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Abstract—We explore new approaches to pose estimation of
articulated objects based on chromo-coded lenticular whose color
depends on the angle from which they are viewed. We solve
the self-calibration problem for a collection of chromo-coding
lenticular markers. This is a version of the Structure From
Motion problem where the points are made from a lenticular
material whose apparent color constrains its relative rotation. We
derive geometric constraints to support calibration from markers
arbitrarily placed on a surface, and then show how they can be
used to measure the pose of a simple articulated object.

I. INTRODUCTION

Pose estimation has a key role in computer vision because it
is helpful to know where things are and how they are oriented.
Most pose estimation algorithms are based on detecting or
tracking fiducial markers with known absolute or relative 3D
positions. Solving for the position and rotation of an object
depends on sensitive calculations of the relative positions of
points, so the accuracy of pose-estimation especially for skinny
objects where the fiducial markers are nearly co-linear, is
limited by the resolution of the camera.

Recently, alternative fiducial markers have been introduced
where the observed color of the fiducial marker encodes
constraints on the rotation of the marker relative to the cam-
era [10]. This allows more flexibility in marker placement and
the ability to solve for the pose of skinny objects. However,
like all fiducial markers, it requires that the position of the
fiducial marker is known, and additionally requires that the
rotation and the relationship between color and relative angle
is also known. This creates a barrier to using chromo coding
fiducial markers.

The contribution of this paper is to derive and demonstrate
self-calibration approaches to simplify the of chromo coded
markers outside the laboratory environment. We consider a
work-flow where someone wants to use chromo-coded markers
to track an object, so they stick a collection of stickers on
the object surface and then move the object through a range
of approximately known poses. From this data, we solve a
version of the structure from motion problem that solves for
the relative position, surface normal and orientation of each
chromo-coded marker, and solve for the mapping between
their observed color and the angle from which they are viewed.
We characterize how this self-calibration depends on variation
in placing the markers and show demonstrations where it is
used to solve for simply articulated pose-estimation in AR
scenarios.

II. BACKGROUND

When observed in an image, finding points in an image that
have known 3D relationships give clean geometric constraints
that define the position and location of the object in the
scene [5]. Fiducial markers are often used to simplify the
process of finding known 3D points. The most common
fiducial markers are based on libraries including ARtoolkit [6],
ARTag [3], [4] and CALTag [1]. These create identifiable
black and white that are easy to detect and identify. The
most common approach automatically prints out a collection
of different tags on a sheet of paper; given a pattern with
multiple fiducial markers whose relative 3D coordinates are
known.

A few prior works have explicitly created fiducial markers
whose relative appearance depends on the direction from
which they are viewed. Agam fiducials [2] were the first
to create micro-textured surfaces whose facets have different
colors or intensities and inspired a collection of ways where
observed patterns code explicitly for relative orientation [14],
[16], [13], [15], [8], or color variations which encode con-
straints on rotation [7]. Constraints from such markers have
been explicitly derived for both pose-estimation [11], [9] and
camera calibration applications to augmented reality [12].

Fiducial markers are used in many ways. Our paper partic-
ularly considers the use of fiducial markers in settings where
they are placed on objects in ad-hoc configurations. This
specific problem has been considered for standard fiducial
markers for tangible interaction devices, in work which uses
structure from motion to self-calibrate the relative position of
hand-placed markers [17]. This work is a first step in the same
direction for fiducial markers whose color gives an additional
rotational constraint.

III. GEOMETRIC BACKGROUND

The geometry of chromo-coded fiducial markers was de-
rived in the context of pose-estimation [10]. We use similar
markers made from lenticular arrays, constructed so that they
appear different colors when viewed from different orien-
tations. These offer geometric constraints, as illustrated in
Figure 1. The apparent color depends on how far the viewing
direction is rotated around the axis of the cylindrical lenses of
the lenticular array. Thus, when a marker is observed in a given
color, the viewing ray is constrained to lie in a particular plane.
For a particular hue, we define nhue as the surface normal to
the plane containing all viewing directions of that hue.



Fig. 1. (a) Lenticular arrays focus light from different directions onto strips
behind each cylindrical lens, with the right backplane pattern, the apparent
color depends on viewing direction. (b) The apparent color geometry depends
on that axis o parallel to the cylindrical lenses, the angle of the viewing
direction θ around that axis. All viewing directions in a particular plane are
the same color, and we describe the plane for a particular hue by its surface
normal nhue.

