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Abstract
Isomap is an exemplar of a set of data driven non-linear di-
mensionality reduction techniques that have shown promise
for the analysis of images and video. These methods pa-
rameterize each image as coordinates on a low-dimensional
manifold, but, unlike PCA, the low dimensional parame-
ters do not have an explicit meaning, and are not natural
projection operators between the high and low-dimensional
spaces. For the important special case of image sets of an
unknown object undergoing an unknown deformation, we
show that Isomap gives a valuable pre-processing step to
find an ordering of the images in terms of their deforma-
tion. Using the continuity of deformation implied in the
Isomap ordering allows more accurate solutions for a thin-
plate spline deformation from a specific image to all others.
This defines a mapping between the Isomap coordinates and
a specific deformation, which is extensible to give projection
functions between the image space and the Isomap space.
Applications of this technique are shown for cardiac MRI
images undergoing chest cavity deformation due to patient
breathing.

1. Introduction
Understanding non-rigid deformations remains a challeng-
ing problem in the analysis of images. In this paper, we con-
sider a special case of this problem: given many images of
an object undergoing an unknown (but small) set of defor-
mations, characterize the deformations and give each image
parameters which describe how they have been deformed.

This problem is quite common in the medical imag-
ing community, and one important application is cardiac
MR imagery. Complete low-resolution images can be cap-
tured in modern MRI machines in about 60 ms. MR im-
agery taken of the same plane varies primarily due to three
causes, deformation of the heart during the heartbeat, de-
formation of the heart due to breathing, and (potentially)
contrast agents permeating slowly through the tissues.

Common practice for diagnostic cardiac MRI is to iso-
late the effects of heartbeat by triggering the MR image cap-
ture at the same part of the heartbeat cycle, and to isolate

the effects of breathing by asking the patient to hold their
breath. This leaves images which vary only because of the
permeating contrast agent. In this paper we aim to alleviate
the necessity that the patient hold their breath, by learning a
model of the image deformation caused by breathing. This
would allow cardiac MRI to be performed on unconscious
patients unable to hold their breath.

A gated-cardiac image set consist of images taken at the
same part of the heartbeat cycle. These images, for any spe-
cific patient, fall near (but because of image noise, not ex-
actly on) a 2-D manifold within the space of images (which
has as many dimensions as the image has pixels). This man-
ifold has natural parameters, the breathing cycle and the per-
meation of the contrast agent. Our goal can be phrased as
learning a mapping between the image set and these natural
parameters, and then learning a model of the image defor-
mation caused by breathing.

Because these image sets can be parameterized by a
small number of parameters, reasoning about such image
sets is an ideal application of dimensionality reduction.
Since the manifold is not a linear subspace of the image
space (the images are not linear combinations of a small
number of basis images), linear dimensionality techniques
such as PCA and ICA fail. However, there exists a class
of techniques that attempt to discover the intrinsic low-
dimensional parameterization of a point set. Isomap [12]
is one exemplar of this class of non-linear dimensionality
reduction (NLDR) algorithms. Isomap defines a mapping:

f : I → R
k

where k is usually a small number such as 2 or 3, and is
ideally the number of free parameters that were varied in
creating the image data set. However, the meaning of these
parameters is not defined in the Isomap procedure. In this
paper we intend to approach this deficiency in Isomap for
the specific case of image deformations. That is, for the
case of images that come from a one-parameter set of defor-
mations of a single object, we seek to extend to the function
f to become:

f : I → R
k → D,

1



where the specific form of D depends on a choice of how to
represent an image deformation.

The contributions of this paper are the demonstration of
Isomap as a pre-processing tool and the intelligent selection
of distance functions that define Isomap so that it can parse
an image set and automatically parametrize each image by
its magnitude of variation due to different causes. After the
images are so parameterized, surprisingly simple and naive
approaches may suffice to capture complex non-rigid defor-
mations. Furthermore, the mapping of the Isomap param-
eterization onto a specific image deformation defines natu-
ral interpolation and projection models, lacking in classical
Isomap.

