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Abstract

For convolutional neural network models that optimize
an image embedding, we propose a method to highlight the
regions of images that contribute most to pairwise similar-
ity. This work is a corollary to the visualization tools de-
veloped for classification networks, but applicable to the
problem domains better suited to similarity learning. The
visualization shows how similarity networks that are fine-
tuned learn to focus on different features. We also general-
ize our approach to embedding networks that use different
pooling strategies and provide a simple mechanism to sup-
port image similarity searches on objects or sub-regions in
the query image.

1. Introduction
While convolutional neural networks have become a

transformative tool for many image analysis tasks, it is still
common in the literature to describe these deep learning ap-
proaches as ”black boxes”. To address these concerns, there
have been substantial efforts to understand and visualize
the features of classification networks [2, 3, 6, 11, 14, 18,
19, 24, 26, 27]. However, much less work has focused on
visualizing and understanding similarity networks, which
learn an embedding that maps similar examples to nearby
vectors in feature space and dissimilar examples to be far
apart [15, 23].

Our approach highlights the image regions that con-
tributed the most to the overall similarity between two im-
ages. Figure 1 shows example visualizations for the top
image retrieval results from three different application do-
mains (Google Landmarks [25], VGG-Faces [10], and Traf-
fickcam Hotel Rooms [16]). Each row of the figure shows
a query image and the three most similar database images
returned from a network trained for the respective task. The
heatmap overlay shows the relative spatial contribution of
each image to the similarity score with the query.

Our approach aligns with the recent trend toward ex-
plainability for learning-based tasks and extends recent
work in visualizing classification networks to the case of

Query Top Matches

Figure 1: Our approach to visualizing the embeddings gen-
erated by deep similarity networks calculates the contribu-
tion of each pixel location to the overall similarity between
two images. We evaluate our approach on a variety of prob-
lem domains and network architectures.

similarity networks. Our specific contributions include:

• a novel visualization approach for similarity networks;

• an analysis of the effect of training and “late-stage”
pooling strategies for similarity networks; and,

• an approach to using similarity visualizations to sup-
port object- and region-based image retrieval.

2. Background

Visualizations provide a way to better understand the
learning process underlying deep neural networks. Much of
the work in this area focuses on visualizations for classifica-
tion networks and not similarity networks. While networks
used for each type of problem share many similarities, the
differences in the output (i.e., sparse vs. dense feature vec-
tors) is significant, requiring new methods for visualizing
similarity networks.

1
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CNN Visualization Previous work on CNN visualiza-
tions can be broadly categorized by the depth of the por-
tion of the networked being visualized. Some methods
provide visualizations that highlight the inner layer activa-
tions [3, 6, 27]. A majority of the work targets the output
layer to produce visualizations which seek to explain why
classification networks output a particular label for an im-
age. These include approaches that mask off parts of the in-
put images and provide a visual quantification of the impact
on the output classification [24]. Another approach gener-
ates saliency maps, which represent which pixels in an im-
age contributed to a particular output node [14]. There has
been work that generates class activation maps, which map
an output back to the last convolutional layer in the network
by weighting the filters in that layer by the weights between
the final pooling layer and the output feature [26]. Incep-
tion [18], which hallucinates images that activate a particu-
lar class from random noise, can also serve as visualization
tool to provide insight into the learning process.

Similarity Learning Much of the work in similarity
learning with deep neural networks focuses on learning
better similarity functions using, for example, pairwise
losses [17, 22, 23], triplet losses [8, 13, 15, 20], and di-
rect embedding [9]. Compared to the efforts toward under-
standing classification networks, there has been much less
work in visualizing and analyzing similarity networks. One
method visualizes the similarity of single filters from the
different convolutional layers of an embedding network [1].
Another method computes image similarity as the inner
product between the normalized elements of a final max
pooling layer and produces a visualization with bounding
boxes around highly active regions for the ten features that
contribute most to the similarity of a pair of images [11, 19].

Visualizing a few features is effective for networks that
tend to be sparse, but in Section 4.1 we show that in em-
bedding networks the similarity tends to be explained by a
large number of features. This motivates our approach to
visualize how all features affect the similarity score.

3. Visualization Approach
Networks used in similarity learning broadly consist of:

(1) a convolutional portion, (2) a ”flattening” operation
(usually max or global average pooling), and (3) a fully-
connected portion. A recent study covering a number of
image retrieval tasks, however, suggests that the best gen-
eralization performance is obtained using the output from
the layer immediately after the pooling operation [21]. Our
approach is applicable to networks of this structure, includ-
ing popular models such as the Resnet [7] and VGG [10]
network architectures.

