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Abstract

We characterize a class of videos consisting of very small
but potentially complicated motions. We find that in these
scenes, linear appearance variations have a direct relation-
ship to scene motions. We show how to interpret appear-
ance variations captured through a PCA decomposition of
the image set as a scene-specific non-parametric motion
basis. We propose fast, robust tools for dense flow esti-
mates that are effective in scenes with small motions and
potentially large image noise. We show example results in a
variety of applications, including motion segmentation and
long-term point tracking.

1. Introduction

This paper is about understanding and parameterizing
motion in a class of videos that can fairly be described as
very boring—long videos of scenes with changes due to
very small motions. This includes video captured by a cam-
era observing the breathing of someone asleep, watching
trees wave gently in the wind, or observing a car engine as
it vibrates when it starts, and also includes video from cam-
eras whose viewpoint jitters because they are handheld or
mounted on a shaky support. Within this class of videos,
there are a wide variety of problem domains that require
understanding and segmenting motions within the scene.

One natural intermediate representation to support these
applications is the dense motion field between all frames in
the video sequence. The traditional approach to solving for
a dense motion field is to combine independent frame-to-
frame flow estimates. This approach does not take advan-
tage of the similarities between all frames, and is therefore
needlessly slow. In addition, as we will show, it does not
always give the best result.

Thus, this paper offers a fast and robust algorithm for
computing dense motion estimates within this class of
videos, where the motions are very small and perhaps are
repeated (periodically or not) over time. The approach is
based upon computing the PCA decomposition of the set
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Figure 1. (top) A single frame extracted from a one minute video,
which was downloaded from Vimeo [1], of gently waving trees.
(middle) The first component of the PCA decomposition of the
video shows characteristic patterns found in the PCA components
of images of moving textures. In such scenes, PCA often fails
to provide high quality image reconstructions; despite this, it still
encodes the motion in the scene. (bottom) Using multiple PCA
components—and interpreting them in terms of observed scene
motion—enables an efficient method for segmenting a scene into
locations of coherent motion, among other applications.

of images within the video. The PCA decomposition cre-
ates component images that approximately span the space
of image variation—when this variation is caused by small
motions, the component images are often similar to local,
directional derivative filters. As one example, Figure 1 (top)
shows one frame of a video of trees, and the first princi-
ple component image of the PCA decomposition. We show
how a small set of such component images can be quickly
translated into motion components, so that linear combina-
tions of these motion components span the space of dense



motion fields. Figure 1 shows a false color image created by
simply combining three of these motion components, high-
lighting the ability of this method to capture and segment
complicated spatial patterns of coherent motion.

There are many advantages to exploiting the link be-
tween PCA and motions within a scene. First, there exist
fast incremental algorithms for computing the PCA decom-
position of video sequences [4], much faster than modern
frame-to-frame dense optic flow methods. Second, the PCA
decomposition focuses on correlated image variation and
naturally suppresses many common forms of imaging noise.
Third, since the PCA decomposition summarizes the varia-
tions in all of the images within the scene, extracting motion
components from this decomposition simultaneously solves
for the relative motion between all images in the video.

Our specific contributions are (a) characterizing the
types of videos and motions for which there is a simple re-
lationship between the motions in the scene and the PCA
decomposition of the image set, (b) the derivation of an al-
gorithm to compute dense optic flow estimates between all
images in videos that fit within this category, (c) the use of
the concise motion description captured within the motion
components and coefficients to provide new tools for mo-
tion segmentation, and (d) example results on a wide variety
of scenes.

1.1. Background and Related Work

When parameterizing variation in a set of images, it is
common to decompose the sources of variation into two
terms, isolating appearance and motion

Li(p) = A(W(p, 0:)) )]

where A(p) represents the static appearance (texture) of
each point p in the scene and the motion of the tex-
ture is represented by a warp function Wi(p,0;) =
(Wi (p, 0;), Wy(p,0;)), which transforms a point p based
on parameters 6;.

This general formulation encompasses a broad array of
different models, and solving for various A and W and their
corresponding parameters is a long-standing and important
problem in computer vision.

