically structured light to support 3D scene geometry
estimation. Taking video captured from a static outdoor camera as input, we use the relationship of the time series of intensity values
between pairs of pixels as the primary input to our algorithms. We describe two cues that relate the 3D distance between a pair of
points to the pair of intensity time series. The first cue results from the fact that two pixels that are nearby in the world are more likely to
be under a cloud at the same time than two distant clouds. We describe methods for using this cue to estimate focal length and scene
structure. The second cue is based on the motion of shadow clouds across the scene; this cue results in a set of linear constraints on
scene structure. These constraints have an inherent ambiguity, which we show how to overcome by combining the cloud motion cue
with the spatial cue. We evaluate our method on several time lapses of real outdoor scenes.

Index Terms—time lapse, depth map, non-metric multidimensional scaling, image formation, shape from shadows, clouds

1 INTRODUCTION

Although clouds are among the dominant features of
outdoor scenes, with few exceptions visual inference
algorithms treat their effects on the scene as noise.
However, the shadows they cast on the ground over time
give novel cues for inferring 3D scene models. Clouds
are one instantiation of the first law of geography, due to
Waldo Tobler:“Everything is related to everything else, but
near things are more related than distant things.” In a sense,
we are applying this law to the problem of estimating
a depth map from time-lapse imagery. The basic insight
is that there is a relationship between the time series
of intensity at two pixels and the distance between the
imaged scene points. We describe two cues and present
algorithms that use these cues to estimate a depth map.

For the first cue, we compute the temporal correlation
between pairs of pixels and observe that if the relation-
ship between this correlation and 3D distance is known
then there is a simple problem: Given an image and the
3D distance between every pair of scene points, find the
3D model of the scene that is consistent with the camera
geometry and the distance constraints. However, the re-
lationship between correlation and distance is unknown
because it depends on the scene and the type of clouds
in the scene. Thus, we derive and present a method
that simultaneously solves for the relationship between
distance and correlation and for a corresponding 3D
scene model.

The second cue requires higher frame-rate video and
the ability to estimate the temporal delay between a
pair of pixel-intensity time series. This temporal delay,
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coupled with knowledge of the wind velocity, allows us
to define a set of linear constraints on the scene geometry.
These constraints also define a clean geometric problem:
Given an image and the distance between every pair
of pixels projected onto the wind direction, solve for a
3D scene structure that is consistent with the projected
distances and the camera geometry.

Our work falls into the broad body of work that
aims to use natural variations as calibration cues and
each of these methods makes certain assumptions. For
example, we require weather conditions in which we
can isolate the intensity variations due to clouds from
other sources of change. The methods we describe are a
valuable addition to the emerging toolbox of automated
outdoor-camera calibration techniques.

1.1 Related Work
1.1.1 Stochastic Models of Cloud Shapes

The structure of clouds has been investigated both as
an example of natural images that follow the power





law and within the atmospheric sciences community.
Natural images of clouds often have structure where the
expected correlation between two pixels is a function of
the inverse of their distance [1]. Furthermore, there is a
scale invariance that may be characterized by a power
law (with the ensemble spatial frequency amplitude
spectra ranging from £~ to =2 [2]). These trends have
been validated for cloud cover patterns, with empirical
studies demonstrating that the 2D auto-correlation is
typically isotropic [3], but that the relationship of spatial-
correlation to distance varies for different types of clouds
(for example, cumulus vs. cirrus clouds) [4]. This moti-
vates our use of a non-parametric representation of the
correlation-to-distance function.

1.1.2 Shadows in Video Surveillance

For video surveillance applications, clouds are consid-
ered an unwanted source of image appearance variation.
Background models explicitly designed to capture varia-
tion due to clouds include the classical adaptive mixture
model [5] and subspace methods [6]. Farther removed
from our application, object detection/recognition is dis-
turbed by cast shadows because they can change the
apparent shape and cause nearby objects to be merged.
Several algorithms seek to minimize these effects, using
a variety of approaches [7], including separating bright-
ness and color changes [8].

