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When a video is captured by a camera moving through a scene, the changing
images encode the camera motion parameters and the structure of the scene.
This proposal studies models of scene structure, and their relationships to sim-
ple functions of the spatial and temporal derivatives in the sequence of images.
This study has three major thrusts. First, we study noise properties of image
measurements in order to determine what measurements are robust. Second, we
provide and analyze an algorithm to simultaneously provide a camera motion
estimate and a piecewise planar model of the scene which respects scene depth
discontinuities. Third, we study methods of matching and reconciling informa-
tion from disparate camera viewpoints. These goals all directly relate to the

problem of creating viewpoint independent descriptions of arbitrary scenes from
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general camera motions. This relates to the study of human perception and has

applications to Virtual Reality, Video Editing, Graphics, and Robotics.
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Chapter 1

Introduction

A video is a sequence of images taken by a camera moving through a scene. The
act of taking a picture defines a relationship between three things: the scene,
the position and calibration of the camera, and the image. This dissertation is
concerned with creating accurate models of the scene from these images. All
approaches to this problem can be characterized in terms of the representational
assumptions that they make - or, how they answer the following specific ques-

tions:
o What measurements can be made on one or multiple images?
o What assumptions are made about the camera projection and calibration?
e What are allowable camera motions?

o What are appropriate scene models?
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I choose to consider a system with the following attributes. The scene model
is a set of small planar patches of arbitrary orientation. The camera motion is
arbitrary but continuous. I assume the camera is a pinhole camera, and that I
have complete knowledge of the camera calibration (the focal length, etc.). I use
only spatio-temporal derivatives of the image intensity, as opposed to matching
sets of feature points.

These choices are not arbitrary; rather, they define a vision system appro-
priate to analyze data from standard video cameras in a large variety of natural
scenes. The choice to use well segmented planar patches of arbitrary orientation
reflects a trade off between the representational complexity and accuracy of the
scene model. While the optics of most video cameras are quite complicated, a
pinhole camera model strikes a balance between the accuracy and complexity
of the projection model. The assumption of perfect knowledge of the camera
calibration serves to focus this study; recent work on self calibration from video
sequences makes this a plausible assumption. Continuous camera motion is ap-
propriate for a hand held video camera that is continuously capturing images,
any further limitations on the camera movement would detract from the general
usefulness of the algorithm.

This dissertation has three major contributions. The first is an explanation
of why image derivatives are robust measurements of changing images. The

alternative, which is most commonly used in computer vision algorithms, is to
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compute the optic flow, a two dimensional vector field describing the motion of
points from one image to the next. An analysis of common techniques to find
this optic flow field is presented in Chapter 3. In the presence of noise in the
image, there is a bias in the computed optic flow field. This bias is dependent
upon the local image motion, the local image texture, and the amount of noise
in the system. This formulation accurately predicts several classes of perceptual
illusions, involving segmentation of moving patterns and the mis-estimation of
motion.

The second contribution includes an implementation of a method to com-
pute the instantaneous velocity of a video camera and the scene depth. This
implementation includes techniques for automatically finding an appropriate seg-
mentation of the scene. The algorithm then essentially calculates the value of an
error function over the space of possible translational directions of the camera.
Chapter 4 gives an experimental study of the topography of this error surface.
The main result is that in many cases the minimum of this function is ambiguous
— and therefore it is impossible to accurately solve for the direction the camera
is moving. It is possible to consistently find a small set of plausible transla-
tion directions. This set tends to be extended along a line, these are translation
directions that lie along a “valley” or extended minima of the error function.