Linear models that focus on appearance variations (as-
suming the warp W is the identity) have been extensively
used for face recognition [20] or to model lighting varia-
tions in indoor and outdoor scenes [19, 12, 10]. In addition,
there is significant work in modeling the dynamics of ap-
pearance change in scenes with regular variations [17], such
as fixed camera shots of waves, vegetation in the wind, esca-
lators and smoke. These dynamic texture models have been
extended to segment scenes into multi-layered textures [6],
and dynamic textures have also been used for background
models [23].

The appearance and warp terms are inherently depen-
dent; this forms the basis for the work on active appear-
ance models [7], which creates piecewise linear models of
the warp and the texture variation within small image re-
gions. Explicitly considering the dependence between ap-
pearance variation and planar models of the warping func-
tion is used to accelerate the inverse compositional variant
of Lucas-Kanade tracking [2]. Manifold Pursuit [16] aug-
ments the image appearance vector with image derivatives
in order to automatically account for small image transla-
tions or warps.

For videos that contain both appearance and motion vari-
ations within the scene (e.g. panning over a field of wav-
ing flowers), the image alignment problem has been solved
by finding the parametric image transforms that minimize
the covariance matrix of the best auto-regressive model im-
puted by the resulting alignment [8], or using the linear dy-
namical system to predict pixel image intensities and us-
ing those predictions within a brightness constancy assump-
tion [22]. It has also been noted that when the camera pan is
small, there are PCA components that are similar to deriva-
tive images, and the corresponding PCA coefficient trajec-
tory is non-periodic and seems to correlate with camera mo-
tion [8]. This property has also been used on PCA decom-
positions of small video blocks in order to distinguish dra-
matic noise from consistent motion [21]. For static cameras
that see many different translations within the scene, a lay-
ered model of warps has recently shown an impressive abil-
ity to model background variations and give useful results
on very complicated, real-world scenes such as background
subtraction for outdoor bird feeders [13].

Thus, the previous work mostly learns linear models of
the appearance variation that are tuned to a particular data
set but capture motion models that follow some global para-
metric form (perhaps with piecewise components). One
previous paper that seeks to explicitly create non-parametric
models of common flow within a scene is Black et. al. [3],
who show that PCA on already existing motion fields pro-
vides robust means of solving for motion fields for new im-
ages of the same scene. They use optical flow to initialize
their results and then compute the PCA decomposition of
the resulting flow fields. In contrast, we compute the PCA
decomposition of the original image data, then show how
to interpret the resulting components and coefficients as a
model of the motion fields within the scene.

2. Non-Parametric Motion Components

In this work we assume that A is fixed, and explore how
image motion fields can be modeled with a low dimensional
linear subspace, which we refer to as principal motion com-
ponents.

With such a model, the warp function W(p,0) =
(W (p,0), Wy(p,8)) describes the displacement of each



pixel p in terms of £ motion components as follows:

pe+ Mo(p) "0 2)
py + My(p)' 0 3)

Wx(p, 9)
Wy(p, 9)

where M, (p) and M, (p) define the k-dimensional basis of
possible x and y displacements at each pixel.

Because the displacement at each pixel is not required to
be continuous with respect to p, these components can rep-
resent motion that cannot be described with affine or pro-
jective transformations. While this flexibility can also make
it difficult to estimate the terms of such a model, since the
number of parameters for each basis is twice the number of
pixels, it also makes it possible to capture complex scene-
specific motion models.

However, under certain conditions, the motion compo-
nents M are linearly related to the subspace (of image
space) spanned by the image set, and we can exploit this
to recover a parameterization of motion. In the following
section, we formalize this relationship and derive a method
for globally estimating the underlying motion model for a
set of images using the PCA decomposition.

3. Estimating Principal Motion Components

When object motion is the dominant cause of change in
a scene, a PCA decomposition of the video will yield a low-
dimensional linear representation of the appearance change
caused by that motion. Although this is explicitly a repre-
sentation of the variation in image intensity, the PCA com-
ponents and coefficients are implicitly encoding the posi-
tion of objects as well. In this section, we show how a PCA
decomposition of the images, which is typically considered
an appearance representation, can be reinterpreted to ex-
plicitly model the positions of the objects in a scene.

