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Abstract

Computed Tomography is used to create models of lung
dynamics because it provides high contrast images of lung
tissue. Creating 4D CT models which capture dynamics is
complicated because clinical CT scanners capture data in
slabs that comprise only a small part of the tissue. Com-
monly, creating 4D reconstruction requires stitching to-
gether different lung segments based on an external mea-
sure of lung volume. This paper presents a novel method for
assembling 4D CT datasets using only the CT data. We use
a manifold learning algorithm to parameterize each slab
data with respect to the breathing cycle, and an alignment
method to coordinate these parameterizations for different
sections of the lung. Comparing this data driven parame-
terization with physiological measurements captured by a
belt around the abdomen, we are able to generate slightly
smoother reconstructions.

1. Introduction

CT imaging is often used for imaging tissues, such as
lungs, that do not provide high contrast in MR-images. CT
imaging is often used in lung cancer diagnosis and treat-
ment, which has the additional problem that lung tumors
move with the lung. Since radiation treatments affect both
the tumor and the healthy tissues near the tumor, effective
radiation treatment planning requires modeling the motion
of the tumor and the surrounding healthy tissues.

Simple solutions to the motion issue include using fluo-
roscopy to monitor tumor movement and using fixed, breath
hold images for treatment planning. In some cases, patient
breathing has been controlled in an attempt to predict tu-
mor position and create motion maps [11, 15]. Recently,
four-dimensional CT (4D CT) has been developed, which
uses an external measure of breath phase to create multi-
ple CT datasets at various breath phases [1, 4, 5, 14]. This
is more effective than fluoroscopy at determining tumor
movement [13]. This technology continues to advance in

complexity, but the need for an external measure of breath-
ing has remained a key component of all methods thus far.

A standard way of creating a 4D model uses the follow-
ing 3 step procedure [5, 6]. First, a common multi-slice clin-
ical CT scanner is configured to capture a volume roughly
one inch in height. As shown in figure 1, a cross sectional
volume (slab) of the lung usually about one inch high is col-
lected repeatedly from the same location in the lung while
the patient breaths. The patient is then moved one inch
through the CT scanner, to the next couch position, to begin
capturing the next slabs. Each data acquisition takes ap-
proximately one second with several seconds between ac-
quisitions. This is slow enough and patient breathing is
irregular enough that breathing cannot be estimated from
the time of image acquisition; instead, an external breath
measurement such as a belt measuring abdomen circumfer-
ence is used to estimate the volume of the patient’s lung.
Next, a complete 3D volume is generated for each part of
the breathing cycle by picking a target lung volume, and
choosing the data at each couch position acquired closest to
the target lung volume. Figure 2 shows, on the left side, the
lung volume measurements for each slab plotted against the
CT scanner position with respect to the lung. For a target
lung volume shown as a vertical line, the right side shows
the reconstruction of the lung corresponding to the slabs
closest to the target lung volume. Techniques such as optic
flow [4] and template matching [2] can be used to compute
the motion of tumor tissue.

The newest methods for creating 4D CT reconstructions
of lung motion directly infer a deformation map from the
slab data. These methods use different techniques to de-
termine the reference volume, but all methods require that
each slab is annotated with the lung volume measured at the
time of acquisition [3, 8, 16].

In this paper, we present a substitute for the external
breath measurement which will only require the image data
itself. It is our intention that any algorithm that would use
an external physiological measurement can instead be mod-
ified to use our breath measure. The breath measure stems



Figure 1. A CT scanner is used to repeatedly image slabs of thelung approximately 1 inch in height at the same location while a patient
breaths. At the same time a belt around the abdomen of the patient measures lung volume. Although, the data acquisitions ordered by time
does not have a coherent pattern with respect to breathing, the slabs can be reordered by the belt measurement.

Figure 2. On the left, the external breath measurements for each 1
inch high image acquisition is shown organized by scanner couch
position. A lung volume is created by picking the slab at each
couch position of the CT scanner with a lung volume close to a
target volume which is shown as a vertical line. On the right,a
coronal cross section of the 3D lung reconstruction corresponding
to the target lung volume is shown. The red box shows the size of
image acquisitions at a single couch position. Several artifacts are
visible near the diaphragm.

from an analysis of the intrinsic redundancy in the lung
dataset from the same tissue being viewed at different parts
of the breathing cycle. In the current work, we demonstrate
a novel post-processing technique based on manifold learn-
ing that can generate breathing measurement estimates to
allow 4D CT algorithms to be effective with just imaging
data.

