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ABSTRACT
There are thousands of outdoor webcams which offer live
images freely over the Internet. We report on methods for
discovering and organizing this already existing and mas-
sively distributed global sensor, and argue that it provides
an interesting alternative to satellite imagery for global-scale
remote sensing applications. In particular, we characterize
the live imaging capabilities that are freely available as of
the summer of 2009 in terms of the spatial distribution of
the cameras, their update rate, and characteristics of the
scene in view. We offer algorithms that exploit the fact that
webcams are typically static to simplify the tasks of inferring
relevant environmental and weather variables directly from
image data. Finally, we show that organizing and exploiting
the large, ad-hoc, set of cameras attached to the web can
dramatically increase the data available for studying partic-
ular problems in phenology.

Categories and Subject Descriptors
I.4.9 [Computing Methodologies]: IMAGE PROCESS-
ING AND COMPUTER VISION—Applications

General Terms
Algorithms, Measurement, Performance

Keywords
webcam, phenology, camera network, global, calibration,
metadata

1. INTRODUCTION
Many thousands of outdoor cameras are currently con-

nected to the Internet—they are placed by governments,
companies, conservation societies, national parks, universi-
ties, and private citizens. Individually, these cameras ob-
serve scenes in order to show the current traffic and weather
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Figure 1: Tens of thousands of outdoor webcams,
cameras attached to the Internet, are currently de-
livering live images from across the planet (camera
locations shown above). We argue that these images
represent an underutilized resource for monitoring
the natural world. In this work, we describe our ef-
forts to discover, organize, and use these cameras to
measure several environmental properties.

conditions, to advertise the beauty of a particular beach or
mountain, or to give a view of animal or plant life at a partic-
ular location. Collectively, however, this set of cameras has
an untapped potential to monitor global trends—changes in
weather, snow-cover, vegetation, and traffic density are all
observable in some of these cameras, and together they give
a relatively dense sampling over the US, Europe and parts
of Asia. Figure 1 shows locations of the more than 16000
webcams we have discovered that are currently giving live
images.

While cameras are used as important sensors for a wide
variety of problems including measuring plant growth, sur-
veying animal populations, monitoring surf conditions, and
security, often there are limitations due to the cost of in-
stalling and maintaining these cameras, especially in biology
and sociological research. Because the cameras discovered
within the global camera network are already installed and
being maintained, the marginal, additional cost of including
images from those cameras in a novel study lies in (a) dis-
covering cameras, (b) archiving camera images, (c) selecting
images for particular tasks, and (d) developing algorithms
specific to a task.

The contributions of this paper are tools to address each of



these problems, either by solving them, or by offering ways
to simplify them on a task-specific basis. Together, they
minimize the time/cost to make use of this webcam network.
First, we offer a characterization of the set of live images
currently available through a web URL—both our methods
of discovering the list of available webcams and a statistical
sampling of this set of images to determine where those cam-
eras are located and properties of the scene in view. Second,
we describe a set of tools that we have created to visualize
archives of images from 1000 of these webcams that we have
been capturing over the last three years. Third, we use this
data archive to demonstrate algorithms that automatically
infer weather conditions strictly from image data.

We will conclude by considering one problem in greater
depth. Phenology is the study of periodic plant and an-
imal life cycle events. For plant studies, ground cameras
are an appealing alternative to satellite-based approaches
(e.g. MODIS platform [35]) because satellite imagery is cor-
rupted by aerosols and water vapor, the effect of changes
in viewing angle on the retrieved signal, and the relatively
coarse spatial (approx. 500 meters) and temporal resolu-
tion of satellite data products. This problem is important
enough that explicit camera monitoring networks have been
deployed on a small scale [26]. In this paper we demonstrate
that with relative simple image processing, many cameras al-
ready online (e.g. traffic cameras and campus “quad-cams”),
already support this analysis. This demonstrates one exam-
ple where properly organizing the global webcam network
supports large scale environmental monitoring studies with
limited additional cost.