1.1.3 Geometry and Location Estimation Using Natural
Variations

Within the field of remote sensing, shadows have long
been used to estimate the height of ground structures
from aerial or satellite imagery [9]. Recent work in anal-
ysis of time-lapse video from a fixed location have used
changing lighting directions to cluster points with simi-
lar surface normals [10]. Other work has used known
changes in the sun illumination direction to extract
surface normal of scene patches [11], define constraints
on radiometric camera calibration [12], [13], and estimate
camera geo-location [13]. Work on the AMOS (Archive
of Many Outdoor Scenes) dataset of time-lapse imagery
demonstrates consistent diurnal variations across most
outdoor cameras and simple methods for automated
classification of images as cloudy or sunny [14]. This sup-
ports methods that estimate the geo-location of a cam-
era, either by finding the maximally correlated location
(through time) in a satellite view, or interpolating from
a set of cameras with known positions [15]. The recently
created database of “webcam clip-art” includes camera
calibration parameters to enable applications such as
illumination and appearance transfer across scenes [16].

1.2 Overview

We introduce two new cues for depth estimation for
static cameras. In addition, we describe several algo-
rithms that use these cues to estimate properties of the
camera and the scene. Sec. 2 describes the cues: one
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based on geospatial proximity and one based on cloud
motion. In Sec. 3 we describe several distinct algorithms
that use these cues to estimate the focal length of the
camera and a depth map for the scene.

1.3 Assumptions

The algorithms we present exploit properties of natural
scenes that are captured by time-lapse videos. However,
they depend on several assumptions about the camera,
properties of the clouds in the scene, and for the sec-
ond algorithm, knowledge about wind-speeds and geo-
orientation of the camera. The camera is assumed to be
completely static so that a pixel is observing the same
scene location for the duration of the video. Also, we
assume the sky pixels and mirrored surfaces (such as
building windows and water) have been masked off and
are not considered.

We also make assumptions about the structure of
clouds in the scene. First, we assume that the corre-
lation between two pixels is a monotonically decreas-
ing function of the distance between the scene points
they observe. We solve for the form of this function,
but assume it is constant across the image. On scenes
with geographic features that impact the distribution of
clouds, such as coastlines or mountains, this assumption
may fail.

For the second algorithm, we make use of temporal
delay patterns arising from wind-blown clouds. Our
approach to using this cue assumes that the wind
speed and direction is constant over the course of the
time-lapse, and that there are not multiple layers of
clouds that have different directions of motion. The geo-
orientation of the camera (the pan-angle) of the camera
and the wind direction are assumed to be known. Finally,
if the wind velocity is known, this can be used to solve
to scale ambiguity. Otherwise, in all cases, the 3D model
has an unknown scale.



2 STRUCTURAL CUES CREATED BY CLOUD
SHADOWS

The image of cloud shadows passing through a scene
depends upon the camera and scene geometry. Here we
describe two properties of outdoor-scene time lapses that
depend on cloud shadows, are easy to measure, and, as
we show in Sec. 3, can be used to infer camera and scene
geometry.

2.1 Geographic Location Similarity

The closer two points are in the world, the more likely
they are to be covered by the shadow of the same cloud.
Thus, for a static outdoor camera, the time series of pixel
intensities are usually more similar for scene points that
are close than for those that are far. This is a compelling
cue because it does not require a high framerate video
stream.

We begin by considering the correlations that arise
between pixels in satellite imagery. The statistical proper-
ties of this approximately orthographic view are similar
to the spatial properties of the cloud shadows cast
onto the ground. We empirically show the relationship
between correlation and distance for a small dataset
of visible-light satellite images (all captured at noon
on different days during the summer of 2008). The
scatter plot in Figure 2, in which each point represents
a pair of pixels, shows that the correlation of the pixel
intensities is clearly related to the distance between the
pixels. Furthermore, the expected value of distance is a
monotonically decreasing function of correlation.

This relationship also holds at a much finer scale. To
show this, we compute correlation between pixels in a
time-lapse video captured by a static outdoor camera on
a partly cloud day. Since we do not know the actual 3D
distances between points we cannot generate a scatter
plot as in the satellite example. Instead, Figure 6 shows
examples of correlation maps generated by selecting one
landmark pixel and comparing it to all others. The false-
color images, colored by the correlation between a pair of
pixels, clearly show that correlation is related to distance.