Given an input image, I , and a trained similarity net-
work, our approach relies on the activations of the layers

before and after the pooling operation. Let α represent the
K × K × C tensor of the last convolutional layer, where
K represents the length and width (usually equal) and C
represents the number of filters. Let β represent the C-
dimensional vector after the pooling operation for an image,
as shown in Figure 2. In similarity learning, the dot product
of these normalized feature vectors is a widely-used simi-
larity function [4, 9, 13, 17, 22, 23], so the similarity of two
images I(i), I(j) can be written as:

s(β(i),β(j)) =
β(i) · β(j)∥∥∥β(i)
∥∥∥∥∥∥β(j)

∥∥∥ (1)

Our visualization approach results in spatial similarity
maps, where the overall similarity between two image fea-
ture vectors is spatially decomposed to highlight the contri-
bution of image regions to the overall pairwise similarity,
as shown in Figure 2. Computing the similarity maps de-
pends on the flattening operation between the convolutional
portion of the network and the output feature. Max pooling
and global average pooling are the most commonly applied
operations at this stage in modern networks. We show how
our similarity maps are computed for each case.

3.1. Average Pooling

For networks which employ average pooling as the flat-
tening operation, the output feature, β, is:

β =
1

K2

∑
x,y

α(x,y) (2)

where α(x,y) represents the C-dimensional slice of α at
spatial location (x, y). The similarity of images I(i) and
I(j) can be directly decomposed spatially, by substituting
β(i) in Equation 1 with Equation 2:

s(β(i),β(j)) =
β(i) · β(j)∥∥∥β(i)
∥∥∥ ∥∥∥β(j)

∥∥∥
=

1
K2

(
α

(i)
(1,1) + . . .+α

(i)
(K,K)

)
· β(j)∥∥∥β(i)

∥∥∥ ∥∥∥β(j)
∥∥∥

=
α

(i)
(1,1) · β

(j) + . . .+α
(i)
(K,K) · β

(j)

Z
(3)

where Z is the normalizing factor K2
∥∥∥β(i)

∥∥∥ ∥∥∥β(j)
∥∥∥.

These terms can be rearranged spatially and visualized
as a heat-map to show the relative contribution of each part
of the image to the overall similarity. Symmetrically, the
similarity can be decomposed to highlight the contribution
of the other image in the pair to the overall similarity, as
shown on the right side of Figure 2.
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Figure 2: Our approach considers similarity networks with a final convolutional layer, α, followed by a pooling operation
which produces output features, β. Similarity between two images is measured as the dot product of these output features
after normalization. Factoring this value produces visualizations that highlight how much each region of the image contributes
to the similarity.

3.2. Max Pooling

With a modification, the approach can also accommodate
networks that use max pooling as the flattening operation.
In max pooling, each element of an output vector β is equal
to the max value of the activation of its corresponding filter
in the last convolutional layer:

β = max
x,y

α(x,y) (4)

Unlike average pooling, where each of the composite com-
ponents contribute equally to the output feature, decompos-
ing max pooled features requires an additional step. For a
max pooled feature, β, we construct a surrogate tensor, α̂,
for the convolutional portion as follows:

α̂(x,y,c) =

{
0 if α(x,y,c) 6= β(c)
α(x,y,c)

N(c)
if α(x,y,c) = β(c)

(5)

where N(c) represents the number of spatial locations equal
to the maximum value for filter c. That is, for each filter, we
assign the maximum value to the location that generated it
(divided evenly in cases of ties), and zero otherwise. This
gives the following formulation for the spatial similarity de-
composition in the case of max pooling:

s(β(i),β(j)) =
α̂

(i)
(1,1) · β̂

(j)
+ . . .+ α̂

(i)
(K,K) · β̂

(j)∥∥∥β(i)
∥∥∥∥∥∥β(j)

∥∥∥ (6)

Similar to the case for average pooling, similarity maps can
be computed in either direction for a pair of images.

We scale the heatmaps using bilinear interpolation and
blend them with the original image to show which parts of
the images contribute to the similarity scores.

4. Results
Similarity networks trained for three different problem

domains are used to test the approach. Except where noted,

Figure 3: The plot shows the average contribution of the
top–K components of the feature vectors to the similarity
score between pairs of images from the same class using
the pre-trained VGG-Faces dataset. The top 10 features
(the number of features visualized in prior work, and iden-
tified in this plot by a red dot), account for less than 30%
of the similarity score between two images, motivating our
attempt to visualize all features.

we use the following network architectures and output fea-
tures. For the Google Landmarks [25] and TraffickCam
Hotel Rooms [16] datasets, we fine-tune a Resnet-50 [7]
network from pre-trained ILSVRC weights [12] using the
combinatorial variant of triplet loss described in [8]. For the
VGG-Faces dataset, we use the VGG-Faces network trained
on the VGG-Faces2 dataset [10, 5]. For each of the net-
works, we use the layer immediately after the pooling op-
eration as our output features (2048-D for Resnet-50, and
512-D for VGG-Faces).