Our main argument is that the global webcam network
is a dramatically under-utilized resource. In Section 2 we
describe our work in discovering, understanding, and orga-
nizing this resource. Section 3 demonstrates methods to vi-
sualize long-term time-lapse data, and highlight the benefits
of camera geo-location in scene understanding. Finally, Sec-
tion 4 highlights that the global webcam network is already
able to augment or replace dedicated camera networks for
many important environmental monitoring tasks over large
spatial scales.

1.1 Related Work
To our knowledge, ours is the first work that attempts

to systematically catalog, characterize, and use the set of
all publicly available webcams. There have been limited
attempts to automatically calibrate static webcams, and
several projects which create dedicated camera networks to
monitor particular environmental features.

Static cameras.
Within the Computer Vision community, two data-sets

have grounded most work on understanding images from
static cameras. First, the“Weather and Illumination Database”
(WILD), captured images from a single, well calibrated and
controlled camera. This dataset includes simultaneous weather
measurements and was captured over the course of a year in
a dense and urban part of New York City [20]. The “Archive
of Many Outdoor Scenes” (AMOS) extended this to hun-
dreds of webcam images in a broader collection of settings,
and has gathering images since March 2006 [11].

Many algorithms have been developed to infer scene and
camera information using long sequences of images from a
fixed view. These new tools have the potential to over-

come the challenges of interpreting images from webcams
by providing accurate sensor calibration. Examples include
a methods for clustering pixels based on the surface orien-
tation [16], for factoring a scene into components based on
illumination properties [28], for obtaining the camera orien-
tation and location [13, 12, 29, 17], and for automatically
estimating the time-varying camera response function [15].

Camera Networks for Environmental Monitoring.
There is a long history of using camera networks to moni-

tor environmental changes and social behaviors. Notable ex-
amples which use large dedicated camera networks include
the Argus Imaging System [5] with 30 locations and 120 cam-
era which explicitly focuses on coastal monitoring. Cameras
within the Argus network, and similar cameras set up on
an ad-hoc basis for individual experiments have been used
to quantify density of use of beach space [18], the use of
beaches as a function of weather [14], and trends both in
beach usage and beach erosion [9]. Another large, dedicated
camera network is the Haze Cam Pollution Visibility Cam-
era Network [4]. In this case, the cameras are placed near
measurement systems for air pollution and other meteoro-
logical data, but the images are primarily used to provide
the public a visual awareness of the effects of air pollution.
To our knowledge, these cameras have not been systemati-
cally used to provide additional quantitative measurements
to augment the explicit pollution or meteorological data,
but recent work has validated that similar cameras have
high correlation with explicit measurements of atmospheric
visibility, based both on ground [34], and satellite measure-
ments [33, 32].

Additional work has focused on phenology and recent stud-
ies have shown that phenology is a robust indicator of cli-
mate change effects on natural systems; for example, earlier
budburst and flowering by plants have been documented in
response to recent warming trends. Improved monitoring of
vegetation phenology is viewed as an important, yet sim-
ple, means of documenting biological responses to a chang-
ing world [23]. New and inexpensive monitoring technolo-
gies are resulting in a dramatic shift in the way that phe-
nological data are now being collected [19], and already
several networks based around color digital imagery (e.g.
“PhenoCam” [24] and the “Phenological Eyes Network” [25])
have been established to monitor phenology at a regional
scale. Previous studies have provided solid evidence that
both qualitative and quantitative information about sea-
sonal changes in the condition and state of vegetation canopies
can be extracted from webcam images [27, 26]. Bradley et
al. demonstrate [1] that some of the necessary processing
can be performed using a web-based interface.

Recent work by Graham et al. demonstrates, similar to the
example application in Section 4.2, that a large collection
of webcams can be used to estimate temporal properties
of leaf growth on trees. Their work supports our claim of
the importance of careful sensor calibration to handle, for
example, automatic color balance compensation.