The final contribution of this dissertation is a study of how to use visual in-

formation captured from multiple viewpoints. This additional information serves
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to fix the camera motion estimate for each viewpoint along its valley, and defines
a method for combining scene reconstructions. Chapter 5 defines the geometry
involved in the linking process, both in the simple case of linking subsequent
frames from video sequence, and the more powerful constraint of linking cam-
era viewpoints that are further apart. This process involves the matching of
3D representations generated from each viewpoint. Because it uses more data,

it is intrinsically more powerful than current state of the art image matching

techniques.
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Chapter 2

Preliminaries

There are a large number of events that have to be modeled in a video analysis
system. The camera moves along some path through space. As it takes each
image, the location of the camera and its internal parameters define the precise
relationship between the position of a point in the space, and the position of the
image of that point. The images change continuously as the camera moves. Mea-
suring how these images change defines a constraint between the motion of the
camera and the scene. These constraints can be combined to estimate the scene
structure and camera motion on the basis of these image measurements. This
chapter details the mathematics that can specify these events, and the previous

work that has been done along similar paths.
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2.1 How an Image is Forined

Since the initial input is a sequence of images captured by a camera, it is conve-
nient to work with a Cartesian coordinate system OXY Z attached to the camera.
Point O is the nodal point of the camera and the Z axis is aligned with the optical
axis. How does the 3D world project onto the imaging surface (retina)? Even an
off-the-shelf video camera is a quite complicated optical instrument whose precise
modeling may require a lot of effort. We need to strike a balance between sim-
plicity of the model and its accuracy. The choice most often made in Computer
Vision literature, a simple pinhole camera model, is sufficient in most cases. The
images are formed by perspective projection on the retina. If the ignored optical
effects, such as radial distortion, are too strong, the model can still be used if a
pre-calibration step is performed.

The planar retina (also called the image plane) is illustrated in Figure 2.1.
The image plane is perpendicular to the optical axis of the camera at distance f
from the nodal point. The most simple case is a normalized camera, where the
exact mapping between 3D directions and image points is known, and the focal
length f =1.

With perspective projection, the image of a scene point R = (X,Y, Z) is:

r= f ﬁn'—i (2.1)
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Figure 2.1: Image formation on a planar retina.

where z = [0,0,1]T is the unit vector in the direction of the optical axis. The
depth of the scene point, Z, is the dot product R - z, the distance along the
optical axis from the camera center to the scene point.

In an uncalibrated camera, the relationship between the position of points
in the world and the position of their projections on the image is dependent
upon the calibration matrix K. The mapping between a scene point R and the
corresponding image point r can be concisely written as [14]

KR

"Rz

(2.2)

where 2 is again the unit vector in the direction of the Z axis. Knowledge of
this matrix K allows an image to be warped to appear as if it were taken by a
normalized camera.

The problem of determining K from arbitrary images is termed self-calibration,
early studies demonstrated the theoretical feasibility of self calibration [43, 14, 23].

More recent work gives a direct algorithm to find the parameters of the calibra-
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tion matrix, using only image derivatives from a video sequence of at least four
images which include at least two different rotational motions [9]. The work in
this thesis assumes that the camera has been calibrated with this technique, or an
equivalent one, so the projection of world points onto an image can be modeled

with the simpler form of equation 2.1.

2.2 Image Measurements

For a dense image sequence, the images captured by a camera are a dense sam-
pling of the image intensity function I. I(z,y,t) is the image intensity at image
position (z,y) at time t. This sampling of the intensity function is smoothed with
a Gaussian filter to allow the use of first order derivatives. In this study, “image
measurements” refers to the spatial and temporal derivatives of the Gaussian
smoothed images, and these derivatives I, I, I; are assumed to be derivatives of
the smoothed images.

The relative motion between the camera and the scene induces a 3D velocity
field with respect to a coordinate system fixed at the camera center. The pro-
jection of this 3D motion onto the image plane is called the motion field. The
observed motion of brightness patterns across the image is the optic flow field.
Under some conditions, such as a translating Lambertian surface with constant

illumination [62], these fields are identical. In extreme cases, they may have little
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relationship to each other [29], but typically, in regions of some variance of image
intensity, the optic flow field is a close approximation to the motion field.