3



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

WACV
#96

WACV
#96

WACV 2018 Submission #96. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

4.1. Feature Importance

Prior work in understanding similarity networks focuses
on either a few filters or few regions that contribute most to
the similarity between a pair of images [1, 11, 19]. Our vi-
sualization approach, by comparison, summarizes the con-
tribution of every feature to the similarity between a pair of
images.

In the following experiment, we demonstrate that for
similarity networks, the top few most important compo-
nents only represent a small fraction of the overall image
similarity. Figure 3 shows the average contribution of the
first k components for 1000 randomly sampled pairs of im-
ages from the same class using the pre-trained VGG-Faces
network. The top 10 features (the number of features visu-
alized in prior work, and identified in this plot by a red dot)
contribute less than 30% of the overall similarity score. This
suggests that, unlike classification networks which output
sparse feature vectors, understanding the output of similar-
ity networks requires a visualization approach that explains
more than only a few features at once. Our approach to vi-
sualizing similarity networks incorporates all of the feature
vector components and calculates the contribution of each
pixel location to the overall similarity between two images.

4.2. Visualizing Pairwise Similarity

Figure 4 shows pairs of images that produced high sim-
ilarity scores. In the top pair of images from the Google
Landmarks dataset, the viewpoints are quite different, but
the visualization approach highlights the specific building
that the network identified as being similar. This building
is in the foreground of one of the images, but hidden in the
background of the other. The middle pair of images are
of the same gentleman in the VGG-Faces dataset. the vi-
sualization highlights his lower facial features. The final
pair of images is from different hotels in the TraffickCam
Hotel Rooms dataset. the visualization highlights that both
rooms have similar light fixtures mounted to the headboard.
These examples demonstrate the ability of the visualization
approach in explaining why a network produces similar em-
beddings for a pair of images, even in cases where that may
not be readily apparent to a human observer looking at the
images.

4.3. Similarity Learning During Training

Figure 5 shows the visualization for a query image and
its top 3 most similar images during the training process.
For the Google Landmarks dataset, we see that even by
5,000 iterations, the network has largely learned that it is
the skyline that makes this scene recognizable. In subse-
quent iterations, the network refines the similarity metric
and focuses on more specific regions, such as the buildings
in the scene. On the TraffickCam Hotel Rooms dataset, on

Figure 4: Visualizations to understand image similarity.
(Top) For two images of the same landmark, the visualiza-
tion highlights the building in the background in left image,
but the foreground in the right. (Middle) For two images of
the same person, the nose and mouth region are highlighted.
(Bottom) For two images of rooms from different hotels, the
visualization highlights the similar light fixtures mounted to
the headboard.

4
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Query Top Matches

Initial

5k iterations

25k iterations

50k iterations

Query Top Matches

Initial

5k iterations

50k iterations

100k iterations

Figure 5: Each subfigure shows visualizations from networks pre-trained on ImageNet and fine-tuned on Google Landmarks
(left) and TraffickCam Hotel Rooms (right) during the training process.

Query Top Matches

From Scratch

Fine-tuned

Query Top Matches

From Scratch

Fine-tuned

Figure 6: Fine-tuning vs. Training from Scratch. The visualization highlights that, regardless of the initialization, the
networks converge to similar representations.

the other hand, the network takes longer to learn a similar-
ity embedding. At 5,000 iterations, the network has not yet
focused on specific elements of the hotel rooms. By 50,000
iterations, it becomes clear that the headboard is the relevant
part of this particular set of images, and by 100,000 itera-
tions, the network appears to be refining that focus. These
examples demonstrate the utility of the visualization in un-
derstanding when a network has learned a useful similarity
metric, in addition to understanding what components of a

scene the network has learned to focus on.
Another consideration when training similarity networks

is whether to train from scratch or fine-tune from pre-trained
weights. Figure 6 shows the top three results for a query im-
age, the similarity visualizations when trained from scratch,
and when fine-tuned from pre-trained weights. In the ex-
amples from the Google Landmarks and TraffickCam Ho-
tel Rooms dataset, we see that both the fine-tuned network
and the network trained from scratch converged to similar

5
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Query Top Matches

(a) Average Pooling

Query Top Matches

(b) Max Pooling

Figure 7: Average vs. Max Pooling. For the same VGG-Faces network architecture, these visualizations show the pairwise
similarity for models trained with average pooling and max pooling.

encodings of similarity (e.g., both the fine-tuned network
and network trained from scratch highlight the building fa-
cade in the Google Landmarks scene and the headboard in
the TraffickCam hotel). These results suggest that both ap-
proaches converge to features that encode the same impor-
tant elements of the scenes and that it is reasonable to fine-
tune from pre-trained weights (even from a fairly dissimilar
task, such as a classification task trained on ILSVRC).