We present two approaches that use the PCA decompo-
sition to estimate a principal component basis, and thereby,
a dense motion field. The first method uses PCA coefficient
trajectories as a proxy for the motion parameters and solves
for the motion components M, and M, that best explain
the image set variations. The second method directly rea-
sons about the PCA component images, taking advantage
of the observation that the PCA components of translating
texture are often similar to image derivatives.

Before we begin describing our algorithms we briefly
discuss the properties of PCA when applied to moving tex-
tures. We highlight how these properties are useful for mo-
tion estimation.

3.1. PCA Decomposition of Moving Textures

The PCA decomposition of a video with small motions
is related to the motion in the scene; in this section we ex-
plore the relationship. Assume we are given a set of images
I={I,...,1I,} formed by taking a constant appearance
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Figure 2. A synthetic example to validate the approach given in
Section 3. (a) The appearance A of a synthetic sequence of im-
ages. (b) The first two principal components from the appearance
variations. Because the motions in the video are small, these com-
ponents are locally similar to derivatives of the appearance image.
(c) The motion fields solved from the first two principal compo-
nents. (d) The ground-truth warp field at ¢ = 34. (e) The recovered
warp. Notice that the recovered warp differs from the ground truth
only in terms of scale, due to the different scale in warp coeffi-
cients 6.

(texture) A(p) and warping it by W (p, 6;). If the magnitude
of the warp is small, then I will span a low-dimensional lin-
ear subspace. Applying PCA to the set of images yields an
orthogonal basis U and a set of coefficients {v1,...,v,}
for each image; furthermore, these are both related to scene
motion.

As a real-world example consider the live stream [15]
of two cute puppies, sleeping peacefully, in Figure 3. The
PCA decomposition (both the components and the coeffi-
cients) of this scene are related to the subtle motions due to
breathing and ear twitching. This highlights that the PCA is
able to extract subtle, motion-related features of the scene.

For the class of linear warp functions W(p,0;) =
M (p)T6; estimating the motion parameters 0; is straight-
forward; they can be recovered from I (with possible per-
mutation/rescaling) by first solving for the linear subspace
spanned by I and then projecting each image I; onto the
basis. And, to the extent that the linear subspace has been
recovered correctly, there exists a motion basis M such that
W(p,6;) = M(p)T6; = M(p)Tv;. In other words, if the
magnitude of the underlying warp is small (which is the
case with subtle motions), then the warp can be expressed
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Figure 3. (left) A frame from a video of two shiba inus sleeping. (top right) The first two PCA coefficients through time. The images
corresponding to the blue and red dots are shown in the two rows underneath. The first row is zoomed in on the blue rectangle, and the
second row is zoomed in on the red rectangle. This shows that under subtle movements, PCA components code for motion.

as a linear combination of an unknown motion basis M and
the coefficients v; from the original PCA decomposition.
We validate this result in Figure 2 by creating a synthetic
image set generated from a known A and W, and recover-
ing W from the resulting image set.

In the following section, we show how these motion-
related features can be used to solve for motion components
that enable direct reasoning about the motion of objects.

3.2. Estimating a Motion Model from PCA Coeffi-
cients

In this section, we show how to use the PCA coefficients
v to recover the motion basis M of a linear warp function W
from a set of images I. Our basic assumption (from Equa-
tion 1) is that each image is some arbitrary warp of a basic
texture A, so that I;,(p) = A(W(p,v;)). Alternatively, we
can approximately reconstruct the static texture from any
specific image by applying the inverse image warp, so that
for any i, A(p) = L,(W~"(p, v:)).

This lets us factor out the appearance term to re-
late specific images, for example: I;(W~1(p,v;)) =
Liy1(W=Y(p,vit1)), and we can directly express one im-
age in terms of the previous image as:

LW (W (p,vis1),vi)) = Liza(p). 4

If the warp function W is linear then the composition of
the two warps above is additive, we can simplify the ap-
proximate equality in Equation 4 to

L;(W(p, Av;), i) = Ly 1(p) (5)

where AUZ‘ = Vj+1 — V.
This allows us to write the relationship between the tem-
poral difference image and the warp at frame :

LW (p, Avy),i) — L;(p) = Iipa — I; = I (p)  (6)

Replacing W with the linear model defined in Equa-
tions 2 and 3, and using the first order Taylor series to re-
late image warps to image derivatives, we can approximate
Equation 6 as:

I (p) Mo (p) " Av; + IY (p) My (p) " Av; = I () (7)

where I%, IV, and I denote the spatio-temporal derivatives
of I.