The standard assumption allowing visual motion analysis is that the same
point in space always has the same intensity in the image. This image brightness

constancy assumption leads to the constraint [29]:

dI _9ldz dldy 3l

=T maTmata

(2.3)

This equation relates the image velocity u = (%’ %) with the spatio-temporal

derivatives of the image intensity function.

2.3 Camera Motion

The instantaneous motion of a camera relative to the scene can be described as
a translational velocity t and rotational velocity w around the nodal point of the

camera. One can then derive the motion of a point on the image plane to be [41]:

1

Uer(F) + Upa(F) = — % (Zzx(txr))+ 7

(2% (rx (wxr)))

(2.4)
a vector which has a component dependent upon both the translational velocity

and the depth of the point, and a component solely related to the rotation of the

camera.
From image measurements alone, it is not possible to determine the vector

u(r), because equation 2.3 gives only one constraint on this two-dimensional
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vector. Only the component of this vector in the direction of the image gradient
is constrained. The constrained motion in the direction of the image gradient is
called the normal flow. If n is a unit vector in the gradient direction on the image

plane (so that vector n -z = 0), the normal flow at image point r is:
1
un(r,n) = —E(i x(txr)-n+(Zx(rx(wxr)))-n (2.5)

This normal flow vector is considered to be a direct image measurement be-

cause it is a function of the image derivatives at r [29]:

I.1, L1 >

up(r,n) ={ —m———=, ———= 2.6
(ron) <¢ﬁT AT (25)

For every pixel ¢, we collect the measurable image quantities to define:

-1 3 Inzy— I, (y* +1)
a; = -1, and, b; = _Iz'i(zz +1) - Izy (2.7)
Iz + Iy Iz + Ly
Then, we can write explicitly [49]:
— l -

I¢i+b;-w+7a;-t=0 (2.8)

which concisely describes how the image measurements at each pixel (&;, b, I,)
constrain the unknown camera motion (t,w) and the scene structure 'z!.' This
equation also illustrates the ’scale ambiguity’. There is an inverse relationship
between the scale of  and the magnitude of the translation t. Because of this,

the instantaneous camera motion (t,w) has only five degrees of freedom.

10
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2.4 Direct Solutions for Structure and Motion

The geometric intuition of all direct algorithms computing the motion of the cam-
era is to find parameters (t,w) which minimize the deviation from constraint 2.8
defined at every image position. Solving for the structure and motion requires
some additional constraint. Otherwise, the set of constraints defined by Equa-
tion 2.8 gives a system with n equations and n + 5 parameters — a completely
independent depth at all n points in an image and 5 parameters of motion.
Negahdaripour and Horn consider one such assumption, of interest in following
sections; the case when the scene in view is a plane [49]. For this case, the inverse

depth of each pixel ¢ can be expressed as: ZL_ =r;-q. Equation 2.8 then becomes
I, +b;-w+(q-r)a;-t=0 (2.9)

This can be extended to solve for scenes where the inverse scene depth is a
polynomial function of the image coordinates. To find an estimate of inverse
depth that is quadratic, define 'ZlT = r] M 4(r.)Fi, where M is an upper-triangular
matrix of coefficients to the quadratic surface. Then, each image measurement

defines the constraint:
bi-w+ (rfMr)a; -t =0 (2.10)

This can be generalized to any polynomial model of %, but the number of param-

eters grows quickly and the solution may not be stable for values of n > 3 [52].

11
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Furthermore, a single polynomial function is not often an appropriate model of
scene depth.

Heel [25] alternately computes motion parameters and structure parameters
on successive frames and uses a Kalman filter to predict the depth across multiple
frames. This solution has promise if the camera motion does not vary rapidly
and if there is no noise in the image measurements. To avoid difficulties with
image noise, it is necessary to compute depth at a larger scale than a pixel.

Hanna [22] uses a piecewise planar model of a scene, with fixed patches in
the image constrained to lie on the same depth plane; this reduces the number
of variables in the depth representation to a function of the number of depth
patches rather than the number of image pixels. This model give good results
only for scenes that do not have sharp depth discontinuities.