We use correlation as a similarity measure because it
is simple to compute online and works well in many
scenes. In longer videos we compute correlation over
many short temporal windows and then average these
to compute the final score (see Figure 3). This similarity
measure reduces the effect of long-range correlations
due sun motion caused by objects with similar surface
normals [10]. Our approach does not preclude the use
of more sophisticated similarity metrics that explicitly
reason about cloud shadows using, for example, color
cues.

In Sec. 3.1, we show how to use these correlation
maps, which reflect the relationship between correlation
(or some other similarity measure) and distance, to infer
the focal length of the camera and a distance map of
the scene. In the following section we introduce an
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additional cue that is based on the motion of the cloud
layer.

2.2 Temporal Delay Due to Cloud Motion

As a cloud passes over a scene, each pixel varies due
to the cloud’s attenuation of sunlight. These variations
result in a time series of pixel intensities that depend,
in part, on the clouds. In the direction of the wind
these time series are very similar but temporally offset in
proportion to the geographic distance between the points
(see Figure 4). Also, for short distances perpendicular
to the wind direction we expect to see zero temporal
delay. We expect correlation, after accounting for delay,
to decrease with distance due to changing cloud shapes
or, different clouds altogether if we move far enough
perpendicular to the wind direction. In Sec. 3.2, we
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formalize this as a set of linear constraints relating
scene structure to the temporal delay giving the best
correlation in the time series at pairs of pixels. These
constraints can be sparse and are weighted by the corre-
lation, so slow cloud changes over time are incorporated
naturally into the optimization. The remainder of this
section describes how we compute the temporal offset
and shows examples of estimated offsets in real scenes.

Our method for estimating the temporal offset be-
tween the time series of a pair of pixels consists of a
coarse alignment followed by a refinement stage. First
we use cross-correlation to select the integer temporal
offset, A,, for which the signals are maximally correlated.
Then we refine this estimate to the sub-frame level, A;,
by finding the maxima of a quadratic model of the
correlation values around the maximal integer offset. We
use the correlation of the temporally aligned signals as a
confidence measure, for example, low correlation means
low confidence in the temporal offset estimate.

Figure 5 shows the result of this estimation procedure
for three pixels from a mountain scene. After temporal
alignment, the pixels directly in line with the wind are
more similar than those that are not in line with the
wind.

Figure 6 shows examples of false-color images con-
structed by combining the estimated delay and the tem-
porally aligned correlation for every pixel, relative to
a single landmark pixel. The motion of the clouds in
this scene is nearly parallel with the optical axis, so the
temporal delays are roughly equal horizontally across
the image (perpendicular to the wind direction) but the
correlations quickly decrease as distance from the pixel

increases (different clouds are passing over those points).
Orthogonally, the correlations are relatively higher in the
direction of the wind but the delay changes rapidly.

3 UsING CLOUDS TO INFER SCENE STRUC-
TURE

The dependence of correlation upon distance and the
temporal delay induced by cloud shadow motion are
both strong cues to the geometric structure of outdoor
scenes. In this section, we describe several methods that
use these cues to infer a depth map and simplified
camera geometry.

We assume a simplified pinhole camera model. As-
suming a focal length, f, a point, R; = (X,Y, Z), in the
world projects to an image location, expressed in nor-
malized homogeneous coordinates as r; = (X7f, Y7f, 1).
For each pixel, 4, the imaged 3D point, R;, can be
expressed as R; = oyr; with depth, a;. Thus, the 3D
distance between two points is d;; = ||R; — R;||. But,
for our purposes the use of 3D distances is not techni-
cally correct. Consider, for example, that any two scene
points in-line with the sun vector see the same cloud
shadows and will therefore have similar time series. In
our experiments, we solve this problem by modifying d;;
by projecting the points, along the sun direction vector,
to the ground plane before computing the distance (if
the sun vector is unknown we project points straight
down). This gives distances that are related to time-series
similarities induced by cloud shadows. A side effect of
this projection is that it creates a point ambiguity where
the depth of a pixel ray that is parallel to the sun vector
is unconstrained.

