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Abstract

In surveillance and environmental monitoring applica-
tions, it is common to have millions of images of a particu-
lar scene. While there exist tools to find particular events,
anomalies, human actions and behaviors, there has been
little investigation of tools which allow more exploratory
searches in the data. This paper proposes modifications to
PCA that enable users to quickly recompute low-rank de-
compositions for select spatial and temporal subsets of the
data. This process returns decompositions orders of mag-
nitude faster than general PCA and are close to optimal in
terms of reconstruction error. We show examples of real
exploratory data analysis across several applications, in-
cluding an interactive web application.

1. Introduction
Projects like the Archive of Many Outdoor Scenes [8],

Webcam Clip Art [11] and the Weather and Illumination
Database [13] have documented efforts to find and archive
webcam images. However, using these image archives for
practical applications remains challenging. Although the
global network of webcams have been used to monitor tree
health [6] and geolocate cameras [9], the first step in both
of these papers is to find a set of webcams that don’t suffer
from severe camera motion. In [5], the authors make use
of webcams to estimate scene depth, but their algorithm as-
sumes that the images being taken on a partly cloudy day.
The process of exploring large archives of time-lapse im-
agery to discover interesting patterns is still very manual,
often requiring hours of searching by an experienced pro-
fessional.

This paper considers the problem of exploratory data
analysis in large sets of time-lapse data captured from a
fixed viewpoint. Exploratory data analysis seeks to provide
tools to allow a user to explore volumes of data quickly to
uncover intrinsic patterns. Part of the challenge of apply-
ing exploratory data analysis to an archive of webcam im-
ages is the sheer volume of the data: a year’s worth of low-
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Figure 1. Exploratory data analysis tools support users looking for
unknown patterns or events in the data. A recently proposed sum-
mary image (a) decomposes a year’s worth of images from a we-
bcam using 3 component PCA, and color codes each location in a
time-of-day vs. time of year using those coefficients. The coding
is dominated by large scale image changes (here, coding the illu-
mination changes from day to night). This paper offers an interac-
tive tool that pre-computes a many component PCA, then interac-
tively chooses the 3-dimensional subspace that captures variation
of any subset of pixels and images. Applied to daytime images
and focused on a select group of pixels covering portions of the
ground, the false color coding (b) highlights snowfall (in blue) and
changes in leaf color (red and green).

resolution webcam imagery occupies more than 200 MB
over 16,000 images.

Throughout this paper, we make use of principal com-
ponent analysis (PCA) to discover trends in data and visu-
alize patterns in imagery. PCA is an often-used tool for
exploratory data analysis for large volumes of data, be-
cause very high-dimensional data can be visualized in a
low-dimensional space, such as 2D plots or as a single pixel
in an RGB summary image. Previously, PCA has been used
on large sets of webcam imagery to find the dominant ways
in which a particular webcam image changes over one or
several years [8, 7]. Figure 1 shows one example visualiza-
tion that captures the variation of a scene over the course
of a year in a false color plot; the summary image captures



variation over times of day and times of year on different
axes and color codes each location by the top 3 PCA co-
efficients computed for the image taken at each time (see
Section 5.1 for more details).

However, PCA is a rather blunt instrument, capturing
only the most important variations over the entire time-
extent and over the entire image. The ability to detect lo-
cal changes in the data, such as the blossoming of flowers,
is hidden by global variations, such as the difference in ap-
pearance between night and day images. In the exploratory
framework, it is useful to focus in on parts of the image or
parts of the day or parts of the year that are most relevant.
Classically, this would require recomputing the PCA com-
ponents over the relevant subset of data, which is a time
consuming task on tens of thousands of large images (even
with fast, incremental PCA algorithms).

Although local changes will be dominated by global
variations, if enough principal components are calculated
up front, these local variations will appear perhaps as a mix-
ture of the less important coefficients. This paper shows
how, given arbitrary subsets of the original data source, we
can rotate principal component bases to highlight the most
important variations within a subset of the data. Comput-
ing this rotation is much faster than recomputing compo-
nents from the subset, allowing real-time responsive behav-
ior within a web application. The contributions of this paper
are: deriving this rotation; showing, on a small but represen-
tative set of cameras, that rotating bases is almost as good
as recomputing from original data; and highlighting the use
of this to find interesting events in webcam archives. In
this regard, we can visualize the (say) three top principal
components and visualize how a particular spatial or tem-
poral aspect of the data set varies, while still achieving a
large enough speedup so that data exploration across tens
of thousands of webcam images can be implemented inter-
actively.