2 Isomap
Isomap was introduced as a general tool for visualizing so-
ciological data sets that may be derived from many different
sources. Applied to images, the Isomap algorithm proceeds
as follows:
Isomap: Given input images {X1, X2, . . . , Xn}

1. Compute d(i, j) = ||Xi − Xj ||2

2. Create graph G(V, E) with a node for each image, and
an edge between pairs of images whose distance is
small, and set the edge weight to that distance.

3. Compute all pairs shortest path distance on G. Let
d(i, j) be the length of the shortest path between node
i and node j. Define distance matrix D such that
D(i, j) = d(i, j)2.

4. Use MDS (defined below) to embed D into the desired
dimension.

MDS (Multi-Dimensional Scaling) Given n×n matrix D,
such that D(i,j) is the desired squared distance from point i
to point j.

1. Define τ = −HDH/2, (H is the centering matrix,
Hij = δij −

1
n

.

2. The top k eigenvectors of matrix τ are the coordinates
of the k dimensional embedding which whose pairwise
point distances best match the given distance matrix.

The threshold in step 2 of the Isomap algorithm — the
“small enough” distance — is often set so that each point
has an edge to a small number (5-10) of its closest neigh-
bors. Even more important for the case of images is the
choice of distance function. Considering images as vectors
in a high-dimensional space, the L2-norm distance squared
is equivalent to the sum of the squared pixel intensity dif-
ferences. It has been noted recently that better image dis-
tance measures often significantly improve the performance

of Isomap on image sets [9]. The next section gives a
framework for addressing what is the best distance for a
given application.

3 Paired Image Distance Measures

Recently work has shown the value of choosing appropri-
ate distance measures when using Isomap to parameterize
image data [9]. The axes used to define the coordinates in
a 2-D parameterization produced by Isomap are difficult to
automatically interpret, so instead we seek to find a pair of
distance measures matched to the causes of the image defor-
mation such that the Isomap parameterizations using each
distance measure correlates with only one of the causes of
the deformation.

More formally, consider an image set I that is param-
eterized by two parameters (b, c) (which might stand for
breathing and contrast), and suppose that I(b, c) defines the
noise-free image that would be generated for a particular
part of the breathing cycle and contrast permeation. We
would like to define a distance measures d1, d2 such that
Isomap applied to I using d1 gives a 1-D parameterization
such that image I(b, c) is mapped to the real number b, and
Isomap applied to I using d2 gives a 1-D parameterization
such that image I(b, c) is mapped to the real number c. In
addition to being as insensitive to noise as possible, this re-
quires:

• d1(I(b, c), I(b + δ, c)) = δ

• d1(I(b, c), I(b, c + ε)) = 0

• d2(I(b, c), I(b + δ, c)) = 0

• d2(I(b, c), I(b, c + ε)) = ε

That is, we require that each distance measure accurately
measure small variations in the deformation parameter it is
assigned to capture, and furthermore the distance measure
should be invariant to the image changes caused by small
changes in the other mode of deformation. Because only
nearby points are used in the Isomap procedure, it is not
required that the distance measures are globally invariant
to the other deformation. Depending upon the application,
weaker conditions may suffice, such as requiring the image
distance to be monotonic with respect to (rather than equal
to) an intrinsic parameterization of the deformation.

For the example case of a gated cardiac MRI data, there
are two causes of motion, that manifest themselves locally
as image motion and contrast change. The next section in-
troduces a pair of image measures ideally suited to parsing
the effects of these two causes.
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3.1 Gabor Filter Bank Response Distances

The best distance measures relate directly to transformation
groups that define the image change [?]. For the case of
unknown deformations, the generic class of diffeomorphic
deformations is a natural choice of transformation groups,
and measuring local motions is an effective distance mea-
sure. Since Isomap only requires that local distance be com-
puted, simple distance measure is possible.