3.1 Estimating Scene Structure Using Pairwise Cor-
relation

In outdoor scenes under partly cloudy conditions there
is a strong relationship between correlation, p;;, and
3D distance, d;;, between the imaged scene points. In
this section, we show how to estimate the focal length
of a camera and a depth map, a = «y,...,,, for an
outdoor scene using this relationship. Our approach has
two main parts: we first create a planar approximation of
the scene that gives the most consistent mapping from
distance to correlation, we then use this to initialize a
non-metric multidimensional scaling approach [18] that
solves for the form of the correlation-to-distance map-
ping and the complete depth map that is most consistent
with the measured correlations.

3.1.1

We solve for the camera focal length, f, and external
orientation parameters, 6, (tilt) and 6, (roll) in a lo-
cal east-north-up coordinate system, using a maximum
likelihood method based on the relationship between
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correlation and distance. See Figure 7 for an example of
this procedure applied to a scene. In previous work [20],
we sought parameters that made the mapping from cor-
relation to distance most consistent. However, this gives
solutions biased to have the scene depths be smaller and
is very sensitive to points near the horizon. By optimiz-
ing over the consistency of the mapping from distance
to correlation, we remove both of these problems with a
small increase in complexity.

Under the assumption that the scene is a plane, these
parameters define distances to all points in the scene,
and therefore distances between all points in the scene.
The idea of the approach is that there should be a
consistent mapping between distances between points
in the scene and correlations between time-sequences
observed at those pixels; we search over the parameters,
(f,04,0,), to make this mapping as consistent as pos-
sible. In particular, we search to find a mapping from
distances to correlations that maximizes the likelihood
of the observed correlations given the distances.

Assuming the camera is a fixed distance above a
flat plane, the parameters, (f,0,,0.), define a distance
to every point in the scene, and therefore a distance,
d; ;, between every pair of pixels, (4,j), in the scene.
We define p*(d; ;) = E[p|d] as the expected correlation
between those pixels, given their pairwise distance (as
determined by the flat plane assumption and camera
parameters). We simultaneously estimate the function
p* and the pairwise distances, d; ;, using a probabilis-
tic approach in which the conditional distribution of
sample correlations, P(p; j|p*(d; ;)), is modeled as the
distribution of the sample correlation, p;;, given the
true correlation for bivariate normal distribution [21]. We
express the entire optimization process as a maximum
likelihood estimate as follows:

fonax P(pijlp*(di;))- @
The probability P(p; ;|p*(d;;)) quantifies the likelihood
of the sample correlation, p; ;, given the (estimated) true
correlation. To complete the optimization, we exhaus-
tively search over a reasonable range of parameters,
(f,04,0,), solving for p* at each setting, and choose the
setting that maximizes the likelihood.

Our approach to estimating p*, which maps distances
to correlations as p*(d) = E[p|d], is based on samples
of (d;j,pij)- Recall that the sample correlations, p; ;,
are measured from the imagery and the distances, d; ;,
are computed from the camera parameters, (f,0,0.).
We define p* using a spline curve that ranges from the
smallest to largest pairwise distance and which has a
value between -1 and 1. The standard approach to fitting
a spline to samples (d; j, p;;) using least squared error
is optimal under the assumption that p; ; is a random

1. The pan angle is needed to geo-reference the scene, but is unnec-
essary to compute the distance between points in the scene. If needed,
as in the depth from wind velocity cue, we assume that pan (degrees
from north) is provided by the user, or some other estimation method,
such as [19].

variable with a Gaussian distribution. Our initial experi-
ments using this method gave poor estimates of p* which
we attribute to the mismatch between the distribution of
the sample correlation, p, and the Gaussian distribution.

We solve for the spline curve that estimates
Elp|d] by using sampling to minimize (1). For each
pair, (dij, pij), we construct thirty additional pairs,
{(di j,p1),(dij,p2), ...}, by sampling from the distribu-
tion of the sample correlation for a bivariate normal
distribution, using p; ; as the population correlation and
sample size 60. We then use standard least squares to
fit a spline curve through these samples. We found that
this method gives significantly improved estimates of
p* compared to directly fitting the spline to the original
data. The expanded set of points more accurately reflects
the increased uncertainty in estimating low correlations
vs high correlations and allows us to use standard spline
fitting code. Evaluating this spline curve defines our
mapping from distances to correlations, p*(d).