Fig. 2. Example HRFs measured on an optical turntable show a consistent
shape with a slight offset, consistent with challenges in manufacturing
chromo-coded lenticular markers.

A. Marker Model and Color-Angle Relationship

Figure 1 shows the local geometry of a chromo coded
marker made from a lenticular array. The major axis lies along
the direction of the cylinders, a minor axis is perpendicular,
and a surface normal. When viewed from a particular direction,
the viewing angle, in this coordinate system, determines the
color. We use the observed hue of the marker as more robust
measurement that a richer description of the color, encode the
relationship of the hue and viewing angle through a function
we call the hue response function (HRF). For a given viewing
direction V , we expect to observe a color whose hue is H(V ).
In addition, the hue changes only as a function of the angle
of V around the major axis of the marker, θ. Then H(V )
becomes H(θ).

While previous work calibrates every marker completely
independently [12], we find that variation between markers
(produced in the same production run) arises from slight
mismatches in the period of the back-plane texture and the
lenticular spacing. For example, on a lenticular array with 2
lenticular lenses per millimeter printed over a 10 cm patch, a
stretch of 0.1 mm in the printing would cause the color-angle

Fig. 3. A cartoon showing the baseline marker that define the origin and x-
axis of the object local coordinate system. The position and in-plane rotation
of each marker is described with (xi, yi) and βi.

relationship to vary over the 10cm patch. If that 10 cm patch
is cut into many markers, this creates a linear offset in the
HRF of one marker relative to the others.

In producing our chromo-coded markers, all circular mark-
ers are cut from a 10×10 cm lenticular card by a laser cutter.
The radius of each marker is 2 cm. At the scale of one marker,
the colors appear visually consistent, and across markers we
observe a consistent shift. Figure 2 demonstrates this shift
under laboratory conditions. Therefore, we here model the
HRF as an unknown function mapping the angle θ to a hue.
We model this function using spline fitting method and assume
it is consistent across markers except for a constant shift.

Thus, the HRF for marker i can be described as a general
function that takes a viewing direction V , computes the angle
θ of the corresponding V of that marker and then apply a
marker specific angle offset to that angle:

Hi(V ) = H(θ + offset(i)) (1)

B. Relative Marker Positions

When using several markers, it is necessary to characterize
their relative position and orientation. We use two markers to
define a coordinate system; the first marker serves as the origin
and the second marker is defined to lie at location (1,0,0). Thus
the distance between the two markers is defined as 1 unit; and
the x-axis is defined to be along the vector from the first to
the second marker. The choice of baseline markers is arbitrary
and they can be selected in any way which is convenient for
describing other markers. All other markers are defined in this
coordinate system, with the position of marker i denoted as
di = (xi, yi), shown in Figure 3.

The orientation of a marker also affects its apparent color.
We characterize the orientation of a marker as the angle its
major axis makes with the y-axis of the baseline coordinate
system; for marker i we denote this as βi.



C. Relative Pose of Camera and Object

In a given frame, the appearance of the markers depends
on their orientation, and the parameters of the camera that
take a picture. We assume the camera calibration matrix K is
known, so the parameters that vary from frame to frame are
the rotation matrix R and the translation matrix T that relate
the coordinate system of the camera to the coordinate system
of the object.

Based on a pinhole camera model, an image pixel p views
the world along ray K−1p. If this pixel is viewing fiducial
marker i, then to determine the color we need to express
this viewing ray in the coordinate system of marker i, which
requires rotating the ray into the coordinate system of the
marker. That marker is rotated relative to the object coordinate
system by an angle βi and the object coordinate system is
rotated relative to the camera by a rotation R0, leading to
an overall rotation as Ri = R0Rz(βi), where Rz(βi) is the
rotation matrix characterizing a rotation around the z-axis by
an angle βi. This leads to the complete mapping of the pixel
of the center of marker i, pi, into a viewing direction as:

V i = Ri
′K−1pi (2)

In later sections we use these geometric constraints to solve
for the camera pose based on multiple frames of video. In
these cases, the geometric constraints are indexed by the frame
number f , as:

V f
i = Rf

i

′
K−1pfi , (3)

which captures the fact that a fiducial marker might be
observed at a different location at each frame pfi because the
object may have a different rotation at each frame Rf

i , but the
camera calibration K and the rotation of the marker relative
to the object coordinate system βi remains consistent.