The following defines a distance measure that uses the
response of a collection of Gabor filters to estimate motions
between images. Complex Gabor filters are applied to the
same positions in both images, and the phase difference of
the complex response is summed over all locations.
Local Image Deformation Distance

1. Given images I1, I2

2. Define G(ω,V,H,σ) to be the 2D complex Gabor filter
with frequency ω, oriented either vertically or horizon-
tally, with σ as the variance of the modulating Gaus-
sian.

3.

D(ω,σ) =
∑

x,y

Ψ(G(ω,V,σ) ⊗ I1, G(ω,V,σ) ⊗ I2)

+Ψ(G(ω,H,σ) ⊗ I1, G(ω,H,σ) ⊗ I2),

where Ψ returns the phase difference of the pair of
complex Gabor responses.

This distance function is dependent upon choices of ω,
and σ. The wavelength of the Gabor filter should be at
least twice as large as the image motion caused by small
deformations, and σ can be chosen approximately the wave-
length. The results shown in Section 5 are surprisingly ro-
bust to the choice of σ.

Because it is based on the phase of the local image struc-
ture, this image distance measure is robust to small changes
in the local contrast. Furthermore, because the Gabor filters
are computed over small region of the image, the effect of
pixel noise is minimized.

Fortuitously, the complex Gabor filter responses can also
be used to compute the second half of this pair of distance
measures.
Local Image Contrast Distance

1. Given images I1, I2

2. Define G(ω,V,H,σ) to be the 2D complex Gabor filter
with frequency ω, oriented either vertically or horizon-
tally, with σ as the variance of the modulating Gaus-
sian.

3.

D(ω,σ) =
∑

x,y

∣

∣|G(ω,V,σ) ⊗ I1| − |G(ω,V,σ) ⊗ I2|
∣

∣

+
∣

∣|G(ω,H,σ) ⊗ I1| − |G(ω,H,σ) ⊗ I2|
∣

∣ ,

where | · | returns the magnitude of a complex value.

Small motions of an image region may change the phase
a Gabor filter response, but do not affect the magnitude of
the filter response, so this second distance measure also has
the desired invariant properties. The following section dis-
cuss methods to use the Isomap parameterization of the im-
age set, and in particular give methods for the analysis of
a data set including image which have undergone an un-
known spatial deformation. The advantage given by Isomap
is that the magnitude of this deformation is known, and the
images can be re-ordered by their deformation. (The sup-
plementary material shows a video of a cardiac MRI image
set remapped to order the images by their deformation).

These results derive from a gated cardiac MRI study,
with 180 images taken from an unknown part of the pa-
tient’s breathing cycle. Using this distance function in
Isomap, as described in Section 2, effectively gives a 1-D
parameterization of the image set, with the free parameter
corresponding monotonically with the breathing cycle.

4 Extracting Deformation Groups

For the class of image sets generated by multiple examples
of an object undergoing a non-rigid transform, we address
the principal shortcoming of Isomap and other non-linear
dimensionality reduction algorithms, namely the inability
to extract meaning for the low-dimensional coordinates and
perform an inverse projection from a point not in the origi-
nal set to a new point on the image manifold. By using an
appropriate distance measure, as described earlier, the im-
ages are sorted relative to their major deformation. In order
to solve for the parameters of this deformation, our method
takes the following steps:

• Select an appropriate distance measure (Sec. 3)

• Use Isomap to find an ordering for the images

• Find point correspondences between images

• Extend point correspondences into image warps
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4.1 Point Tracking
The main benefit to sorting the points relative to the de-
formation instead of using unsorted images is that point
tracking is simplified. In general, point tracking is eas-
ier if the putative corresponding points are closer together.
Naive methods such as iterative closest point matching [1]
can effectively track points through hundreds of frames.
In this work we use a simple feature tracker [8] which
makes an initial guess of point correspondences and uses
RANSAC [6] to improve the solution.