We find that this optimization procedure is sufficient
for the small number of parameters needed for a planar
scene. Figure 10 shows the results of this method in
computing the initial (planar) depth for two examples.
Sec. 4.1 gives an experimental evaluation of this method.
However, it does not work well for estimating a full
depth map because of the high-dimensionality of the
parameter space (a depth value for every pixel). This
required an alternative method for optimizing for the
depth map; in the following section we describe an
efficient method that uses iterative local descent. This
enables all depths to be simultaneously updated result-
ing in much faster convergence. We use the planar depth
maps found using this method to initialize the method
in the following section.

3.1.2 Depth Map Estimation Method Overview

We use Non-metric Multidimensional Scaling
(NMDS) [22], [18] to simultaneously solve for E[d;;|pi;]
and the depth map, a. Like classical Multidimensional
Scaling (MDS), NMDS solves for point locations given
pairwise relationships between points. Unlike MDS,
NMDS does not expect the input relationships to
correspond to distances, instead the input is only
required to have a monotonic relationship to distance.
Since we assume that distance is a monotonically
decreasing function of correlation, we can use the
NMDS framework to solve for this mapping.

In our application NMDS works, from a high-level,
as follows. First we initialize the solution with a planar
depth map (we describe a method for estimating an
initial depth map in Sec. 3.1.1). Given an initial depth
map, we iterate through the following steps:

1) determine the 3D distance between scene points, d;;,

implied by the current depth map,

2) estimate the mapping from distance to correlation,

Eldi;|pi;] (see Sec. 3.1.3),

3) use the pairwise correlation, p;;, and E[d;;|pi;] to

compute a pairwise distance estimate,



4) update the depth map to better fit the estimated
distances (see Sec. 3.1.4).

We now describe the two major components of this
procedure in greater detail.

3.1.3 Estimating Pairwise Distance Given Correlation

This section describes our model of the monotonic
mapping from correlation to distance, E[d;;|p;;]. Many
simple parametric models could be used to fill this
requirement but they impose restrictions on the mapping
which can lead to substantial artifacts in the depth map.
Instead we choose a non-parametric model that makes
the following minimal assumptions on the form of the
mapping:

e Eld;i;|lp;j = 1] = 0, when the correlation is one the

expected distance is zero,

e E[dij|p] > E[d;j|p + €], expected distance is a mono-

tonically decreasing function of correlation
These assumptions follow naturally from empirical stud-
ies on the spatial statistics of real clouds [3]. We present
results on scenes that violate these assumptions in Sec. 4.

We use the non-parametric regression method known
as monotonic regression [22] to solve for a piecewise
linear mapping from correlation to distance while re-
specting the constraints described above. Control points,
p=1{p1,-..,pr}, are uniformly sampled along the corre-
lation axis, with the mapping from sample correlation
values to the closest control point defined by c(p) €
{1,...,k} (k = 100 in all experiments). We use linear
programming to estimate expected pairwise distances,
d= {ch, ce dk}, that satisfy the maximal correlation and
monotonicity constraints defined above while minimiz-
ing > ‘&C( i) = dij’ relative to the distances, d;;, implied
by current scene model (initially a plane). Given the
control point locations, p, and optimal distance values,
d, we use linear interpolation to estimate the expected
value of distance for a given correlation.

Figure 10 shows examples of the correlation-to-
distance mapping, E[d;;|p;;]. The expected values are
reasonable when compared to the sample points and
would be difficult to model with a single, well-justified
parametric model. We use this regression model to de-
fine the expected distance between a pair of points with
a given correlation, and we use this expected distance as
input into the depth map improvement step described
in the following section.