Section 2 reviews other papers that explore visualization
of large scale data sets. Then, Section 3 presents the math-
ematical background and derivation for Fast Subset PCA, a
new PCA formulation that quickly discovers variations in
subsets of imagery. Section 4 discusses the experiments we
performed to validate these derivations, and Section 5 de-
scribes the possible applications that follow from this work,
as well as a web application that uses these results.

2. Previous Work
Other papers [2, 18] describe anomaly detection frame-

works on long-term webcam images. These systems at-
tempt to score the “normalcy” of the current frame of a we-
bcam image in terms of previously-seen images, and can
reliably select the few most anomalous images from a long-
term time-lapse sequence. However, these papers leverage
similarity scores across the entire data set, and so cannot

perform anomaly detection on either spatial or temporal
subsets of the original data set. In this paper, we develop
a system for selecting exemplar images which give similar
results to the abnormalities presented in [2], with the added
ability to quickly analyze arbitrary spatiotemporal subsets
of the original data.

A large effort has been made to condense large data
sets to create meaningful images that provide an easy-to-
visualize summary of the entire data set. In [14], Oh et
al. survey a series of video cataloging tools, collectively
known as video abstraction, including various tools to select
the few frames that summarize long portions of a video se-
quence. Summarizing long sections of video sequences has
been done by detecting motion in spatio-temporal volumes
and compositing different temporal segments of the video
into a single image describing the overall motion in the
image [15]. In each case, the authors focus on summariz-
ing image sequences with high refresh rates. In this paper,
we aim to summarize time-lapse sequences, where any two
frames in the sequence are taken half an hour apart. Several
papers [3, 4, 16] discuss ways of compositing aesthetically-
pleasing summary images by slicing spatiotemporal vol-
umes of time-lapse imagery. These techniques can be ap-
plied for exploratory data analysis of time-series webcam
data, but are more appropriate for at most a few days of
imagery.

The authors of [12] presented the concept of a time-of-
day vs. time-of-year plot, as in Figure 1. In this paper, they
use their “Spatio-Temporal Irradiation Map” to model sun-
light variations in architectural design. The authors of [10]
also use similar maps to model solar intensity for lighting
design.

In [7], Jacobs et al. document their efforts to make large
webcam data sets more accessible to the research commu-
nity. In the paper, the authors make use of PCA to gener-
ate year-long summary images, which describe how a we-
bcam’s image changes due to high-level daily and seasonal
variations. This paper allows these plots to be interactively
refocused on subsets of this data.

Our sample data is from camera time lapses archived
and shared through the Archive of Many Outdoor Scenes
(AMOS) [8].

3. PCA and Fast Subset PCA

In this section, we give a brief background on PCA,
and show how to extend its formulation to quickly com-
pute PCA decompositions for subsets of the original data.
Through these derivations, we introduce Fast Subset PCA
and show how it can be used to quickly find local spatial or
temporal variations in the data.



3.1. Background
As applied to a sequence of images taken from a static

camera, PCA reduces the high dimensionality of image
space into a few basis images whose linear combinations
approximately span the variation of initial images.

More formally, assume we are given some sequence of
images I1, . . . In ∈ Rp (where p is the number of pixels
and n is the number of images), as well as a predetermined
number of bases b. Then, if !µ is the p-element mean image
vector, then the goal is to find a set of basis images U ∈
Rp×b and a set of coefficient vectors V1, . . . Vn ∈ Rb such
that

Ii ≈ !µ+ UV "
i ∀ i ∈ {1, . . . , n}. (1)

Typically, this is done by creating a data matrix D =
[I1| . . . |In] ∈ Rp×n, subtracting off !µ from each column,
and performing the singular value decomposition (SVD) of
D so that

D − !µ ≈ USV " (2)

In a slight abuse of notation, we define the subtraction of
a p × 1 vector !µ from a p × n matrix D as the subtraction
of !µ from every column of D.

Unless b ≥ n or b ≥ p, then the above equation is only
approximate; D can not be reconstructed perfectly from
U, S, V , and !µ. However, the SVD provides the best rank
b approximation of the matrix D in terms of reconstruction
error.

