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Abstract

Fundamental discoveries do not necessarily rely on ex-
ploring new landscapes but on employing new eyes—thus
indicated Marcel Proust, and thewisdomof hismetaphor re-
garding the power of new eyesisstrongly reflected in ancient
Greek mythology. Recall Argus, the hundred-eyed guardian
of Hera, the goddess of Olympus, who alone defeated a
wholearmy of Cyclopes, one-eyed giants. Smilar ideas ap-
pear in thispaper which shows how to use existing cameras
in various ways to create new cameras—new ways to see
theworld. Autonomousor semi-autonomousintelligent sys-
tems, inorder to functionappropriately, need to create mod-
els of their environment, i.e., models of space-time. These
are descriptions of objects and scenes and descriptions of
changes of space over time, that is, events and actions. De-
spite the large amount of research on this problem, as a
community we are still far from devel oping robust descrip-
tions of a system's spatiotemporal environment using video
input (image sequences). Undoubtedly, some progress has
been made regarding the understanding of estimating the
structure of visual space, but it has not led to solutionsto
specific applications. There is, however, an alternative ap-
proach which isin line with today's*” zeitgeist.” Thevision
of artificial systems can be enhanced by providing themwith
new eyes. If conventional video cameras are put together in
various configurations, new sensors can be constructed that
have much more power and the way they “ see” the world
makes it much easier to solve problems of vision. Thisre-
search ismotivated by examining thewide variety of eye de-
signin thebiological world and obtaininginspirationfor an
ensemble of computational studiesthat relate how a system
seesto what that system does (i.e., relating perception to ac-
tion). This, coupled with the geometry of multipleviewsthat
has flourished in terms of theoretical resultsin the past few
years, points to new ways of constructing powerful imag-
ing devices which suit particular tasks in robotics, visual-

ization, video processing, virtual reality and various com-
puter vision applications, better than conventional cameras.
This paper presents a new sensor that we built using com-
mon video cameras and showsits superiority with regard to
devel oping model s of space from long video sequences.

1. Introduction: Models of space-time

Technol ogical advances makeit possibletoarrange video
cameras in some space, connect them with ahigh-speed net-
work and collect synchronized video. Such developments
open new avenues in many areas, making it possibleto ad-
dress, for thefirst time, a variety of applicationsin surveil-
lance and monitoring, graphics and visualization, robotics
and augmented redlity. But as the need for applications
grows, there does not yet exist aclear ideaon how to put to-
gether many camerasfor solving avariety of problems. That
is, the mathematics of multiple-view vision is not yet un-
derstood in away that relates the configuration of the cam-
era network to the task under consideration. EXxisting ap-
proaches treat almost al problems as multiple stereo prob-
lems, thus mi ssing important information hiddenin the mul-
tiple videos. The goa of this paper isto provide the first
stepsinfillingthe gap described above. We consider amulti-
camera network as anew eye and we perform acomparative
analysis of these new eyes with traditional video cameras.
To achieve this we concentrate here on developing models
of space. The exposition is such that it motivates the new
eyes, by first describing the problems of developing models
of shape using acommon video camera and pointing out in-
herent difficulties.

Images, for a standard pinhole camera, are formed by
central projectionon aplane (Figure 1a). Thefoca lengthis
f andthe coordinate system O XY 7 isattached to the cam-
era, with 7 beingtheoptical axis, perpendicular totheimage
plane.



Image points are represented as vectorsr = [x,y, f]T,
where z and y are the image coordinates of the point in the
coordinate system ozy, with oz||O X, 0y||OY and O thein-
tersection of the axis O Z with theimage plane, and f isthe
focal lengthin pixels. A scene point R. is projected onto the
image point
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where 7 isthe unit vector in the direction of the 7 axis.