Discovering webcams.
Significant efforts to collect and annotate large numbers

of webcams has been undertaken. Notably, Google Maps
now includes a “webcam layer” that organizes live webcam
feeds from approximately 6700 webcams. Other large col-
lections of webcam URLs [31, 30, 22] have been created and



many of these cameras are geo-located. However, these col-
lections are not as spatially dense as the cameras we have
discovered (see Section 2), and to our knowledge are not yet
being used to explicitly infer geographic information or for
environmental monitoring.

2. CAMERA DISCOVERY AND CHARAC-
TERIZATION

Our overall goal is to create a comprehensive list of URLs
that point to live images captured by a webcam and then
use images from them to measure environmental properties.

Our strategy for finding URLs involves merging lists from
webcam aggregators and explicit searches for cameras in, for
example, national parks, state departments of transporta-
tion, and similar searches targeting each country around the
world. Many of the cameras we have discovered come from
web sites that contain lists of large numbers of webcams, ei-
ther cameras that they explicitly own (e.g. the Weatherbug
camera network [31]), or cameras that individuals register
to be part of a collective (e.g. the Weather Underground
webcam registry [30]). Additionally, we use a collection
of Google searches for unusual terms, such as “inurl:axis-
cgi/jpg”, that are primarily used in default webpages gener-
ated by webcams.

To date, we have found 16112 webcam URLs (including
the URLs from the AMOS dataset [11]) that give different
live images, and these URLs correspond to images with dif-
ferent sizes, refresh rates, and scenes. The remainder of this
section provides an overview of the properties of these web-
cams. We consider both low-level properties of the images,
such as file size, and high-level properties of the scene, such
as whether or not a mountain is visible.

2.1 Webcam Image Properties
We begin by describing low-level properties of individual

webcam image files and the sequence of images generated by
a webcam. Figure 2 shows the distribution of file sizes and
image dimensions that reflects the fact that most webcams
provide small, highly-compressed images. In order to under-
stand the distribution of temporal refresh rates, we estimate
the refresh rate for a set of 500 randomly selected cameras
using a standard method [3]. The distribution in Figure 2(c)
reflects the fact that many webcams are configured to cap-
ture new images every 5 minutes.

To begin to characterize statistics of the scenes viewed
by this set of cameras, we manually estimated the mini-
mum and maximum distance of objects in the scene from
the camera for a randomly chosen subset of 300 cameras.
We grouped our estimates into the following intervals: 1–10
meters, 10–100 meters, 100–1000 meters, and greater than
1000 meters. Most cameras have objects both near and far;
this is highlighted in Figure 2(d) where the cumulative dis-
tribution functions for min- and max-depth show that 80%
of the scenes have an object within 10 meters of the camera,
and only 20% of the scenes do not contain an object more
than 100 meters away.

Additionally, we manually labeled the scenes imaged by
all the cameras in the AMOS dataset and 300 randomly
sampled new cameras. We tagged each scene based on sev-
eral characteristics: if it was outdoors, if it contained a road,
trees, buildings, or substantial sky, or water (where we de-
fine ’substantial’ to mean ’at least a fifth of the picture’).
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Figure 2: (a) The distribution of image sizes mea-
sured in pixels. Each circle is centered at an image
size with area proportional to the number of cam-
eras. (b) The distribution of image sizes in kilobytes.
(c) The cumulative distribution of refresh rates of
webcams. Note the large number of cameras that
refresh every 5 minutes. (d) The cumulative den-
sity function of the minimum depth of an object in
the scene (blue line, near the top) and the maximum
depth of an object in the scene (green line, near the
bottom). Most cameras see objects both in the near
field (10m or less) and far field (at least 1 km). (e)
The cumulative distribution of localization errors of
IP-addressed based localization. The median error
is 111km.
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Figure 3: (a) A subset of webcams in AMOS dataset,
and (b) the percentage of those cameras that have
particular tags (c–e) Four random sample images
from subsets defined by the presence (absence) of a
manual metadata tag. The locations of each of these
images is presented on the map in part (a) of this
figure. (f) Global statistics of the labels.

Figure 3 shows specific examples of this labeling and gives
some global statistics. This type of manual labeling is espe-
cially helpful for selecting a subset of cameras for a particular
measurement task (see Section 3).