3.1.4 Translating Pairwise Distances Into Depths

We use El[d;;|pi;], defined in the previous section, to
estimate a distance matrix that reflects 3D distances
between imaged scene points. We then use Multidimen-
sional Scaling (MDS) [18] to translate estimated distances
into 3D point locations. Because imaged points must lie
along a particular pixel rays, we augment MDS with
the constraint that the 3D point locations must fit with
the camera geometry. This algorithm is essentially a

projectively constrained variant of the Non-metric Mul-
tidimensional Scaling (NMDS) [22] algorithm.
The error (stress) function for MDS is as follows:

S(a) = Zwij(dij — Eld|pi;])? 2

where the weights, w;;, are an increasing function of
the correlation, p;;. In other words, we expect the dis-
tance estimates from high-correlation pairs to be more
accurate than those of lower-correlation pairs. In this
work, we use w;; = pj; for 0 < p;; and w;; = 0
for p;; < 0. Recall that the 3D distance, d;;, between
imaged scene points is a function of the depths, a, along
pixel rays. Following the standard iterative minimization
approach [18], we minimize the stress function using
gradient descent [22] with respect to the depths using
the trust region method, constrained so that a > 0.
We also constrain the average of the estimated pairwise
distances to remain constant to avoid the trivial, zero-
depth solution. We use a straightforward application of
the chain rule to compute the gradient with respect to a
and to form a diagonal approximation of the Hessian. We
do several descent iterations for a given distance matrix
before re-estimating the correlation-to-distance mapping,
Eld;j|pi;], using the updated point locations.

Ideally we would use all pairs of pixels when min-
imizing the stress function. Unfortunately, maintaining
the full correlation and distance matrices in memory
between all pairs of pixels is unreasonable for all but
the smallest images (a 320 x 240 image would require
storing several 76800 x 76800 matrices). To overcome
this we select a set of landmark pixels (in all exper-
iments we select 100 landmark pixels using k-means)
and only consider the subset of rows of our correlation
and distance matrices that correspond to the landmark
pixels. While we are using landmark pixels we are still
optimizing over the depths for all pixels. We find that
using landmark pixels significantly reduces computation
time and memory consumption with minimal impact on
the resulting depth maps. In our Matlab implementation
the complete depth estimation procedure, including the
ground-plane based initialization, typically requires sev-
eral minutes to complete.

3.2 Estimating Scene Structure Using Temporal De-
lay in Cloudiness Signal

The motion of clouds due to wind causes nearby pix-
els to have similar but temporally offset intensity time
series. Together these temporal offsets, Ay(; ), give con-
straints on scene geometry. Sec. 2.2 shows examples of
these temporal offsets.

Let W be a 3D wind vector which we assume it is
fixed for the duration of the video. A pair of points in the
world, R;, R;, that are in-line with the wind satisfy the
linear constraint R; — R; = WA,(; ;) where Ay ;) is the
time is takes for the wind (and therefore the clouds) to
travel from point R; to point R;. However, the algorithm



in Sec. 2.2 can often compute the temporal offset between
pixels not exactly in-line with the wind. We general-
ize the constraint to account for this by projecting the
displacement of the 3D points onto the wind direction,
W =W/|[[W]L:
WT(R; — Rj) = WTWA;). €)
Based on the simplified camera imaging model, each
pixel corresponds to a known direction, so the 3D point
position, R;, can be written as a depth, «;, along the
ray, r;. This gives the following set of constraints on the
unknown depths:

W (airi — ajry) =

OLL‘WT’I’Z' —OthTTj =

WW Ay 4)
WTW A (5)

This set of constraint defines a linear system,

Ma = A, (6)

where a is a vector of the (unknown) depth values,
«a;, for each pixel, the rows of M contain two non-zero
entries of the form (W Tr;, —WTr;), and A contains the
scaled temporal delays between pixels.

The constraint on depth due to temporal delay has an
ambiguity. In all cases, the matrix M has a null space of
dimension at least one. This is visible from the structure
of M, adding any multiple of o/ = (5 ..) to
the depth map, a, does not change the le]ft han(:?l 51de of
Equation 5. The next section describes how we overcome
this ambiguity.

3.3 Combining Temporal Delay and Spatial Correla-
tion

The two cues we describe have ambiguities, a scale
ambiguity for the spatial cue and a null space ambiguity
for the temporal cue, that prevent metric interpretation
of the generated depth maps. Combining the two cues
allows us to simultaneously remove both ambiguities
and makes possible metric scene estimation. We propose
the following method.