In general, when a scene is viewed from two positions,
there are two concepts of interest: (a) The 3D transforma-
tionrelatingthetwo viewpoints. Thisisarigid motiontrans-
formation, consisting of atrandation and arotation (six de-
grees of freedom). When the viewpoints are close together,
thistransformation is modeled by the 3D motion of the eye
(or camerd). (b) The 2D transformation relating the pixels
inthetwo images, i.e., atransformationthat given apointin
thefirst image mapsit onto its corresponding onein the sec-
ondimage (that is, these two pointsare the projectionsof the
same scene point). When the viewpointsare close together,
this transformation amounts to a vector field denoting the
velocity of each pixel, called animage motionfield. Perfect
knowledge of both transformationsdescribed aboveleadsto
perfect knowledge of models of space. Since knowing ex-
actly how thetwo viewpointsand theimages arerelated pro-
vides the exact position of each scene point in space. Thus,
akey tothebasic problem of buildingmodels of spaceisthe
recovery of the two transformations described before and
any difficulty in building such models can be traced to the
difficulty of estimating these two transformations. What are
the limitationsin achieving this task?

2. Inherent limitations: Image motion and 3D
motion

If risan image point (z, y, f), the projection of the mo-
tionvector r onthegradient n at thispointisthewell known
normal flow u,,, with

U, =T -n. 2

where n is aunit vector at an image point denoting the ori-
entation of the gradient at that point. The normal flow isa
robust measurement from a moving image and can be com-
puted locally and in parallel. To compute then the values of
the flow, one would need to utilize the normal flow vaues
along with additional constraints.

All approaches start with the normal flow measurements
and then fit some parametric model for the flow or employ
a regularization scheme. In both cases there are problems
because of the unknown location of depth discontinuities.
If we knew where the discontinuities are, estimating flow
would be easy, but to know where the discontinuitiesare we

need first to find 3D motion and use it to find depth—but to
do that we need to know the values of the flow! The whole
problem is clearly a chicken/egg problem.

There exists an additional reason causing incorrect flow
estimates that only recently was understood [9], and is re-
lated to the image texture. It has to do with the statistical
difficulty of integratinglocal, 1D motionsignasinto 2D im-
age velocity measurements. Any procedure for estimating
image motion has to start with normal flow measurements,
that is, the image motion component perpendicular to local
edges. It has been shown [9] that when these local mea-
surements are combined in a neighborhood to produce im-
age motion, an estimate of flow is obtained which is biased.
The estimated value depends on the distribution of image
gradients, the actual flow and the error in the normal flow.
Thisis strikingly observed in the Ouchi illusion (Figure 2).
Thepatternin Figure 2 hasthe surprising property that small
motions can cause illusory relative motion between the in-
set and background regions.!  The reason for this illusion
isthat for the particular spatia gradient distributionsof the
Ouchi pattern, the bias in the estimation of flow is highly
pronounced, giving rise to a large difference in the veloc-
ity estimates in the two regions. Situations like this occur
too often in real imagery (neighboring textures of different
orientation). Thus, thereare two basic problemswith thees-
timation of correspondence, i.e., themotionfield. Oneisge-
ometric, rel ated to scene discontinuities, and the other issta-
tigtical, related to how the image texture looks.

Regarding 3D motion estimation, there exists a verita
ble cornucopia of techniques for finding 3D motion from a
video sequence. Almost all techniques are based on the so-
caled epipolar constraint, which shows how the motion of
image points is related to 3D rigid motion and the scene.
Thisconstraint, at each image pointr, iswrittenas (t x r) -
(t+wxr)=0][3].

Oneisinterested in the estimates of trandation t and ro-
tation @ which best satisfy the epipolar constraint at every
point r according to some criteriaof deviation. Usudly the
Euclidean normisconsidered | eading to the minimization of
function.

Eep:// [(ixr) (i4oxn)]’d (3

image

Thereason for thelarge amount of literatureisthat the prob-
lemisvery difficult. Onemain reason for thishasto dowith
the apparent confusion between trandation and rotation in
the motion field. Thisis easy to understand at an intuitive
level. If welook straight ahead at a shallow scene, whether
we rotate around our vertical axis or trand ate parallel to the

1Theeffect can beattained with small retinal motionsor aslight jiggling
of the paper and isrobust over large changesin the patterns, frequenciesand
boundary shapes.