In future sections, we will derive approximations for
U, S, and V that model the variation of spatial and tempo-
ral subsets in D, although not as accurately as the standard
SVD. Because the SVD gives back the ‘best’ matrices for
U, S, and V , we will treat these matrices as the optimal case
in terms of low-rank reconstruction error.

3.2. Fast Subset PCA
In this section, we introduce Fast Subset PCA, or

FSPCA, which takes advantage of precomputed global PCA
decompositions to quickly and accurately compute local
PCA decompositions for temporal and spatial subsets of the
data. In our experiments, computing Fast Subset PCA is
orders of magnitude faster than naı̈vely recomputing SVD
over subsets of the original data set, while still achieving
near-optimal accuracy.

In our formulation, we assume that we have been given
a data set D of n images with p pixels each. We represent
D as a p × n matrix where the ith column in the matrix is
the ith image. As a first step, we use SVD to find

D − !µ ≈ USV ", (3)

where !µ is the p-element vector containing the mean image,
U is a p×b orthonormal matrix of basis vectors, S is a b×b

diagonal matrix of singular values, V is an n× b orthonor-
mal matrix of coefficient vectors, and b is the predetermined
number of basis vectors. In our experiments, b = 25.

In practice, we deal with thousands of images that each
have many thousands of pixels each, so to alleviate memory
limitations, we perform an incremental variant of SVD [1]
that never stores D all at once.

3.2.1 Selecting Subsets of Images

Suppose we now select some subset of images N ⊆
{1, . . . , n} from the dataset D, and we want to measure the
intrinsic variance of this subset of the data. Let DN be the
p × |N | submatrix of D defined by taking columns out of
D as specified in N :

DN = [. . . ci . . . ]i∈N , where ci is the ith column of D.
(4)

The goal is to find a new Û , Ŝ, V̂ , and µ̂ that capture the
variation of the images in DN , so that DN − µ̂ = Û ŜV̂ ".
The simplest solution is to simply perform PCA on this new
data matrix DN (as in Equation 3) to find the best Û , Ŝ, V̂
and µ̂. The resulting decomposition is guaranteed to find the
basis vectors that minimize reconstruction error, and is thus
the “best” decomposition. However, this additional compu-
tation can be very time intensive, since DN is p × |N | and
p is usually very large.

Instead, we can construct a new |N |×b coefficient matrix
V ′ by selecting only the rows out of V that correspond to
the selection N :

V ′ =




. . .
ri
. . .





i∈N

, where ri is the ith row of V. (5)

Suppose that N was chosen in a way that eliminated
some aspect of variation from the set of images (for exam-
ple, only choosing the daytime images). Then, the columns
of V ′ will cover a smaller set of coefficient space than V
did. To capture the variance in this new coefficient space,
we perform a second-order PCA step on SV ′" to find which
ways the reduced coefficient space vary. By denoting the
mean of all columns of SV ′" as !µSV , we get:

SV ′" − !µSV = UNSNV "
N , (6)

Since the size of SV " is relatively small compared to
DN , this decomposition is much faster than recomputing
the full SVD for DN . Whereas before we only computed
the SVD up to b basis vectors, here we can quickly compute
the full SVD and decompose SV ′" exactly (so that UN and
SN are both b × b and V "

N is b × |N |). By rearranging
Equation 6, we can apply this result to Equation 3:

DN − !µ+ U!µSV ≈ UUNSNV "
N (7)



(a) Camera 90 (b) Camera 4 (c) Camera 33

Figure 2. Example images from each camera in the experimental
dataset. Cameras 4 and 33 are shown with the subset of pixels that
FSPCA uses when using spatial subsets of the data.
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Figure 3. Reconstruction error of FSPCA from 3 bases as a func-
tion of b, the initial number of bases (red), with respect to the orig-
inal PCA bases (blue, see Equation 3) and optimal bases (green).
This shows that as the number of initial bases increase, the mean
squared reconstruction error over all pixels and all images from
FSPCA asymptotically approaches optimal, and using 25 initial
bases gives results close to optimal.

Using this approach, we find Û = UUN , Ŝ = SN , V̂ =
VN , µ̂ = !µ − U!µSV . Not only is UN orthonormal (by
definition from SVD), it is square, so we can treat UN as a b-
dimensional rotation. Geometrically, this derivation shows
that Equation 7 uses UN to rotate U to more adequately
cover the coefficient space of V ′.

3.2.2 Selecting Subsets of Pixels

The same approach can be taken to find approximate PCA
bases and coefficients that capture the variance from a se-
lected portion of pixels in a scene.