Notice that this takes the form of the classical optical
flow constraint, where the flow terms are replaced with the
product of the known difference of PCA coefficients Aw;
and an unknown motion basis M. Following the Horn-
Schunck formulation [11], we add a spatial smoothness
constraint on the flow, yielding the following pair of equa-
tions:

(IF (p)? + o) Av," My (p) + IF (p)I} (p) Av My (p)
= o?Av/ M, (p) — IF (p)I} (p) (8)

IF () I} (p)Av My (p) + (I} (p)* + o®) Av; M, (p)
= o’ Ao My(p) - IY (D)L} (p) ()

where the parameter « is a spatial regularization constant,
and M, (p) and M, (p) are a local average of M, and M,
in the neighborhood surrounding p.

Using this formulation, we linearly estimate the warp
function W by choosing the motion basis M (p), at each
pixel and for all images, that minimizes the least squared
error with respect to Equations 8 and 9.

3.3. Estimating a Motion Model from PCA Compo-
nents

An alternative interpretation of the PCA , we observe that
the principal components U (p) describe the partial deriva-
tives of the images with respect to v. From the standard
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Figure 4. Comparison of our optical flow estimation method to a state-of-the-art technique [18]. (a) Original pair of frames of the shiba
inus data set. (b) The optical flow computed by [18]. (c) Multiple frames of optical flow estimates from (b) projected onto a motion PCA
basis [3] (d) Our results. Notice that our result is free of artifacts, especially at the top of the frame and between the ears of the dog on the

right.

PCA reconstruction, we have that
Ii(p) = A(W(p,vi)) = U(p)vi, (10

and therefore

0

%A((W(Pa%)) ~ U(p). (11)

Replacing W with the linear model defined in Equations 2
and 3 we get

A*(p) M (p) + AY(p) M, (p) = U(p) (12)

where A” and AY are the spatial derivatives of A.

Although A(p) is an unknown, for scenes with subtle
variation the mean image, I(p) can serve as an approxima-
tion. Replacing A with I gives

I#(p) My (p) + I¥(p) M, (p) = U(p) (13)

As before, adding a spatial regularization term gives the
following system of equations from which you can solve for
M, and M, using the Horn-Schunck method:

(I*(p)? + o) My (p) + I* (p) I (p) My (p) (14)
= o’ M, (p) — I*(p)U(p)

I (p) 1Y (p) My (p) + (IY(p)* + o*) My (p) (15)
= o*My(p) — IY(p)U(p)

When [ is a good approximation of A, this approach of-
fers a simpler and more efficient way of solving for motion
components. For all experiments presented in this paper,
this method gave comparable results to the one presented in
the previous section.

4. Rapid, Dense Optical Flow Estimation

We have presented a method for solving for consistent
motion components for scenes with small, repeated mo-
tions. These motion components map the coefficients from

the appearance basis onto flow fields, thereby giving a sim-
ple method for estimating the optical flow of the entire
video. Each video frame ¢ has coefficients v; computed
from the initial solution for the PCA appearance basis.
These serve as the parameters of our warp model and the
motion components compute the displacement of this pixel
relative to a mean image as (M (p)v;, My (p)v;). In addi-
tion, if we define Awv; as the difference in the coefficients
from the previous frame, we can compute the flow of all
points p in our image at frame ¢:

Fy(p,i) = My(p)Av; (17)

Since the coefficients v; are solved globally over all frames,
the resulting frame-to-frame flow estimates are not subject
to drift.

Additionally, the motion bases give a rapid method to
generate flow fields from new images, assuming that the
new images arise from the same linear motion basis. Given
anew image I, we project I onto the basis vectors U to get
corresponding coefficients v. We can use these coefficients
in Equations 16 and 17 to get updated positions, or use Aw
to get flow. Each of these steps is a matrix multiplication
corresponding to O(k) multiplications per pixel so we can
estimate dense optical flow for new images very quickly.