2.2 Camera Locations
To estimate the spatial distribution of webcams, shown in

Figure 1, we used the IPInfoDB geo-location database [8]
to obtain an approximate camera location based only on
the IP-address of the camera for a randomly selected sub-
set of 200 camera. We then manually localized these cam-
eras resulting in a set of 138 cameras for which we were
confident that our location estimate was within 100 meters
of the true location. Comparison of the IP-based estimates
with manually generated ground-truth camera locations, see
Figure 2(e), shows that there is significant error in the IP-
address based location estimates. In fact, half of the cameras
have a localization error greater than 111km. This motivates
the use of techniques that use images to estimate camera
location [13, 29]. These methods have shown significantly
lower error rates and work by reasoning about image vari-
ations caused by the motion of the sun and correlations in
local weather patterns.

Obtaining accurate location estimates for the cameras is
critical for our goal of measuring environmental properties.
Therefore, we use a combination of automatic [13] and man-
ual techniques (using webpage metadata and visual land-
marks) to determine locations for the cameras we have dis-
covered. The next section describes an additional benefit of
having accurate geo-location information.

2.3 Automatic Scene Labeling
One advantage of having an accurate location estimate for

a camera is that it facilitates integration with existing GIS
databases. This enables, for example, the rich annotations
present in these databases to be transferred to the cameras.
These annotations can determine, for example, if a camera
is in a dense urban area or farm land, or if it is more likely
viewing a road or a river.

In addition to labeling cameras, individual images can be
automatically labeled. To demonstrate this we spatially and
temporally registered sequences of webcam images to histor-
ical weather readings from the National Climatic Data Cen-
ter [21]. Figure 4 shows the type of filtering possible when
local weather readings are registered to webcam images. A
side benefit of this labeling is that it provides an interesting
additional form of context for Computer Vision algorithms,
this is an area we are leaving for future work.

We continue to work to expand our list of live webcam
URLs and integrate our images with a variety of sources of
annotation. This is done in the context of our overall goal
to use webcams to measure specific environmental proper-
ties. For a given measurement task the first step in using
the global webcam network is likely selecting a set of cam-
eras that view suitable scenes or images that have a certain
property (e.g. with low haze or with no wind). The next
section describes our work that eases this preliminary step.

3. BROWSING WEBCAMS
In working with a large archive of images from many web-

cams, we find that visualization tools are critical for debug-
ging, updating, and maintaining the capture system, as well
as for finding relevant images for particular tasks. Currently,



(a) Low cloud okta (cloudiness) (b) High cloud okta (cloudiness)

(c) Low visibility (d) High visibility

(e) Low snow depth (f) High snow depth

Figure 4: Automatic image labels can be created by spatially and temporally registering webcam images to
weather reports. Above are montages of webcam images that correspond to extreme weather readings for a
variety of weather properties.

we use a two-layer web interface; first, a page shows the cur-
rent image of every camera in the data set, or a subset based
on keyword/tag filtering as shown in Figure 3. This filter-
ing and browsing interface is important for determining how
many cameras may support a particular task, and for deter-
mining whether cameras are currently broken or not deliver-
ing images (which is common since we have no control over
the cameras, and they are supported and maintained with
varying degrees of attention). Second, each camera has a
dedicated page which includes all known meta-information
(e.g. tags, geo-location, and, if known, calibration and geo-
orientation), as well as an interface that supports searching
for a specific image from a camera.

Searching for a specific image from a camera is done using
a summary of the image appearance over the course of each
year. The first instantiation of this yearly summary is an
image indexed by time of year (on the x-axis) and time-of-
day (on the y-axis). At each pixel, this image shows the
mean color of the entire image captured at that time on
that day. Figure 5(a) shows two example cameras and the
annual summaries of those cameras for 2008. This interface
makes it very easy to see when day (gray), night (black), and
missing images (dark red) occur at a camera. For example,
the left image shows the nighttime growing shorter during
the middle of the summer. The right side of Figure 5(a)
shows the unusual circumstance of a camera for which the
night-time seems to drift throughout the year; this camera is
mounted on the bridge of a Princess Cruise Lines ship which
circumnavigated the globe in 2008.