4.4. Average vs. Max Pooling

As described in Section 3, the visualization approach is
applicable to networks with either average and max pooling
at the end of the convolutional portion of the network. Fig-
ure 7 shows the comparison between two VGG-Faces net-
works, one trained with average pooling and one with max
pooling. For the same image pairs, the embeddings high-
light different regions. For example, the average pooling
network focuses on glasses in the first query image, while
the max pooling network focuses more on eyebrow shape.
Additionally, the regions of similarity are larger in the aver-
age pooling network compared to the max pooling network.
This is reasonable as all of the regions contribute to output
embedding in average pooling, but not max pooling.

4.5. Class Similarity

Using our method, we can discover the most representa-
tive components of a class of images. This is a natural ex-
tension of class activation maps for classification networks,
which visualize the components of an image contribute the
most to a particular output label. We generate class activa-
tion maps for a given image by summing the pairwise sim-
ilarity maps with the other images in the same class. Fig-
ure 8 shows class similarity visualization for a selection of

images from each of our datasets. The visualizations high-
light the portions of the image that most contribute to the
similarity of the output feature to those of the images in the
same class. For example, in Class 1 of the Google Land-
marks dataset, the clock on the building’s facade is the most
important part in each example image; in Class 2 of the
VGG-Faces dataset, the nose and lips are most important;
and in Class 3 of the TraffickCam Hotel Rooms dataset, the
headboard is most associated with the hotel identity.

4.6. Object- and Region-Specific Retrieval

The previous experiments highlight the utility of the vi-
sualization method on image retrieval tasks, which consider
the entire image as input. The same visualization approach
can also support object- or region-specific image retrieval.

We first compute the similarity maps between a query
and the database images. Recall that the similarity map for
a pair of images sums to the overall similarity score. There-
fore, the sum of the values contained within subregions of
the similarity map reflect the how much the subregion con-
tributes to the match with the corresponding images. This
subselection allows for database images to be sorted based
on the contribution to the query image’s similarity score at
the region of interest. Figure 9 shows the most similar im-
age from the three most similar classes for both whole im-
age similarity and also using the highlighted sub-regions of
the image. This modification allows for object- or region-
specific image retrieval. For example, in the Google Land-
marks dataset, searches can be constrained to find land-
marks with similar archways or buildings with orange roofs.
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Class 1

Class 2

Class 3

(a) Google Landmarks

Class 1

Class 2

Class 3

(b) VGG-Faces

Class 1

Class 2

Class 3

(c) TraffickCam Hotel Rooms

Figure 8: Each row shows the regions of the images most
representative of the class membership.

5. Conclusions

We present an approach to visualize the image regions
responsible for pairwise similarity in an embedding net-
work. While some previous work visualizes a few of these

components, we find that the top few components do not
explain most of the similarity. Our approach explicitly de-
composes the entire similarity score between two images
and assigns it to the relevant image regions.

We illustrate a number of possible ways to use this vi-
sualization tool, exploring differences in networks trained
with max pooling and average pooling, illustrating how the
focus of a network changes during training, and offering an
approach that uses this spatial similarity decomposition to
search for matches to objects or sub-regions in an image.

The research area of similarity networks is quite active,
exploring variations in the pooling strategies, learned or ex-
plicitly pre-defined linear transforms of the pooled feature,
and boosting and ensemble strategies. We will share our
code with the goal that the visualizations will provide addi-
tional insight about how embeddings are affected by these
algorithmic choices.
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Query Image Top Matches

Whole Image

Region 1

Region 2

(a) Google Landmarks

Whole Image

Region 1

Region 2

(b) VGG-Faces

Whole Image

Region 1

Region 2

(c) TraffickCam

Figure 9: Object- and Region-Specific Retrieval. We show the most similar image from the three most similar classes when
using either the whole image as the query input, or selected sub-regions of the image. This allows for object- or region-
specific image retrieval; for example, “find landmarks with similar archways”, “find faces with brunette bangs” or “find
hotels with similar looking bedspreads.”

8



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

WACV
#96

WACV
#96

WACV 2018 Submission #96. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[9] Y. Movshovitz-Attias, A. Toshev, T. K. Leung,
S. Ioffe, and S. Singh. No fuss distance metric learn-
ing using proxies. In IEEE International Conference
on Computer Vision, Oct 2017.

[10] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep
face recognition. In British Machine Vision Confer-
ence, 2015.
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