Starting with the constraints defined by the tempo-
ral cue, we solve for a feasible depth map, a, using
a standard non-negative least squares solver. We then
consider the set of solutions of the form a + ko/, and
search over values of k to find a good depth map. While
many criteria exist for evaluating a depth map we focus
on combining the two cues we have described to remove
this ambiguity. As with the spatial cue, we make the
assumption that correlation is geographically isotropic.
This motivates us to use the error function defined in
Equation 1 to evaluate the different depth maps. The
only difference is that we now search over the null
space as opposed to the focal length and orientation
parameters. In Sec. 4.3, we show results that demonstrate
that depth maps with low error function values are more
plausible than those with higher error function values.
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4 EVALUATION

We describe our evaluation of various components of
our approach and show results on end-to-end depth
estimation on many outdoor scenes.

4.1

This section presents an evaluation of our focal length
estimation procedure on simulated and real data. In
both cases we are evaluating the effect of noise: in the
simulated case we vary the amount of noise in the
correlation estimates and in the real-data case we are
implicitly testing the accuracy of our method when the
planar model is violated.

Focal Length from Correlation



4.1.1 Simulated Data

In this section, we evaluate the robustness of our initial-
ization method to noise in the correlation readings. Our
goal is to better understand the amount to which the ac-
curacy of the results depends on the accuracy of the cor-
relation estimate. First, we create a simulated scene, with
a known focal length, image size, distance-to-correlation
function and a randomly selected horizon line (see Fig-
ure 8). Given this, we know the actual distance between
each pair of points. Then, we use the known distance
to create simulated correlations between pairs of points,
by sampling from a bivariate Gaussian with correlation
determined by the distance-to-correlation function. This
gives us a set of correlation values which we use as
input to our initialization procedure. Figure 8 shows
simulated correlations and quantitative evaluation of
this method. The results demonstrate that increasing the
accuracy of our correlation estimate, by increasing the
number of samples, increases the accuracy of our field-
of-view estimates. For the case of 100 samples, we obtain
estimates of the field-of-view with with a mean-absolute
deviation (MAD) of less than 2°.

4.1.2 Real Data

Here we estimate the focal length of the two scenes
shown in Figure 10. In Figure 9 we hold the camera
orientation parameters fixed and vary the focal length
to show how the error function, Equation (1), changes.
The error function is minimized very near the true focal
length. While these scenes are not planar, we find that
the estimated focal length is close to the ground truth
value in both cases.

4.2 Depth from Correlation

To evaluate the end-to-end performance of the depth
from correlation algorithm (Sec. 3.1) across a broad range
of representative videos, we collected a diverse set of
videos [23]; most were found by searching on video shar-
ing sites for videos that were (a) available to download,
(b) were captured by a static camera on a partly cloudy
day, and (c) did not include large fractions of the images
with significant non-cloud sources of appearance change
(e.g. traffic and pedestrians). In total, thirty-six videos
were judged to fit these criteria, and we evaluated the
performance of the depth-from-correlation algorithm on
each. We found that for about half of the scenes our
method estimated depth maps with minimal apparent
artifacts. For most scenes we used correlation as a time-
series similarity metric; for the two scenes in Figure 10
we used windowed correlation with a temporal window
of approximately five minutes due to significant sun
motion.

The remainder of this section discusses successes and
failures to provide a better understanding of our method.
In all real-data examples, we resize the original images
to be 320 pixels wide and manually mask off the sky.

We emphasize that in these examples we do no post-
processing to improve the appearance of the generated
depth maps. The optimization is based solely on geo-
metric constraints on the camera geometry.

4.2.1 Case Studies: Successes

Figure 10 shows the depth map and the correlation-to-
distance mapping for two scenes. The first time lapse
(top) was captured over three hours with pictures cap-
tured every five seconds. Naively computing correlation
on the entire video sequence yields a low quality correla-
tion map due to long term and spatially broad changes
caused by the sun motion and melting snow on fields
in the near ground. Computing correlations over short
temporal windows and then averaging these correlations
removed these artifacts. The second time lapse (bottom)
consists of 600 images captured over 50 minutes. In ad-
dition to the sky, the river was manually masked and the
shadow regions were automatically masked by removing
low-variance pixels. Figure 1 contains another example
of using the spatial cue to estimate a depth map and
Figure 13 shows seven additional examples of successful
depth maps with intermediate results, generated using
our NMDS-based method.