Assume that we have found !µ,U, S, and V over the
entire dataset D, as in Equation 3. Given some P ⊆
{1, . . . , p} as subset of pixels from the image, the goal is
to find µ̂, Û , Ŝ, and V̂ that best explain the variation found
in DP , the submatrix of D defined by selecting only the P
rows from D:

DP =




. . .
ri
. . .





i∈P

, where ri is the ith row of D. (8)

Similarly, we define !µP as the subvector of !µ whose ele-
ments are defined by P . Then, we construct U ′ as the |P |×b
submatrix of U taken by the selection of P .

U ′ =




. . .
ri
. . .





i∈P

, where ri is the ith row of U. (9)

ID Start End n p size
90 12/1/08 12/31/08 1,470 640×360 115 MB
4 4/1/08 6/30/08 4,367 352×240 42 MB

33 1/1/07 12/31/07 16,508 320×240 226 MB

Figure 4. Statistics about the cameras used in the experimental re-
sults.

ID |N | |P | PCA time
(sec)

FSPCA
time (sec)

Optimal
time (sec)

90 169 - 893.1 0.24 91.60
4 - 6900 882.0 0.36 174.32

33 8736 4875 3264.69 0.78 336.48

Figure 5. Statistics about the computation time to compute PCA
for each method. Here, |N | is the size of the temporal subset,
and |P | is the size of the spatial subset, and the last three columns
show the time taken to compute PCA bases for each method. Cells
that are dashed out correspond to selecting all elements along a
spatiotemporal dimension (so |N | = n or |P | = p).

We find the SVD of U ′S as U ′S = UPSPV "
P , which

gives the ways in which U ′S vary. Then, we can apply this
result to Equation 3:

DP − !µP = UPSPV
"
P V " (10)

Now, we find that Û = UP , Ŝ = SP , V̂ " = V "
P V ", and

µ̂ = !µP . Note that, as before, V "
N is a square orthonormal

matrix, so this transformation effectively rotates the coef-
ficient space of the original decomposition so that the new
decomposition better explains the variation found in DP .

3.2.3 Spatial and Temporal Subsets

Finally, these methods can be composed to find decomposi-
tions that explain the variance in both spatial and temporal
subsets of the original data. Each FSPCA decomposition
takes as input U , S, V , and µ returns a new Û , Ŝ, V̂ , µ̂ that
better account for the variation in some spatial or temporal
subset of the data. So, to find the FSPCA decomposition
for a spatial and temporal subset of the original data, we
first perform FSPCA on the spatial subset, and then again
on the temporal subset (or vice versa).

4. Experiments
To validate the work in Section 3, we use data available

from AMOS and compute PCA bases and coefficients us-
ing b = 25 original components. The small set of selected
cameras point in different geographic directions and have
different distances to objects in the scene. Figure 2 shows
an example image from each camera, Figure 4 gives some
statistics about the sizes of each data set, and Figure 5 shows
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Figure 6. Comparing the mean, first principal component, and sec-
ond principal component between the original set of PCA bases
(left column), FSPCA bases (middle column), and optimal bases
over the subset (right column).

that in all experiments, computing FSPCA is substantially
faster than recomputing PCA over the new subset.

The higher b is, the better our FSPCA bases will be, in
terms of reconstruction error with respect to the optimal
case. Figure 3 shows that, in practice, the reconstruction
error of FSPCA asymptotically approaches optimal as b in-
creases, and that b = 25 is appropriate for our experiments.

We first chose a subset of clear daytime images from
camera 90 and applied the FSPCA algorithm. Figure 7(a)
shows the reconstruction error of FPSCA with respect to
the optimal case. When reconstructing images from 3 basis
vectors, the FSPCA bases gave a reconstruction error 2.1
percent worse than optimal, while the original bases gave a
reconstruction error more than 38 percent worse than opti-
mal.

When running FSPCA, we calculate a new mean and
set of basis vectors as described in Equation 7. Figure 6
shows that these new means and basis vectors are seman-
tically meaningful, in that they capture high-level variation
from the selected subset of images.

Next, we ran PCA on camera 4, and then applied FSPCA
to a mask of pixels covering the ground regions of the scene,
as shown in Figure 2(b). Figure 7(b) shows the reconstruc-
tion error using this method. When reconstructing images
from 3 basis vectors, the FSPCA bases gave a reconstruc-
tion error 1.095 times the optimal error, while the original
bases gave a reconstruction error twice as large as in the
optimal case.