IV. OPTIMIZING FOR MARKER SELF-CALIBRATION

Based on multiple viewpoints of a set of chromo-coded
markers, we optimize for positions, orientations and color-
responses of all markers. The input data is derived from each
image (indexed by f ) and for each marker (indexed by i), and
we describe the position on the image where the marker was
observed as pfi and the hue of that marker in that frame as
hfi .

Our goal is to solve for the relative positions and orien-
tations of each marker on the object (the di and βi), the
fitting function of the HRF for all markers and the offset that
characterizes the color-response of each specific marker. As
a side effect, we also optimize of the rotation Rf and the
translation T f that characterize the relative position of the
camera to the object plane in each frame f . The constraints on
these parameters can be broken into several forms; constraints
based on the measured hue of the markers, constraints on the
measured image position of the markers and constraints on
the consistency of the HRF model. This section presents a
collection of constraints, the full algorithms that uses these

constraints to optimize over all unknowns is presented in the
next section.

A. Constraints on rotation from hue

The observed color of a fiducial marker depends on the
angle from which it is viewed, through the constraint defined in
Equation 3. We define a constraint that compares the predicted
hue value for a given estimate (of the rotations, the marker
orientations, and the HRF parameters) as:

Ehue =
∑
i,f

‖H(V f
i )− hfi ‖∗ (4)

Hue values are between 0 and 1, with both 0 and 1 representing
a hue of red, so we define the norm (‖a− b‖∗) as min(|a−
b|, 1− |a− b|) to reflect that a hue very close to 0 is close to
a hue very close to 1.

B. Constraints on rotation from nhue

A complement to hue constraints is the constraints on the
nhue as shown in Figure 1. If the pose of marker i is correct,
nhuei should be perpindicular to the corresponding viewing
direction V i. Therefore the magnitude of the dot product
between nf

huei
and V f

i should be zero. For a given viewing
direction V f

i derived from estimates of the rotation, the marker
orientations, and the HRF parameters, gives an error term as:

Enhue
=

∑
i,f

|nf
huei
· V f

i | (5)

C. Constraints from observed marker location

Standard fiducial markers define constraints based on their
position. The prediction position of a marker depends on
the camera calibration, rotation, translation, and the position
of the marker in the object coordinate system. Given these
parameters, we can predict the position of marker i in frame
f as:

pfi = K(Rfdi + T f ),

and use this to define a re-projection error. This is summed
over all points in all frames:

Epts =
∑
i,f

|pfi
′
− pfi | (6)

where pfi
′

is the measured pixel coordinate of the centroid of
marker i in frame f .

D. Relative Weighting

These three errors functions have different scales, Ehue

and Enhue
range between 0 and 1, and Epts is a potentially

arbitrarily large pixel-coordinate difference. Near optimal so-
lutions, we found the average error the hue for each marker in
each frame is 0.02, the average dot error for each marker in
each frame is 0.02 and the center points reprojection error
for each marker in each frame is approximately 1 pixels.
Therefore, in all subsequent work we add multiply the error



in Epts by 0.02 so that all terms are approximately equally
weighted.

V. OPTIMIZATION ALGORITHM

Given a collection of F images of k markers, we seek
to optimize for all the parameters that specify the marker
positions and orientation. We will use the error functions from
the previous section with the following initialization:
• β = β1 . . . βk, the orientations of each marker, are

initialized as an alternating series of 0, 90, . . . and users
are asked to place markers with orientations that are
approximately consistent with this.

• D = d3 . . .dk, the positions of k markers (d1 and d2
define the origin and the x-axis so they have no free
parameters). Initial estimates of d3 . . .dk are computing
by choosing one calibration image at random, assuming
the object is fronto-parallel, and applying the similarity
transform so that d1 is at the origin and d2 has coordi-
nates (1,0).

• off = offset(1), . . . offset(k), the offsets of the HRF for
each marker are all initialized to be 0.

• R = R1, . . . Rt, the rotation parameters for each frame
are initialized so that the orientation of the object coor-
dinate system is always fronto-parallel.