4.2.2 Case Studies: Impact of Violated Assumptions

We show six examples of failures that result from vi-
olation of the assumptions described in Sec. 1.3. We
describe the specific examples below, but in general the
results show that when correlations are not geographi-
cally isotropic our method generates low quality depth
maps. However, even in these cases we often estimate
reasonable depth maps for the parts of the scene where
the assumptions hold. The main causes of errors we see
are regions that have significant appearance variations
that do not depend on cloud shadows (e.g. cast and
attached shadows and occlusions from moving objects).

Figure 14 shows examples of depth maps that have
significant errors. The first scene (top) fails in two dis-
tinct parts of the scene. In the bottom left, the depth
estimates are noisy because that region almost always in
shadow. In the top right, a distant hill is estimated to be
close to the camera due to spurious high correlations due
to the short duration of the video. The second scene has
a poor quality depth map in the distance due to points
that move in and out of shadow as a group (e.g. rows
of trees). In the third scene, the correlation is dominated
by surface normals and shadows leading to difficulty
in estimating an initial correlation to distance mapping.
In the fourth scene, the vertical parts of the bridge are
well estimated but the remainder (i.e. in shadow under
the bridge and on the water) fails. In the fifth scene,
the distant hilltop is estimated to be close to the camera
because there are numerous low-flying clouds that pass
in front of the hill which increase the correlation. Since
high-correlation pixels tend to be close together they are
estimated to be close to the camera since they are widely
spaced in the image. And finally, in the sixth scene
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(bottom), a few points in the distance with spurious high
correlations, due to the short duration of the video, are
pulled very close to the camera.

The quality of depth maps we generate depend on the
ability to compute a geographically isotropic similarity
function. We have shown several examples where cor-
relation is unable to achieve this and gives poor quality
depth maps. However, even in these cases the method
often estimates reasonable depth maps for large parts of
the scene.

4.2.3 Quantitative Evaluation

We performed limited quantitative analysis on one scene
for which we could align the scene with a satellite
image. We clicked on 15 points scattered across different
locations in the scene and found their corresponding
points in the satellite image. These points varied from
roughly 100 to 1000 meters from the camera. We find an
average per-pixel error of 20 meters in the estimates of
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the 3D point locations (relative to the hand-clicked cor-
responding points) after a rigid alignment to geolocate
the camera. This represents 2% error, relative to the scale
of the scene, in the position estimates. Figure 11 shows
how this error varies as we change the way we process



0.05

0.045

Error

0.04

-150 150

0
Null-space Parameter

11

Fig.

the image data.

To assess the sensitivity to changes in parameter set-
tings we performed two experiments. In the first, we fix
the number of images but vary the temporal window
size. We find that as window size increases, the error
generally increases; this is due to the increased impact of
appearance changes that violate our assumptions, such
as the sun motion. In the second experiment, we fix the
temporal window size (at the window size that gave
minimum error in the previous experiment) and vary the
number of images used to compute correlation. We find
that, as expected, using more images, results in position
estimates with lower error.

4.3 Depth from Combining Temporal Delay and Spa-
tial Correlation

Figure 12 shows a depth map generated by the method
described in Sec. 3.3. To reduce memory usage we dis-
card constraints for pixel pairs, ij, whose temporally
aligned correlation is less than a threshold (we use
threshold 0.85). The top row of the figure show results on
a previously described scene. This result demonstrates
that higher values of the error function lead to lower
quality depth maps. For the second scene, two-hundred
frames of a time lapse, with one frame every five sec-
onds, were used to estimate a delay map. We again use
the combined inference procedure to estimate a depth
map.

5 CONCLUSION

We presented two novel cues, both due to cloud shad-
ows, that are useful for estimating scene and camera
geometry. The first cue, based on spatial correlation,
leads to a natural formulation as a Non-metric Mul-
tidimensional scaling problem. The second cue, based
on temporal delay in cloud signals, defines a set of
linear constraints on scene depth that may enable metric
depth estimates. These cues are unique in that they can
work when other methods of inferring scene structure
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and camera geometry have difficulties. They require no
camera motion, no haze or fog, no sun motion, and
no moving people or cars. We also demonstrated how
to combine these cues to obtain improved results. This
work adds to the growing literature on using natural
scene variations to calibrate cameras and extract scene
information.
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