Figure 1. Image formation on the plane (a) and on the sphere (b).
The system moves with arigid motion with translational velocity

==t
====SiTI====x
=== e ====
== ==
S
® E===S=— s

Figure 2. A pattern similar to
one by Ouchi.

t and rotational velocity w. Scene points R project onto image
points r and the 3D velocity R of a scene point is observed in

the image as image velocity r.

scene, themotionfield at the center of theimageisvery simi-
lar inthetwo cases. Thus, for example, trandationalongthe
x axisis confused with rotation around they axis. Thebasic
understanding of thisconfusion has attracted few investiga-
torsover theyears [2, 3]. In [6, 8] a geometrical statistical
analysis of the problem has been conducted. On the basis
of (3) the expected value of ., has been formulated as a
five-dimensional function of the motion parameters (two di-
mensionsfor t/|t| and threefor w). Independent of specific
estimators the topographic structure of the surface defined
by thisfunction explains the behavior of 3D-motion estima-
tion. Intuitively speaking, it turnsout that the minimaof this
functionlieinavalley. Thisisacause for inherent instabil-
ity because, in ared situation, any point onthat valley or flat
area could serve as the minimum, thusintroducing errorsin
the computation.

In particular, the result obtained can be formulated as
follows: Denote the five unknown motion parameters as
(z0,y0) (direction of trandation) and («, 3,7) (rotation).
Then, no matter how 3D motionisestimated fromthemotion
field, the expected solution will contain errors (zq_, yo. ),
(v, Be, ve) that satisfy two constraints:

() The orthogonality congtraint; ~2 — _Pe
Yo. Q¢
(b) Thelineconstraint; —2 = 20
Yo Yo,

In addition, we must also have v, = 0. The result states
that the solution contains errors that are mingled and cre-
ate a confusion between rotation and trandation that can-
not be cleared up, with the exception of the rotation around

the optical axis (y). The errors may be small or large, but
their expected value will aways satisfy the above condi-
tions. Although the 3D-motion estimation approaches de-
scribed above may provide answers that could be sufficient
for various navigation tasks, they cannot be used for deriv-
ing object model s because thedepth 7 that iscomputed will
be distorted [1].

3. Looking at the world

We are interested in space and action descriptions that
can be extracted from visual data. This requires that there
existsan eyeor deviceimaging the scene. All alongwetook
it for granted that our basic device was a camera-type eye,
that is, acommon video camera whose basic principleisthe
pinhole model, but there was no particular reason to make
this assumption.

An examination of the design of eyes in the biological
world reveals a very wide variety. The mechanisms organ-
isms have evolved for collecting photons and forming im-
ages that they use to perform various actions in their en-
vironment depend on a number of factors. Chief among
these are the individual organism’s computationa capacity
and the tasks that the organism performs. Michael Land, a
prominent British zool ogist and the world’ sforemost expert
on the science of eyes, has provided alandscape of eye evo-
[ution. Considering evol ution as amountain, with the lower
hillsrepresenting the earlier stepsintheevolutionary ladder,
and the highest peaks representing the later stages of evo-
[ution, the situation is pictured in Figure 3 [4]. It has been
estimated that eyes have evolved no fewer than forty times,



independently, in diverse parts of the anima kingdom. In
some cases, these eyes use radically different principlesand
the “eye landscape” of Figure 3 shows nine basic types of
eyes. Eyeslow in the hierarchy (such as the nautilus' pin-
hole eye or the marine snail eye) make very crude images of
the world, but at higher levels of evolution we find differ-
ent types of compound eyes and camera-type eyes (likethe
oneswe use) such asthecorneal eyes of land vertebratesand
fish eyes.

CAMERA-TYPE EYES
Corned eyes of land vertebrates

ComPouND EYEs

Neural

superposition ~Q Spiders /Fish eyes

Superposition eyes

i e pigment cups
Mere Photoreceptors

Figure 3. Michael Land’s landscape of eye
evolution.

Inspiration for our work has come from the compound
eyes of insects which are particularly intriguing, especialy
in view of the fact that insects compute excellently 3D mo-
tion. Their lives depend ontheir ahility to fly with precision
through cluttered environments, avoid obstaclesand land on
demand on surfaces oriented in various ways. In addition,
they perform these tasks with minima memory and compu-
tational capacity, much less than an average personal com-
puter of today. Could it be possible that much of their suc-
cess emanates from the special construction of their eyes?