• T = T1, . . . Tt, the translation parameters for each frame
are initialized so that the object is assumed to be 10 unit
from the camera (where the unit is defined by the distance
between the two baseline markers).

• H(θ) is the spline function handle of the HRF function
optimized after each iteration.

Given this initialization, we perform several steps of alter-
nating non-linear optimization, with 3 different error functions.

1) Hue error iteration
a) Fix R,β,D, H(θ), off and optimize T to minimize
Epts

b) Fix H(θ), off and optimize R, β,D,T to minimize
Ehue + Epts.

c) Fix R,β,D,T and optimize H(θ), off to minimize
the sum of Ehue

2) Dot error iteration
a) Fix R,β,D, H(θ), off and optimize T to minimize
Epts

b) Fix H(θ), off and optimize R, β,D,T to minimize
Enhue

+ Epts.
c) Fix R,β,D,T and optimize H(θ), off to minimize

the sum of Ehue

3) Cross iteration
a) Fix R,β,D, H(θ), off and optimize T to minimize
Epts

b) Fix H(θ), off and optimize R, β,D,T to minimize
Ehue + Epts.

c) Fix H(θ), off and optimize R, β,D,T to minimize
Enhue

+ Epts.
d) Fix R,β,D,T and optimize H(θ), off to minimize

the sum of Ehue

This somewhat complicated optimization process is mo-
tivated as follows. The relationship between hue and angle
is complicated because the same hue is visible at multiple
angle. The first alternating minimization step uses Ehue which
defines an error over the observed color, and is therefore
robust to initializations that may be far from the correct
rotation or marker orientation. The second optimization uses
Enhue

because this gives a direct angular constraint. The third
optimization is one that we discovered empirically to further
refine the results. In all following tests, we apply each of these
three iteration methods 5 times.

VI. EXPERIMENTAL RESULTS

We show three experiments with a real world implemen-
tation of the color coded lenticular markers. The first uses
a marker configuration shown in Figure 4, which includes
a checkerboard to allow standard pose estimation tools to
provide an alternative estimate of the pose. The second and
third use a hinge and a hinged ruler to explore articulation of
points within a plane and rotating out of the plane.

A. Rigid Configuration Experiment

The first experiment is a controlled scenario that includes
a checkerboard to enable comparison to standard approaches
for pose estimation. The experiment captures 50 images of
the object with 4 fiducial markers (and the checkerboard
which is not used on our algorithm), as the object is rotation
through approximately -60 to 60 degrees around the vertical
axis. All variables are initialized and the optimization is
run as described in the last section. Figure 4 shows results
highlighting the convergence of the HRF (the mapping from
color to angle), the improvements in estimating the rotation
of the object and the improvements in the estimation of the
marker locations visible in the improved reprojection errors.

In this controlled case, we also test the robustness of the
calibration algorithm, to explore sensitivity to the initialization.
We explore the sensitivity to whether the marker orientations
are orthogonal with each other, and whether the images of the
object are sampled smoothly over the different possible object
orientations. The proposed end-user calibration is as follows:

While taking a video with the camera, users should rotate
the object approximately around the y-axis with approximately
equal rotational velocity, with a range of approximately -60 to
60 degrees. Then they should rotation around the x-axis over
the same range. This data acquisition protocol offers simple
initialization for the rotation estimates.

In the robustness test, we consider reasonable affordances in
how carefully a user might follow directions. First, instead of
rotating the object from -60 to 60 degrees, they might rotate
through a different angle. Figure 5 shows the average error
in estimating object rotation for initial guesses that the object
was rotation by plus/mines 50 60 70 80 degrees, and the figure
shows minimal effects on the outcome.

Next, we simulate the error occur when user rotate the object
around something other than the vertical axis. Using an initial
condition where the rotation axis was wrong by an error δax



Fig. 4. Top row: the marker configuration for the rigid test. The middle 2 rows
show the refinement of the hue-response function after 1, 3, 5, 15 iterations.
Red points have locations that depend on their angle as measured by the
checkerboard (x) and their measured hue (y). The bottom left figure shows
the angular error in estimating the surface normal as a function of iteration.
The x-axis labels highlight that the ”Hue” error iterations was done first for
5 iterations, then the ”Dot” error iterations then the ”Cross” error iterations.
The bottom right figure shows the points reprojection error of each marker in
each frame.

that differs from the y-axis by plus/mines 5 10 15 20 degrees
has some effect, but overall errors remain less than 2 degrees.