S. Results and Applications

Examples of principal motion components automatically
extracted from a wide range of video data sets can be seen
in Figure 6.

5.1. Comparison to Traditional Optical Flow

We performed a qualitative comparison of our method
for computing dense optical flow with a more traditional
approach. For the traditional approach we used the high-
quality implementation provided by Sun [18]. Figure 4
shows results using this method, our method, and a hy-
brid method, similar to [3] that projects many instances of



frame-to-frame optical flow onto a common motion basis.
Notice that using PCA on frame-to-frame optical flow pre-
serves repeated artifacts caused in the individual frame esti-
mates. Our method, which uses global appearance informa-
tion from the entire sequence to solve for a PCA basis, does
not suffer from such artifacts.

5.2. Motion Segmentation

In this section, we use our motion components, M, to es-
timate pixel-wise affinities, with the goal of segmenting the
scene into regions with similar motion. We adopt the frame-
work of Brox and Malik [5], which approaches this problem
by clustering point trajectories. Like our approach, their
method uses affinity propagation to cluster pixels, but they
rely on computationally expensive and notoriously chal-
lenging point tracking to estimate affinities between points.

We efficiently compute the affinity between a pair of pix-
els p, q using the flow fields I, F,, which are defined in
Section 4 and are derived directly from our motion compo-
nents. We define an affinity that favors clusters composed
of nearby pixels with similar motion:

S(P’ Q) = exp (dz(pvq))

o2

The distance function, d, is the maximum distance between
the displaced locations of the original points p, q:

d(p, q) = maxdy(p, q) (18)

where d;(p, q) is the product of the image space distance,
lp — ¢l|, and the difference in the pixel-wise flow field,
dt(p7 Q) = H (Fw(pa t)) Fy(pv t)) - (Fw(Qa t)? Fy(Q7 t)) H

We then cluster the pixels using affinity propagation [9]
on our affinity matrix S. In our experiments, we set o to
be 0.2 of the maximum image dimension and the cluster
preference to be the median of S. Figure 5 shows an exam-
ple segmentation. This result demonstrates that using only
motion fields we can obtain high-quality motion segmenta-
tion in a challenging case without explicit point tracking.
In practice, we do not consider all pixels when performing
affinity propagation. As is common practice, we reduce the
memory requirements by first identifying a set of exemplar
pixels and clustering the exemplars. We use hierarchical
k-means to find an evenly distributed set of exemplars.

6. Conclusions

In this paper, we introduce principal motion components,
a non-parametric linear model for motion that estimates a
warp function by reinterpreting principal components of the
raw image data, which are typically used for modeling ap-
pearance variations. This model is particularly useful for
scenes that have very small but consistent motions.

Figure 5. Performing motion segmentation on the data set from
Figure 1 into 30 clusters. The full video is provided in the supple-
mental material.

Our model derives motion components directly from the
PCA decomposition, which represents the dominant varia-
tions over the entire image set. As such, our model works
well in areas where frame-to-frame differences are too diffi-
cult to track with more typical optical flow algorithms. Fur-
thermore, since flow vectors can be computed directly from
the PCA coefficient space, determining the flow of a new
image in the sequence is very fast.

Using pixel-wise affinities, we can leverage principal
motion components to segment the scene into regions with
similar motion. This is a particularly promising application,
because our method of affinity calculation does not depend
on problematic point tracking through time, and is instead
based on the principle motion components optimized glob-
ally over all frames.

Our example results show promise for analyzing video
that is very boring visually, but which captures impor-
tant variations. Finding the motions of the puppies is
a proxy for automatic breathing monitoring for babies,
and capturing vibrational patterns (as visualized in the
car engine) is an important problem in the monitoring
of manufacturing plants. We encourage the reader to
also look at our supplementary video, which gives ad-
ditional results. The supplemental video is available
athttp://research.engineering.wustl.edu/
~abramsa/projects/motionPCA/.
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Figure 6. Some example image sequences and their computed flows. For (a)-(e), we show (left) an example image, (top center) the first
two principal component images, (bottom center) their corresponding principal motion components M, and (right) the computed flow for
an image in the sequence.
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