2. Prior Work

The use of 4D aware imaging and radiation treatment
is a growing area with many applications (see [7] for a re-
view). Due to a diversity of scanner technologies 4D CT
of the lung can be executed in a number of different ways.
Some examples include spiral and cine mode CT with an
external breath measurement [5, 14]. On a lower level, the
X-ray beam can be gated based on a physiological signal

and specialized CT algorithms used to reconstruct the med-
ical image [9].

McClelland et al. briefly investigated the creation of
a breath measure from the slab data by measuring the
anterior-posterior movement of the skin surface in the
slab [8]. A sine wave is fit to this signal to create a breath
measure. Ultimately this method was abandoned in favor of
an external breath marker.

Our contribution is to use manifold learning to automat-
ically determine breath phase. Manifold learning is a field
of research that seeks to discover and parametrize the in-
trinsic degrees of freedom inside large data sets. Recently,
computationally efficient algorithms such as Isomap [12]
have made it possible to apply manifold learning to large
data sets. The goal of Isomap is to assign each image a
point in a low dimensional intrinsic parameter space such
that similar images are close to each other without using
any prior knowledge. This has previously been applied to
cine-MR images to estimate the parameters of the breath-
ing and heartbeat [17]. In that work all data items captured
the entire region of interest and therefore could be param-
eterized simultaneously. In general, the parameterization
given by Isomap is not consistently oriented between sim-
ilar datasets. In the case of our lung data, this means that
the breath measure learned by Isomap for each couch po-
sition is of an arbitrary scale and orientation requiring an
additional alignment step.

3. Data

4D CT images were generated for 25 lung cancer pa-
tients using the following protocol. Transverse volumes of
the lung were acquired using a 16 slice CT scanner in cine
mode while the patient was free breathing. At each couch
position, 25 slabs (512 by 512 by 16) were collected consec-
utively, before moving the patient to the next couch position
and collecting 25 slabs of the next section of lung. Manual
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Figure 3. External breath measurement using a belt

inspection was used to crop slabs to the smallest rectangu-
lar volume which contained lung tissue at any point in the
breath cycle. The transverse plane was down-sampled to a
factor of 0.3 of the original. On average the data volume
used for processing was 70 by 130 by 176 voxels.

During image acquisition, an external breath surrogate
was collected using a belt measuring abdomen circumfer-
ence. Figure 3 shows the belt measurement for each image:
the x-axis shows the position of the slab in the lung, while
the y-axis gives the value of the belt measurement for a par-
ticular slab. The size and hue of the dot corresponds to the
value of the belt measurement and therefore, in this case, is
exactly equivalent to the y-axis. All later figures of breath
measures will use the same format as this figure.

4. Algorithm

The estimation of the breath phase of a slab requires two
parts. First, each couch position is analyzed independently
to determine relative positions in the breath cycle for each
slab. We call this a local breath measure. Second, the lo-
cal breath measures from each couch position are combined
into a globally consistent breath measure which is valid over
all slabs from any couch position.

4.1. Measuring Breath Within a Couch Position

Although breathing is a cyclic process, we find that im-
ages of the lung at the same lung volume are similar whether
the patient is inhaling or exhaling. This allows us to char-
acterize the breath with a single parameter: lung volume.
We apply the Isomap algorithm exactly as described in [12]
to the slabs captured at a single couch position, using the
square root of sum of squared distance (L2 norm, and the
k-nearest neighbors as a neighborhood criteria, with a value
of 8 for k). We use the 1D parameterization produced by
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Figure 4. Isomap based breath measure

Isomap as the local breath measure for slabs computed at a
given couch position. This breath measure is termedfi, and
defined as the mapping (computed through Isomap):

fi : Si → R (1)

whereSi is the set of slabs at couch positioni.
Figure 4 shows the local breath measure coordinates gen-

erated by Isomap, shown for different couch positions (la-
beled on the x-axis). Ground truth estimates (measured by
the extension of a belt around the abdomen) are depicted
by the size and hue of the points in the figure. This figure
highlights that the Isomap parameter has a high correlation
with the ground truth, but the Isomap parameters are some-
times oriented differently, and the scale also varies. Thisis
because the Isomap algorithm parameterizes the slabs based
on their similarity to each other: there is no global reference
to orient the parameterization, and different parts of the lung
have different overall contrasts, changing the relative scale.