The web interface allows the user to click a pixel on this
summary image, and shows the image taken on that day,
closest to the selected time. This gives an intuitive way to
view, for example, a large set of images taken near dawn, by
selectively clicking along the day-night interface. Addition-
ally, keyboard interfaces allow moving to the image taken
at the same time the previous day, or moving forward and
backward within a day, to give time-lapse movies at different
time resolutions.

However, the two summary visualizations shown immedi-
ately below the images in Figure 5(a) are less informative

than one would like. Since many cameras perform both con-
trast equalization and color balancing in order to give rea-
sonable pictures at all times of the day, this summary image
often shows little more than a clear indication of when day-
time is, and other changes such as shifts in camera viewpoint
or changes in scene color may not be visible.

A more abstract but informative visualization can be achieved
by performing principle component analysis (PCA) on the
set of images, which we compute incrementally using Brand’s [2]
algorithm. The set of images from a camera {I1, I2, . . . , Ik}
is approximated as the linear combination of the mean im-
age � and of three basis images {b1, b2, b3} so that for each
image i, Ii ≈ �+�i,1b1 +�i,2b2 +�i,1b3. The vector of coef-
ficients (�i,1, �i,2, �i,3) gives a compact description of image
i relative to the overall variation in images seen at that cam-
era. We normalize these coefficients and use them to define
the RGB channel of a (false-color) summary image.

This summary visualization make it simple to find if cam-
eras have captured data at relevant times of year; if they
have moved, and allow rapid navigation through the large
image dataset. The bottom of each part of Figure 5 shows
this visualization for three different cameras. In particular,
this highlights the consistency of the daily variations of the
desert scene, the inconsistency throughout the year of the
view from the cruise ship, and the slight change in view point
of the view of the golden rotunda.

4. MEASURING ENVIRONMENTAL PROP-
ERTIES

Local environmental properties often directly affect the
images we collect from the webcams; whether it is cloudy or
sunny is visible by the presence of shadows; wind speed and
direction is visible in smoke, flags, or close up views of trees;
particulate density is reflected in haziness and the color spec-
trum during sunset. We explore techniques to automatically
extract such environmental properties from long sequence of
webcam images. This allows the webcams already installed
across the earth to act as generic sensors to improve our
understanding of local weather patterns and variations.



(a) (b)

Figure 5: (a) Images from two cameras in our database with the corresponding RGB- and PCA-based annual
summary images (x-axis is day-of-year and y-axis is time-of-day). The right camera is on a cruise ship that
circumnavigated the globe during 2008; this causes nighttime to “wrap” during the year. (b) An example
where the PCA-based summary image highlights a small change in the camera viewpoint; the dots on the
summary image correspond to the images (above) which show a small viewpoint shift. The time when the
shift occurs corresponds to the summary image changing from yellow/blue to purple.

We first demonstrate that a generic supervised learning
technique can automatically learn to estimate the relation-
ship between a time-lapse of images and a time-varying
weather signal (in this case, wind velocity) [10]. The su-
pervised setting, while limited to situations in which a col-
located sensor is available, demonstrates that extracting a
variety of environmental properties is possible. A side bene-
fit is that the models trained in this fashion often show inter-
esting relationships to the calibration of the camera (i.e. in
this case we find a relationship between a model for predict-
ing wind velocity and the the geo-orientation of the camera).

Second, we consider another application more in depth,
and show that minimal additional human intervention pro-
vides robust tools to quantify the timing and rate of the
“spring onset” of leaf growth on trees. In many regions of
the world, the timing of spring onset has advanced at be-
tween 2 and 5 days per decade over the last 30 years [23],
and the length of the growing season is an important factor
controlling primary productivity and hence carbon seques-
tration. Our analysis here expands on the ongoing efforts of
the PhenoCam project [24, 26], in which a smaller number of
dedicated, high-resolution (1296 x 960 pixel) cameras were
deployed specifically for this purpose at forest research sites
in the Northeastern U.S. While there are additional chal-
lenges in working with a much larger set of cameras for which
the camera settings and internal processing algorithms are
unknown, results presented here show that the spring green-
up signal is visible in many cameras not dedicated to this
monitoring task.