As a final experiment, we computed PCA on camera
33, and then chose subsets both spatially, as shown in Fig-
ure 2(c), and temporally (only selecting daytime images).
Figure 7(c) shows the reconstruction error for this experi-
ment. Reconstructing with 3 FSPCA bases gave a recon-
struction error 6.0 percent worse than optimal, and the re-
construction from 3 original bases gave a reconstruction er-
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Figure 7. Measuring squared reconstruction error per pixel per im-
age as a function of number of bases for each experiment, using
global PCA bases (blue), FSPCA bases trained from b = 25 orig-
inal bases (red), and optimal bases (green).

ror 164 percent worse than optimal.
While reconstruction is not the main purpose of this

method, having a low reconstruction error gives confidence
that using the top 3 components in the FSPCA rotated ba-
sis is nearly as good as PCA applied to just that subset, and
therefore is effective for visualization purposes.

5. Example Applications
In the previous section, we show that FSPCA can quickly

and accurately approximate PCA bases over arbitrary spa-
tiotemporal subsets of the original data set. Thus, FSPCA is
a useful tool for data visualization, because it allows users
to quickly perform ad-hoc queries on large sets of imagery
and visualize the first few components of decompositions
tied to that area. In this section, we provide sample data
visualization applications that leverage the previous results.

5.1. Year-Long Summary Images
In order to quickly visualize the results from a PCA de-

composition, we can construct year-long summary images
that describe the major modes of variation across a year. To
create a summary image, we create a k × 365 RGB image,
where k is the number of images taken in a day (for our ex-
periments, k = 48). Thus, the ith image from any given
year corresponds to the ith pixel in the summary image for
that year. In our experiments, we set the value of pixel i to
be the projection of the first three normalized PCA coeffi-
cients onto the RGB cube. Using PCA coefficients in year-
long summary images, as in [7], tends to highlight daily and
seasonal changes through time; an example is provided in
Figure 1(a).

If the original set of PCA coefficients are displayed in
a year-long summary image, then the set of coefficients in
RGB have to capture the 3 most dominant changes that take
place over the span of a year. Most likely, the first com-
ponent will capture the difference between night and day,
and the next two components will capture variations in sun
positions through the day. However, as was done with cam-
era 33, we can select only the daytime images from a set
of the original images, and this will eliminate one mode of
variation from the data. By further refining the data to only



(a) (b) (c)
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Figure 8. (a) shows an example webcam image taken from a year’s
worth of imagery, along with the pixels selected for FSPCA. We
run FSPCA over these pixels, as well as only the daytime images.
(d)-(e) Year-long reconstruction error images, where brighter pix-
els correspond to a higher reconstruction error in the spatiotem-
poral subset of data; (d) was generated using the original PCA
decomposition, and (e) was generated using FSPCA. (b)-(c) Ex-
ample images from each summary, shown as blue and red squares
in the summary images.

contain some of the pixels (as shown in Figure 2), such as
a tree in the image, other modes of variation will disappear,
and subtler changes in the data become more apparent. Fig-
ure 1 shows the year-long PCA summary from camera 33,
before and after we use FSPCA to remove spatial and tem-
poral subsets of the original data set.

These summary images can also be used to visualize re-
construction error across large data sets. By coloring each
pixel in the image by the corresponding reconstruction er-
ror, we can quickly visualize which images are not well-
explained by PCA, and are thus the most anomalous. Fig-
ure 8 shows that using FSPCA with year-long reconstruc-
tion error summary images is an easy way to spot anoma-
lous behaviour in spatiotemporal subsets of the original data
set.

5.2. Iterative Refinement
Many webcams “in the wild” experience severe camera

motion, due to camera operators deliberately changing their
orientation, or strong weather conditions. The dominant
modes of variation from the resulting image sequence will
come from camera motion, rather than changes within the
scene itself, as noted by [7]. Although the top few of these
coefficients only account for global changes in the scene,
they may provide a first step in selecting new images upon
which to run FSPCA.

If a user wants to view only the modes of variation that
occur under a single camera orientation, then he or she can

select a seed image, select the closest images (in terms of
coefficient space), and perform FSPCA to remove the other
camera orientations. We can use this iterative refinement al-
gorithm to quickly remove unwwanted modes of variation.