4.2. Global Breath Measure

Since the local breath measure is only meaningful within
a single couch position, extra work is needed to align the
local breath measures to create a globally consistent breath
measure valid over the entire lung. Figure 4 shows that the
local breath measure and the belt measurements are related
by a roughly linear relationship. This means that by scal-
ing and translating the local breath measure with an affine
transformation we can align all the local breath measures
to create a global breath measure. We disregard until sec-
tion 4.3 the problem of orienting each local breath measure,
and focus on the scaling problem.

As an example of one way of scaling the local breath
measures to create a global breath measure we naively
rescale the range of each local breath measure to be 0 to
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Figure 5. Isomap based breath measures scaled to range [0,1]

(a)ρ = 18 (b)ρ = 42
Figure 6. Coronal cross sections of two slabs from adjacent couch
positions that come from (a) the same breath phase (b) different
breath phases as determined by the discontinuity measure.

1 as shown in figure 5. If each couch position has a slab
from both complete inhalation and complete exhalation, this
would create a consistent global breath measure. Unfortu-
nately, patients do not breath in a perfectly regular pattern,
and for some couch positions the patients do not reach close
to maximum inhale or exhale. Thus, this alignment process
must be based on comparison of the slabs captured at neigh-
boring couch positions.

The basic idea of the algorithm is to identify slabs from
adjacent couch positions that were captured from similar
parts of the breathing cycle. These slabs can be put together
and should show no large discontinuities at their boundary.
Thus, we define a discontinuity measure that finds for each
slab, the two slabs in the adjacent couch position that are
from similar parts of the breathing cycle.

We then search for the affine transformation (the scaling
and translation) of the parameterization at one couch posi-
tion so that each slab is best aligned with the slabs at the
next couch position taken at the same part of the breathing
cycle.

4.2.1 Measuring Boundary Discontinuities

slabs with similar breath phases should have little discon-
tinuity between their borders when they are placed next
to each other. Figure 6 shows two pairs of slabs one pair
matches well and comes from the same breath phase while

Figure 7. The discontinuity measure between two slabs is created
by using the lower slices of the upper slab to predict what theslice
directly below it will look like (x−) and comparing that slice to
the top slice of the bottom slab (y1). The reverse computation of
comparingy+ andxn is also performed.

the other pair has a lot of border discontinuity and does not
come from the same breath phase.

We denote the set of slabs within a couch position asSi.
For simplicity we consider only the case whereS1 is above
S2, but a similar formulation is possible for the opposite
case. Given two slabsx ∈ S1 andy ∈ S2 we compute a
discontinuity measure over the boundary between the slabs.
We number the transverse slices which comprise the slab
x from top to bottom asx1, x2, · · · , xn. The discontinuity
measure is computed by predicting the slice directly below
the upper slab and comparing it to the top slice of the bottom
slab and vice versa as shown in figure 7. The bottom two
slices ofx are used to linearly predict the slice below them
which we denote asx− (x− = 2xn − xn−1). This slice is
then compared to the top most slice iny. The top two slices
in y are also used to predict the slice above them (y+ =
2y1−y2). The discontinuity measureρ is the sum of theL2

distance between the predictions and the actual slices from
the adjacent slab.

ρ(x, y) = ‖x− − y1‖ + ‖y+ − xn‖ (2)

When the discontinuity measureρ is small as in figure 6(a)
the two slabs are assumed to come from the same breath
phase.

The discontinuity measure can be used to create a paired
list of matching slabs which are likely to come from the
same breath phase. For each slabx ∈ S1 the two slabs in
S2, yx,1 andyx,2, which minimize the discontinuity mea-
sure are found and the pairs (x, yx,1) and (x, yx,2) are added
to the match list. Conversely, for each slaby ∈ S2 the two
slabs inS1 which are least discontinuous withy are found



and the pairs (xy,1, y) and (xy,2, y) added to the match list.
This paired list of matching slabs is used to align the local
breath measures. We find that using the two best matches
rather than just the first yields a more robust solution and
that computing the matches in both directions ensures that
all slabs in both couch positions are considered.