Finally, when the user place the markers in an orientation
they may not place it exactly parallel or orthogonal to the
original marker. We add ±5 and ±10 degree error on the
orientation initial guess, and highlight in Figure 5 that this
has very minimal effects.

B. In Plane Articulation

In the second experiment we explore the effect of different
marker locations and configurations. To do this, we attach 4
markers to an adjustable ruler, which can rotate in plane, as
shown in Figure 6. When articulating, the top two markers
rotate relative to the bottom two, and the ruler markings allows
us to understand the relative rotation.

Keeping the ruler closed in a rigid configuration, we run the
user-enabled calibration, rotating the ruler around the x-axis
and y-axis from around 60 degrees to -60 degrees by hand.

Fig. 5. Top left figure: the final normal error of all calibration frames with
rotation angle around the y-axis/x-axis from -50 to 50, -60 to 60, -70 to 70,
-80 to 80. Top right figure: the final normal error of all calibration frames with
error δax in the rotation initial condition. The bottom figure shows the final
normal error of all calibration frames with error in orientation angle initial
condition

Fig. 6. Top row: an image of an articulated compas ruler and a cartoon
of the approximate marker coordinates. Middle row: the reprojection error
and normal error after each optimization iteration. The bottom left shows the
calibrated HRF. The bottom right figure shows the rotation estimation error
of object plane with single image after HRF and calibration

Figure 6 shows the error in the estimated rotation, highlighting
that the rotational estimate is good across a large variety of
poses.

The calibration step gives estimates for
H(θ), off,R,β,D,T . We then explore the ability to
measure the articulation. By construction marker 1, 2 move
in a rigid configuration, marker 3, 4 move in another rigid



Fig. 7. The top left figure shows the articulated ruler in another configuration.
The top right shows the error for rotation estimation as a function of the true
orientation. The bottom shows the estimates of the articulation angle Ω across
all directions (which should be constant at 0, 5, 10, 15, 20 degrees).

configuration, but two different configurations are connected
through a pivot forcing an in-plane rotation. It only needs
one new parameter, the opening angle Ω, to describe the new
configuration.

We solve for R, T,Ω using the cross-iteration method. We
use the same experimental setup as the previous experiment,
where the rulers are set to a fixed angle, held against a wall and
a camera observes them from different angles. We spread the
ruler apart in increments of 5 degrees from 0 to 20. Figure 7
shows the computed joint angle as a function of angle from
which the rulers are observed (on the x-axis) and the degrees
of articulation.

C. Hinge structure test

The third experiment is to do pose estimation with markers
on a hinge structure, an initial exploration to estimate pose
of a non-planar object. We put marker 1, 2 in a rigid plane,
marker 3, 4 move in another rigid plane. These two planes can
have a hinge angle α shown in Figure 8.

First, we keep the hinge structure planar and calibrate
H(θ), off,β,D. Then, we change α with 0, 15 and 30 degree,
and rotate the structure around the y-axis from -60 to 60 degree
with 10 degree increment. In each frame we solve for R,T , α
during the single image pose estimation.

VII. DISCUSSION

We offer an initial exploration of algorithms to self-calibrate
a collection of chromo-coded fiducial markers. These markers
offer an additional geometric constraint beyond the position
where they are seen, because their color depends on their angle
of view. Challenges in manufacturing chromo-coded markers
require them to be individually calibrated, but we found that
a simple offset sufficed to capture changes from one marker
to the next. With this calibration the additional constraint
that comes from color makes it possible to design simple
algorithms to self-calibrate the relative position of multiple

Fig. 8. Top row: the layout and marker’s local configuration. The middle left
figure is the calibrated HRF. The middle right figure is normal error of the
rotation estimation with hinge angle 0, 15, 30 degree. The bottom figure is
the α estimation in different pose

markers, and to use them for pose-estimation of single rigid
objects, or articulated objects that have multiple rigid parts.
Included in the supplemental video is an example of this
articulated pose estimation on a longer video; some frames
of this video are shown in Figure 9.
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