To find the set of images which are closest to a seed im-
age, we perform k-means clustering on the 3-element coef-
ficient space from PCA, with k = 2. Then, we select the
cluster of images containing the seed image and perform
FSPCA on this subset. This process can be repeated iter-
atively, so that users can quickly refine their selection by
choosing appropriate seed images at each level. Figure 9
shows a camera with major camera motion, and how iter-
ative refinement can be used to quickly remove unwanted
variation. In this case, the user stops when selecting images
from only sunny days with no camera motion. Because it
eliminates major forms of camera motion, this process can
be used as preprocessing for algorithms that make the static
camera assumption, such as factored time-lapse video [17]
or camera geolocation [9].

5.3. Selecting Exemplar Images
In order to quickly visualize the space of images that the

camera can view, we propose a method to select the top
k exemplar images from a large data set. Choosing the
most anomalous (least well-reconstructed) images most of-
ten finds camera failures, raindrops on the lens, and lens
flare, so we consider instead points whose coefficients are
extreme. In practice, most of the images in a time-lapse
sequence will be ‘boring’, where the image doesn’t devi-
ate far from the mean image. However, some images con-
tain large-scale events which deviate from the mean but are
still well-reconstructed. These images represent the outer
boundary of what the PCA decomposition can express, and
finding these exemplar images tells what kinds of extreme
variations the data set can account for, regardless of how
often these variations naturally occur.

To find the top k exemplar images, we follow [7], and
employ a greedy algorithm to approximate a maximally
separated set. We first find the image whose PCA coeffi-
cients are farthest from the origin and add it to the exemplar
set. Then, incrementally add images whose coefficients are
farthest from any existing exemplar’s coefficients. By con-
structing the exemplar set this way, we include only the im-
ages that are far away from each other in coefficient space.

If one uses this exemplar selection algorithm with the
original formulation of PCA, then the resulting top images
will show the exemplar images when considering all pix-
els in the image. However, if the user masks off some set
of pixels in the scene, and performs FSPCA, the resulting
exemplar images will account for only that section of the
image. This would be useful for those wanting to study
the variations from only a certain portion of the scene (e.g.,
only one direction of traffic on a traffic camera), rather than



Iteration 1 Iteration 2 Iteration 3

Figure 9. Using FSPCA for iterative refinement of a scene with substantial camera motion. Each iteration shows: the year-long PCA
summary image (top); the k-means clustering summary image, where red and green represent the two clusters and blue is an absence of
data (middle); the selected image (lower-left, shown as a white box in the summary image); and the mean of all images in the selected
cluster (lower-right).

across the entire image. Figure 11 shows that FSPCA can be
used with this method to find the extreme variations found
in a subset of the original data, in this case, capturing the
graduation event in May 2008.

5.4. Web Application
We have developed a web application that allows users to

specify spatial or temporal subsets from a year of webcam
images upon which to perform FSPCA. Jobs can be spec-
ified through the web browser by dragging rectangular ar-
eas on exemplar webcam images or year-long summary im-
ages. The FSPCA bases are then calculated and displayed to
the user as a year-long summary image. Because PCA ba-
sis vectors from the full data set have been pre-computed,
any FSPCA request can be completed almost immediately,
which gives the user incredibly fast tools to refine the set of
images both spatially and temporally. Furthermore, the user
can also select an image from the data set and ask for all of
the images which are less than some thresholded distance to
the selected image in coefficient space. Figure 10 describes
the web interface and an example summary image.

6. Conclusion
In this paper, we present a new framework to allow users

to quickly visualize PCA decompositions for arbitrary sub-
sets of time-lapse imagery. This method, which takes ad-
vantage of a large number of precomputed PCA basis vec-
tors, is orders of magnitude faster than naı̈vely recomputing
PCA for arbitrary subsets of the data, while still achiev-
ing near-optimal results in terms of reconstruction error.
Fast Subset PCA can be used for a variety of visualization
applications, such as creating year-long summary images,
quickly removing modes of variation from the data set (in-
cluding substantial camera motion), and selecting exemplar
images with respect to certain areas of the image. These
applications allow users to quickly and easily explore long-
term time-lapse imagery, where there may be tens of thou-
sands of images taken in a year.

(a)

(b)

Figure 10. A screenshot from the web interface, where a user has
marked a section of the image and a section from the year-long
summary image of mean values. (b) The two exemplar images
show that the PCA coefficients have coded for the blossoming of
flowers.
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