4.1 Supervised Weather Signal Estimation
We consider a time series of images I1, I2, . . . In captured

from a camera with a known geographic location, and a syn-
chronized time series of wind velocity estimates Y1, Y2, . . . Yn

captured from a nearby weather station. Canonical corre-
lation analysis [7] (CCA) is a tool for finding correlations
between a pair of synchronized multi-variate time signals.
Applied to this problem, it finds a projection vector A and
a projection vector B that maximizes the correlation be-
tween the scalar values AIt and BYt, over all time steps t.

Then, given a new image It+1, we can predict the projected
version of the wind velocity signal as: BYt+1 ≈ AIt+1. We
find that both the A and the B matrices tell us interesting
features about the scene in view.

Figure 6 shows results for one camera in the AMOS dataset.
The image projection A can be represented as an image, and
clearly highlights that the orientation of a flag within the
scene is highly correlated with the wind speed. The plot
shows the first dimension that CCA predicts from both the
webcam images and the weather data for our test data. In
Figure 6(d) we show the relationship of the CCA projection
vector and the geographic structure of the scene. We find
that the wind velocity projection vector B is perpendicular
to the viewing direction of the camera.

The algorithm described above demonstrates that web-
cams can be used to extract environmental properties. How-
ever, the method is limited because it requires a collocated
sensor to train the model. Generalizing the method to work
on cameras without collocated training data is an important
problem to making the global webcam imaging network use-
ful for monitoring the environment. In the next section we
show an example of a signal estimator that does not require
a collocated sensor.

4.2 Spring Leaf Growth
This section describes efforts to estimate the timing of

spring leaf development from webcam images. Importantly,
this method does not require a co-located sensor or ground
observations of vegetation phenology, and human input is
minimal. We use the simple “relative greenness” signal [27]
and show that it can be extended to many of the cameras
in the AMOS dataset. The relative greenness, g/(r+ g+ b),
is defined as the average of the green color channel divided
by the sum of all color channels.

We begin by selecting a set of cameras with a significant
number of trees in the field of view. For each camera we
extract a set of images (at most one for each day) captured
around noon for the first 275 days of 2008. We manually
draw a polygon around the trees (since the cameras are
static, or registered post-capture, only one polygon must
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Figure 6: An example of predicting wind speed from
webcam images. (a) An example image and the
CCA projection used to linearly predict the wind
speed from a webcam image. (b) Predicted wind
speed values and corresponding ground truth. (c)
A montage in which each image corresponds to a
filled marker in the plot above. (d) An image from
Google Maps of the area surrounding the camera.
The camera FOV was manually estimated by visu-
ally aligning scene elements with the satellite view.
The dashed line (red) is the CCA projection axis
defined as B in Section 4.1. This image confirms
that, as one would expect, our method is best able
to predict wind direction when the wind approx-
imately perpendicular to the principal axis of the
camera.
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Figure 7: Estimating spring leaf growth using an
outdoor webcam. (a) The raw value of greenness
over time (black dots) and a partitioning of the year
based on the presence/absence of leaves. (b) Re-
sults for the same set of images with color correc-
tion, based on an ad-hoc color-standard, applied.
The color correction reduces the local variance of
the greenness score but, in this case, does not sig-
nificantly impact the estimated onset of spring leaf
growth. (c) Three images, each corresponding to a
square (red) marker in (b), to verify the model fit.

be drawn). We then compute the average greenness value of
the tree region for each image. In order to characterize the
timing of spring leaf growth, we fit a 4-parameter sigmoid
model [27],

g(t) = a+
b

1 + exp(c− dt) (1)

where t is the day of year, to the greenness signal. Note
that c/d corresponds to the day-of-the-year of the vertical
midpoint of the model.