4.2 Thin Plate Splines
A thin-plate spline [2] is a two-dimensional interpolation
function whose name refers to a physical analogy involving
the bending of a thin sheet of metal [5]. Given an arbitrary
set of points in R

2 and some function f(x, y) evaluated at
those points, the thin plate minimizes what is known as the
“bending energy” function:

∫ ∫

R2

(f2
xx + 2f2

xy + f2
yy)dxdy

Thin-plate splines have been used frequently in image
analysis. This construct has been used with velocity en-
coded MR images [11], to calculate cardiac strain from MR
images [7], and analyzing bone structure on radiographs [3].

The pervasiveness of this construct in the image analysis
domain indicates that thin-plate splines provide a natural
way to move from point correspondences to entire image
warps. Let Pt(i) be the coordinate of the i-th tracked point
in frame t. The thin plate spline warping function is the
function f that minimizes the bending energy above and si-
multaneously maps all points P1(i) in the first frame exactly
onto their corresponding points Pt(i) in the t-th frame. That
is,

∀if(p1,i) = pt,i

, and for all image points (x, y) that were not tracked in the
first image, the function f maps them in such a was that
the overall mapping minimizing the distortion measured by
the bending energy. Figure 1 shows a representation of a
thin-plate spline capturing the image deformation for two
cardiac MR images. Using the image distance measure de-
scribed above, the images represented in Figures 1a and b
had a high inter-image distance. The thin-plate spline over-
layed on these images represents the deformation of one im-
age to the other. Figure 1c shows the result of transforming
the image in 2b to that in 2a.

5 Results and Summary
We applied our method to the analysis of MRI data. The
image set we used is a ”held breath” MRI of a heart. In
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Figure 1: Using thin-plate splines to model deformations.

this experimental design, the patient is asked to hold their
breath, and the MRI pulses are triggered at the same point
in consecutive heart beats until enough pulses are captured
to reconstruct an image. Each image is created in this way,
and the data set includes 180 such images from the same pa-
tient. The variation in these images has three causes. First,
the patient does not always hold their breath in exactly the
same position, so between images there is variation in the
position of the heart and liver (visible at the bottom of the
images in Figure 1). Second, the contrast agent is slowly
permeating through the tissues in view. Third, the MR im-
ages themselves have noise.

MRI data is typified by large data sets which are often
noisy. In general, we can blur consecutive images in a video
to remove image noise, however, this generally introduces
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motion blur, which is a detriment to accurate point tracking.
However, by reordering the images, the motion in between
images is generally small enough that motion blur is not
introduced. Figure 2 shows two consecutive images (after
reordering using Isomap) and the result of blurring. In the
original ordering, these are not proximal frames. In fact,
due to the effects of the contrast agent used in the proce-
dure, there is a difference in the average intensity of each
image, which can clearly be seen in Figure 2b where the
vasculature is more pronounced.

In a test to demonstrate the effectiveness of this method,
we applied our method to the entire set of 180 MR im-
ages. Using the distance measure described in Section 3
and our procedure, as outlined in Section 4, we solved for
the image deformation of each image relative to the first im-
age in dataset. Figure 3 shows the results of capturing the
unknown deformation with and without using the Isomap
sorting step. In this experiment, point correspondences and
image warps (to a reference frame) were applied to the set
using the original ordering and the ordering obtained by
Isomap sorting. Mutual Information was used to calculate
how similar the warp frames were to the reference frame.
Mutual Information [4, 13, 14] is a widely-used metric in
medical image registration. [10]
Conclusions. This paper has illustrated the use of Isomap
as a pre-processor for the analysis of deformable image sets
where the deformation is unknown. The primary contribu-
tion was the introduction of pairs of image distances that
made it possible to separate the effects of different causes
of image variation. This allows the images to be parameter-
ized by their unknown deformation, which facilitates sev-
eral parts of the process of modeling the deformation, in-
cluding image de-noising to make it easier to find and define
feature points, and image re-ordering, so that feature points
remain nearby in neighboring image. The general technique
of combining non-linear dimensionality reduction with rep-
resentations of image deformation provide the beginnings
of a framework for the model-free understanding of non-
rigid motions.
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