4.2.2 Aligning Local Breath Measures

A distance measure is defined between slabs as the squared
distance between the local breath measuresf1(x) andf2(y)
of the two slabs after alignment by the transformationφ.

D(x, y) = (f1(x) − φ(f2(y)))2 (3)

The affine transformation which we use to align the coor-
dinate spaces is a function with two parameters: the scaling
valuea and the translation valueb.

φ : v 7→ av + b (4)

We require a cost function which measures the quality of
an aligning transformationφ between the local breath mea-
sures of two couch positions. The cost function for a trans-
formation is the distance between the local breath measures
after the transformation for each pair of slabs in the match
list. The distances are divided by the discontinuity measure
in order to minimize the impact of slabs which do not have
good corresponding matches on the alignment.

C(a, b) =

√

√

√

√

∑

x∈S1

D(x, yx,1)

ρ(x, yx,1)
+

D(x, yx,2)

ρ(x, yx,2)

+

√

√

√

√

∑

y∈S2

D(xy,1, y)

ρ(xy,1, y)
+

D(xy,2, y)

ρ(xy,2, y)

(5)

To find the parametersa and b of the affine transforma-
tion which minimize the cost function we use sequential
quadratic programming, a standard constrained optimiza-
tion algorithm (implemented in Matlab asfmincon).

arg min
a,b

C(a, b), a > 0 (6)

The constrainta > 0 is used so that the transformation
cannot invert exhalation and inhalation for any local breath
measure from that which was set explicitly using the tech-
nique outlined in section 4.3.

4.2.3 Aligning all Couch Positions

To align the local breath measures of all couch positions
we start with the central couch position (position 7 in the
figures) and rescale it to the range 0 to 1. Then, moving
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Figure 8. Breath measure without penalty function

outward from this couch position, we align the local breath
measures of each couch position to that of its neighbor clos-
est to the center. This yields a global breath measure which
consistently describes the breath phase for every slab in all
couch positions as shown in figure 8.

4.3. Orienting the Local Breath Measures

The local breath measure of each couch position has an
uncertain orientation with respect to inhalation and exhala-
tion. Therefore, we explicitly orient the local breath mea-
sures before optimization.

First, the couch position with the largest range of local
breath measure is found. Since the scale on the local breath
measures is based onL2 distances on the slabs, the couch
position with the greatest range will have the most dra-
matic voxel value changes, which is caused by the most di-
aphragm movement. The slabs with the largest and smallest
breath measures will display the most difference in amount
of diaphragm tissue they contain. In the inhaled position,
less diaphragm tissue is visible causing the average voxel
value to be low. In the exhaled position, more diaphragm
tissue is visible and the average voxel value will be high.
The local breath measure is inverted if necessary so that a
small breath measure value corresponds to an exhaled state.

The following method is used to explicitly orient all local
breath measures to be consistent with that of the couch posi-
tion with the diaphragm. For two adjacent couch positions,
determine the correlation between the local breath measures
of all pairs of slabs in the match list. If this correlation
is negative, then the breath measure is inverted. Moving
outward from the couch position with the most diaphragm
movement, this procedure is repeatedly applied until all lo-
cal breath measures are correctly oriented.



(a) Unaligned (b) Scaled 0-1 (c) Aligned, No Penalty (d) Aligned (e) Breath Surrogate
Figure 9. Coronal cross-section of a reconstructed image halfway between inhalation and exhalation using several methods.
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Figure 10. Correlation coefficient of the Isomap based breath mea-
sure and the belt measurements for each couch position for 25pa-
tients. The lung is grouped into 5 sections from the top to thebot-
tom. A boxplot of the absolute value of the correlation coefficient
is shown for each section.

5. Discussion

The ability to parameterize the slabs captured during
lung CT is a key pre-processing step to many subsequent
analysis steps. In this section we discuss applications of
the automatic estimation of lung volume, explicit compari-
son to physiological models, and heuristics that improve the
overall alignment.