4. New eyes

Why isit that biological systemsthat need to fly and thus
require good estimates of 3D motion (insects, birds) have

2Compound eyes exist in several varieties, and can be classified in two
categories, the apposition and superposition ones. The apposition eye is
built as a dense cluster of long, straight tubesradiating out in all directions
as from the roof of adome. Each tubeis like a gun sight which sees only
asmall part of the world in its own direct line of fire. Thus, rays coming
from other parts of the wall are prevented by the walls of the tube and the
backing of the domefrom hitting the back of the tube where the photocells
are (Figure 4). In practice, each of thelittle tube eyes called ommatidia, is
abit morethan atube. It hasits own private lensand its own private retina
of about half a dozen photocells. The ommatidium workslike along, poor
quality, cameraeye. Superposition compound eyes, on the other hand, do
not trap rays in tubes. They alow raysthat pass through the lens of one
ommatidium to be picked up by a neighboring ommatidium'’s photocells.
Thereis an empty, transparent zone shared by all ommatidia. The lenses of
al ommatidia conspire to form a single image on a shared retina which is
put together from the light-sensitive cells of all the ommatidia.

Figure 4. (Adapted from [4].) Example of the
principle of the apposition compound eye,
forming the image of a dolphin. The arrows
don’t represent rays (which would be bent by
the lenses) but mappings from the points of
the object in view (a dolphin) to points in the
bottoms of the tubes.

panoramic vision implemented either as acompound eye or
by placing camera-type eyes on opposite sides of the head?
Thisis afascinating question that has remained open since
the time of the pioneer investigator, Sigmund Exner, at the
beginning of thiscentury. The obviousanswer is, of course,
that flying systems should perceive the whole space around
them—thus panoramic vision emerged. There is, however,
adeeper mathematical reason and it hasto with the ability of
asystem to estimate 3D motion when it analyzes panoramic
images, as shown in this section. Put simply, a spherica
eye (360 degree field of view) is superior to a planar eye
(restricted field) with regard to 3D motion estimation. Re-
call from Section 2 that, given a sequence of images, 3D
motion is estimated by minimizing function £ that repre-
sents deviation from the epipolar constraint. It was shown
that in the case of images captured by a planar eye (eg., a
common video camera), this function has a specia topog-
raphy which is such that the errors in the motion are min-
gled, causing confusion between rotationand trand ationand
thus producing awrong result. 1f, however, thefield of view
goes to 360 degrees, the topography of the surface drasti-
cally changeswith theminimum clearly standing outin most
cases. Panoramic vision is modeled by projecting onto a
sphere, with the sphere’s center as the center of projection
(Figure 1b). In this case, the image r of any point R. is
r = %, with R being the norm of R. (the range), and the
image motionis

- ﬁ ((6-1)r—t) —wxr= %utr(t) T—
(4)
The function E., representing deviation from the epipolar
congtraint on the sphere has the exact same form asin the
plane for our nomenclature. We integrate over the range R



withinan interval bounded by R,.,;,, and R.,.x and obtain

max

- [

Rmin sphere

(6 ><r)} dAdR

~ (@ xn))

where A refers to a surface element. Due to the sphere's
symmetry, for each point r on the sphere, there exists a
point with coordinates —r. Since uy(r) = u(—r) and
Urot(r) = —upe(—r), When theintegrand is expanded the
product terms integrated over the sphere vanish. Thus

IR =

Rmin sphere

+ ((we x 1) (tx1)) }dAdR

(@) Assuming that trandation t has been estimated, thew,
that minimizes ., isw. = 0, sincetheresulting functionis
non-negativequadraticinw, (minimumat zero). Thediffer-
ence between sphereand planeisaready clear. Inthespher-
ical case, asshown here, if an error inthetranslationismade
we do not need to compensate for it by making an error in
therotation (w. = 0), whilein the planar case we need to
compensateto ensurethat the orthogonality constraint i s sat-
isfied!