Some cameras in the dataset automatically adjust the
color balance to respond to changing illumination conditions
(due, for example to clouds, solar elevation, and aerosols).
This causes problems because the colors measured by the
camera vary even when the underlying color of the scene
does not change. To compensate for this automatic color
balancing we use scene elements such as buildings or street
signs (whose true color we assume to be constant over time)
as an ad-hoc color standard. We then solve for the linear
color axis scaling which maintains the color of the color stan-
dard, and apply this scaling to the entire image to create a
color balanced image.

Figure 7 shows the raw and color-corrected greenness sig-
nals and the estimated sigmoidal model for a single camera.
In addition the figure contains a montage of three images
for manual inspection. The images in the montage are se-
lected by first determining the vertical mid-point, t̂, of the
sigmoid function. The images selected for the montage are
the images closest to t̂ − 10 days, t̂, and t̂ + 10 days. More
results, as well as a color-coded map, are shown in Figure 8.
The map shows, as expected, a slight linear correlation be-
tween latitude and the “spring onset” [6]. The highlighted
montages show that the estimated dates are accurate.
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Figure 8: Determining the onset of spring leaf growth using webcams. (a) A scatter plot of the locations
of webcams used in the experiment (points colors correspond to the midpoint of spring leaf growth and are
determined by a sigmoidal model of greenness). (b) (left column) The greenness signal of the webcams and
the corresponding leaf-growth transitions determined by the sigmoidal model. (right column) The images
that correspond to the square (red) markers in the plot in the left column. Careful inspection reveals that
our model correctly finds the transition between no-leaves and leaves.



In some webcam images temporal variations in the average
greenness signal are caused by multiple species of trees. This
same problem occurs in satellite imagery but, unlike when
using satellite imagery, webcams allow us to address the
problem. In fact it is possible to factor the average greenness
signal into components due to multiple tree species.

Our approach is to first fit a mixture-of-sigmoids model,

g(t) = a+
b

1 + exp(c− dt) +
e

1 + exp(f − gt) ,

to the greenness signal (we use Levenberg-Marquardt to fit
the model). Figure 9 shows the result of fitting this model
to the average greenness signal from a camera that views
multiple tree species. The time-series shows that the new
function is a more accurate model of the data (i.e. the extra
sigmoid allows the model to fit the small rise that occurs
roughly 20 days before the main rise).

The coefficients of mixture-of-sigmoids model helps to seg-
ment the image into regions that correspond to the indi-
vidual mixture components. To obtain the segmentation,
shown in Figure 9, we first fit two single-sigmoid models,
one for each component in the mixture model, separately
to each pixels greenness signal. Each new model has the
same form as (1) except two parameters, c and d, are held
fixed to the values from the corresponding mixture compo-
nent (these correspond to the horizontal shift and stretch
of the sigmoid). For each pixel, the model with the low-
est mean-squared error is chosen as the correct model and
the pixel is labeled accordingly. This segmentation approx-
imately breaks the scene into the two types of trees in the
field of view.

These results offer exciting possibilities for low-cost auto-
mated monitoring of vegetation phenology around the world.
There are numerous potential applications of the resulting
data streams [19], including real-time phenological forecast-
ing to improve natural resource management (particularly
agriculture and forestry) and human health (e.g. the disper-
sal of allergenic pollen) as well as validation and improve-
ment of algorithms for extracting phenological information
from satellite remote sensing data.

5. CONCLUSION
The global network of outdoor webcams represents an un-

derutilized resource for measuring the natural world. We
conjecture that this resource has been ignored because of
the significant challenges in finding, organizing, archiving
images from, and calibrating a large number of webcams.
This paper outlines our work to overcome these challenges
and demonstrates several applications that use the images
to measure environmental properties.

In addition to these direct benefits, there are outstanding
opportunities for outreach to the general public, e.g. by link-
ing webcam-based monitoring with educational programs to
inform the public about the effects of climate change on our
natural environment.
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