5.1. Conventional Lung Models and 4D CT

The global breath measure can be used to create a lung
image at a particular lung volume in the same way as the
belt measurements can be used. The slab from each couch
position with global breath measure closest to a target value
is chosen. Figure 9 shows lung images obtained halfway be-
tween exhalation and inhalation for the different options of
computing the breath measure discussed in the last section.

5.2. Physiological Verification of Breath Measure

We next compare the global breath measure against es-
timates of the lung motion captured by measuring the ex-
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Figure 11. Discontinuity metric for reconstructions basedon dif-
ferent breath measures.

tension of a belt around the abdomen of the patient. Fig-
ure 10 shows the correlation of the breath measure with the
belt measurements for all couch positions of all 25 patients
grouped by location in the lung. The correlation is worse
at the top of and above the lung where there is little breath
related motion.

We compare images using the Isomap based breath mea-
sure to images based on the belt measurements. The metric
used for comparison is the artifacts across each couch posi-
tion boundary in the reconstruction computed by the discon-
tinuity measure of equation 2. Figure 11 shows the ratio of
boundary discontinuity for a reconstruction based on a par-
ticular breath measure to the discontinuity of the reconstruc-
tion based on the physiological breath surrogate. Patients
are sorted by the ratio for the aligned with penalty term re-
construction. These results show that using the Isomap pa-
rameterization of breathing produces reconstructions with
comparable (or slightly less) discontinuities at the bound-
aries between couch positions.

5.3. Local Breath Measures

The reconstruction algorithm hinges on the ability of
Isomap to parameterize the breath phase of slabs. Several
methods other than Isomap were investigated. Figure 12
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Figure 12. Several different breath measures collected at asin-
gle scanner position near the diaphragm. All breath measures are
rescaled to the range [0,1].

shows the breath measures obtained for a single couch posi-
tion near the diaphragm by different methods. Multidimen-
sional scaling which is identical to Principal Component
Analysis (PCA) in this setting and upon which Isomap is
based has a very similar output to Isomap. The small num-
ber of slab samples requires a relatively large neighborhood
in the graph used by Isomap, causing the graph distances
to degenerate into Euclidean distances and Isomap to be
equivalent to MDS. Locally Linear Embedding (LLE) pro-
duces a breath measure significantly worse than the other
methods [10]. This is probably due to the small number of
samples at each couch position.

5.4. Improved Global Alignment

Since alignments are only performed between neighbors,
errors can compound from one end of the lung to the other.
This problem is mitigated by starting the alignment process
at the center of the lung, where less steps are chained to-
gether and the correlation with breathing is stronger. In fig-
ure 8, the first couch position has a much smaller range in its
breath space than the other couch positions. This is because
the closest two slabs in the neighboring couch position are
the same for all slabs. When this occurs, the cost function
favors shrinking the transformed space to have a small range
which is close to the mean.

This type of problem can be explicitly corrected by
adding a penalty term to the cost function to maintain the
range of the breath measure near 0 to 1.

C′ = C+
(max(fi(Si)) − 1)2 + (min(fi(Si)) − 0)2

α
(7)

The scaling constantα is set to20 in our experiments. The
optimization without penalty term is taken as the initial con-
dition for the optimization with penalty so as to avoid con-
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Figure 13. Breath measure with standard penalty function

vergence to a local minimum caused by the penalty term.
Figure 13 shows the breath measure with this penalty term.

5.5. Orientation by Breath Marker

We can verify the accuracy of the local breath measure
orientation algorithm by correlating the breath measures
with the belt measurements. For all but one couch posi-
tion of one patient we are able to correctly orient the breath
measure, using the method presented earlier. The patient on
which our image based method fails is breathing erratically
and the method fails on a couch position with a correlation
of 0.05.

6. Conclusion

Previous work in 4D CT of a lung has required a phys-
iological measurement of the lung volume in order to cre-
ate reconstructions of the lung. We presented a method for
modeling a lung as it breaths using only the data captured
by the CT scanner. Our experiments highlight that esti-
mated lung volume correlates well with the physiological
measurement and gives 3D reconstructions that are similar
(or marginally better) in quality than current methods. This
allows a collection of retrospective data analyses to be done
in cases where physiological data was not captured, and of-
fers the potential for new data acquisition protocols.
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