(b) Assuming that rotation has been estimated with an er-
ror w,., what is the trandation t that minimizes E.,? Since
Risassumed to be uniformly distributed, integratingover R
doesnot ater theform of the error inthe optimization. Thus,
E., consists of the sum of two terms:

K = Al// t><t dA and
sphere

L - Ll// (we x 1) - (£ x 1)) dA,
sphere

where K, I; are multiplicativefactors depending only on
Rumin @d Rpax. For angles between t,t and t, w. in the
rangeof Otor/2, K and L are monotonicfunctions. K at-
tainsits minimum whent = t and L whent | w,. Fix
the distance between t and t leading to a certain value K,
and change the position of t. I takes its minimum when
(t x t) - w. = 0, asfollowsfrom the cosine theorem. Thus
E., achieves its minimum when t lies on the great circle
passing through t and w., with the exact position depend-
ing on |w,| and the scene in view.

(c) For the genera case where no information about ro-
tation or trandation is available, we study the subspaces
where £, changes the least at its absolute minimum, i.e.,
we are again interested in the direction of the smallest sec-
ond derivative at 0. For points defined by this direction we
caculate, using Maple, t = t and w. L t.

5. What if correspondenceis not available?

The preceding sections investigated the differences be-
tween camera-type eyes (restricted field of view) and spher-
ical eyes (full field of view) with regard to 3D motion es-
timation, when an estimate of correspondence or flow was
available. One may wonder how this comparative analysis
becomes when correspondence is not available, but all we
have at our disposdl isthe normal flow. This caseis harder
to analyze and we provide here results from proofs that ap-
peared recently [6, 7].

If normal flow is given, the only available constraint is
scalar equation (2), along with the inequaity Z > 0 which
dtates that since the surface in view isin front of the eye its
depth must be positive. Substituting (4) into (2) and solving
for the estimated depth 7 or range R, we obtain for agiven
estimate t, w at each point r:

utr(f) ‘n

(T —upor(@)) ' n’

Z(orR) = (5

Substituting into (5) the value of r from (4) gives
utr(f) ‘n

( i (t)

Z(Or R)
with w, = w — w. This equation shows that for every n
and r arange of valuesfor 7 (or R) is obtained which re-
sult in negative estimates of 7 (or R). Thus for each direc-
tionn, consideringall image pointsr, we obtainavolumein
space corresponding to negative depth estimates. The sum
of all these volumes for dl directionsis termed the “nega
tive depth” volume, and calculating 3D motion in this case
amounts to minimizing this volume. Minimization of this
volume provides conditionsfor the errorsin the motion pa-
rameters.

Applying this analysis to the plane and the sphere pro-

videsresultsthat are shownin Table 1 d ongwith asummary
of the epipolar minimization case.

Z(orR) =

— urot(we)) -n

6. Eyesfrom eyes

The preceding results demonstrate the advantages of
spherical eyes for the process of 3D motion estimation. Ta
ble 1 liststhe eight out of ten cases which lead to clearly de-
fined error configurations. It shows that 3D motion can be



Table 1. Summary of results
Spherical Eye

Camera-type Eye

Epipolar minimization, given op-
tic flow

(@) Given atrandationd error t., the
rotational error w, = 0.

(b) Without any prior information,
te=0andw, L t.

(@ For a fixed trandationa error
(zo.,v0.), the rotationa error
(e, Be, ve) isof theform v, = 0,
ac/Be = =0, /Yo,

(b) Without any a priori information
about the motion, the errors satisfy
Ye = 0, 0‘6/66 = _Ioe/yoe'
zo/Yo = zo, /0.

Minimization of negative depth
volume, given normal flow

(@) Given a rotationa error w., the
trandationa error t. = 0.

(@) Given a rotationa error, the
trandationa error is of the form

—x0, /Yo, = ae/Pe

(b) Without any prior information,

te=0andw, L t.

(b) Without any error information, the
erors satisfy v, = 0, a./B. =
—o,/Yo., To/Yo = Zo. /Yo,

estimated more accurately with spherical eyes. Depending
on the estimation procedure used—and systems might use
different procedures for different tasks—either the tranda
tion or the rotation can be estimated very accurately. For
planar eyes, thisis not the case, as for all possible proce-
dures there exists confusion between the trand ation and ro-
tation. The error configurations also alow systems within-
ertial sensorsto use more efficient estimation procedures. If
a system utilizes a gyrosensor which provides an approxi-
mate estimate of its rotation, it can employ a simple algo-
rithmbased onthe negative depth constraint for only tranda-
tional motionfieldsto deriveitstrandation and obtainavery
accurate estimate. Such agorithms are much easier to im-
plement than a gorithms designed for completely unknown
rigid motions, as they amount to searches in 2D as opposed
to 5D spaces [5]. Similarly, there exist computational ad-
vantagesfor systemswith trandational inertial sensorsin es-
timating the remaining unknown rotation.

Sinceit turns out that spherical eyes such as the ones of
insects, or, in genera, panoramic vision provides much bet-
ter capability for 3D motion estimation, and since our prob-
lem of building accurate space and action descriptions de-
pends on accurate 3D motion computation, it makes sense
to reconsider what the eye for our problem should be. There
are afew waysto create panoramic vision cameras, and the
recent literatureisrichin aternative approaches, but thereis
away to take advantage of both the panoramic vision of fly-
ing systems and the high resolution vision of primates. An
eye like the one in Figure 5, assembled from a few video

cameras arranged on the surface of asphere,® can easily es-
timate 3D motion since, whileit ismoving, it issampling a
spherical motion field!

Figure 5. A compound-like eye composed of
conventional video cameras.

An eye like the one in Figure 5 not only has panoramic
properties, eliminating the rotation/trandation confusion,
but it has the unexpected benefit of making it easy to esti-

3Like a compound eye with video cameras replacing ommatidia



mate image motion with high accuracy. Any two cameras
with overlapping fields of view also provide high-resolution
stereo vision, and this collection of stereo systems makes it
possibleto locate alarge number of depth discontinuities. It
iswell known that, given scene discontinuities, image mo-
tion can be estimated very accurately. Asaconsequence, the
eye in Figure 5 is very well suited to developing accurate
models of the world.

There is a very large number of ways in which one can
utilize multiple videos like the ones captured by the cam-
eras of the sensor in Figure 5 for recovering 3D structure
and motion. The obvious ones include: (a) treat the flow
fields close to the center of each camera approximately as
parts of a spherical motion field and apply algorithms such
as those in [6]; (b) perform epipolar minimization in each
video whileenforcing the constraintsrel ating the motions of
different cameras comprising the sensor. The results of Ta-
ble1 can serve asaguidefor choosing particul ar algorithmic
procedures, e.g., should rotation or trand ation be estimated
first, or should all parameters be estimated simultaneoudly,
depending on whether epipolar or negative depth minimiza-
tionisused, depending onwhether inertial sensorsare avail-
able, etc.

Tosummarize, afull visual field provides3D motionvery
accurately, and thus very good models of the world. Exist-
ing sensors for capturing panoramic images (such as[10])
are not adequatefor thisproblem dueto low resolution. One
would need a high-resolutionspherical field of view. Asthis
is currently technologically impossible, we resort to sam-
pling the whole visual field with high resolution. See, for
example, the sensor in Figure 6 (called the Argus eye), built
inour laboratory, consisting of six cameras lookingin differ-
ent directions. If al cameras shared a common nodal point,
then the cameras would sample parts of a sphere. When
this is not true, a calibration is required.* Knowledge of
therigid transformationsrelating the difference camera co-
ordinatesystems, allows 3D motionand structureestimation
through the use of all videos.

Figure 6. The Argus eye.

A new agorithm we developed for the eye in Figure 6
is based on the analysis presented in Section 2. Recall that
when 3D motion is estimated using a common video cam-
era, the expected errors g, yo, intrandationand «., Ge, e
in rotation satisfy the orthogonality and line constraints and
the congtraint v. = 0. Consider the six videos collected as
the Argus eye moves in some space. Recall that the rota-
tional velocity isthe same for al cameras (only the tranda-
tion differs). The agorithm proceeds by finding al motion
parameters in each video and keeping only the value of ~.

4Dueto lack of space, we do not describe the calibration step.

Thus we have the projection of the rotationa vector on the
optical axis of each camera. From this, therotation is com-
puted and subsequently estimation of thetrandationis easy.
Using the estimated 3D motion the shape of the scene can be
estimated. Remarkabl e resultsare obtained and described in
[REF].
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