Other solutions make use of the 'positive depth constraint’. It is possible to
define (t,w) such that the best 3 at a pixel for Equation 2.8 is negative. This
corresponds to a point lying behind the camera. These points are not imaged.
Therefore requiring that the computed depth of all visible point is positive gives
a constraint on the camera motion. The first methods to enforce this constraint
assumed a particular form of camera motion. Horn and Weldon [33] solve for
positive depth in the case of only translation, later this was generalized to the

case when there is a known bound on the amount of camera rotation [3, 55].

12
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Assuming only that the depth is positive, Fermiiller solves the general case for
arbitrary camera motions by searching for patterns of normal flow measurements
in particular directions. The sign of the normal flow measurements in these
patterns is sufficient to find both the translation and rotation {15, 16, 17].

These methods all use constraints on the % values to solve for the structure
of the scene and the motion of the camera simultaneously. However, the function
they minimize does not have a direct geometric relationship to the scene structure.
A sequence of studies has looked more directly at this question, specifically: What
happens to the solution for 'ZIT at a pixel when the camera motion estimate is
wrong?

What happens is that the estimate % is wrong — and when a scene is recon-
structed with the wrong camera parameters, the scene depth is distorted. This
distortion has an intricate structure. It is dependent upon the local image pat-
terns, the real camera motion and the scene [4, 5, 11, 19]. Because of this, a
scene reconstructed with the incorrect camera motion will be very rugged, with
few smooth regions and many discontinuities. Since the world tends to be a set
of relatively smooth objects separated by discrete discontinuities, this leads to an
intuition for a new constraint. Specifically, search for the motion that minimizes
the overall ruggedness of the scene

An implementation of this constraint was formulated by Brodsky {7]. This

algorithm divides the image into small patches and searches for the motion that

13
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minimizes the variance of the depth estimate at each patch. It turns out that

this constraint can be written as a weighting of the constraints at each pixel. If

-é- is the mean inverse depth computed on a patch, then:
1 1 ~ 1
——7=V.-I,.+b.--w+7§.--t 2.11
7 2 (1 z ) (2.11)

with the weighting of the constraint function at each pixel:

1
Vi= A (2.12)

There are other weighting functions that give intuitive geometric interpreta-
tions. Set V; = 1 everywhere to define the constraint directly related to measur-
able intensity values. If V; = 7},;7’3, then each constraint measures the sum of
squared differences of the normal flow and the appropriate projection of the optic
flow predicted from the motion parameters. This measure has been used in [44].
These differences are illustrated in Table 2.4.

Enforcing this constraint is efficient and similar, in implementation, to previ-
ous work [22, 35, 59] on fitting parameterized models of scene depth or optic flow

directly to measurements of image derivatives.

2.5 Ambiguities in Structure from Motion

Chapter 4 is partly an experimental study of ambiguities in the solution for the
structure and motion of the scene. Previous work on the ambiguity inherent in

the problem has typically considered the case where there are correspondences

14
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Table 2.1: Summary of geometric meaning for natural error functions
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between the images. This work can be divided into absolute ambiguities, cases
where there is no possible way to distinguish between multiple interpretations of
the scene, and noise based ambiguities, situations which become ambiguous given
that the image points are measured with some error.

There exists a set of surfaces for which even a zero noise motion field may
be ambiguous. That is, there exists camera motions and surfaces such that, a
different camera motion, and a different surface can lead to exactly the same
image measurements. These two interpretations cannot be distinguished. These
surfaces are hyperboloids of one sheet [30], and the ambiguity only exists if the
camera lies also on the hyperboloid.

The general case of ambiguity caused by errors in optic flow measurements
has received considerable attentions for a variety of assumptions; orthographic
projection and perspective projection, two frames or many frames, and, in the
case of many frames, smoothly varying motions or arbitrary motions (for ex-
ample {69, 2, 50, 67]). In general, the ambiguity is correlated with the following
factors: small field of view, distance to the scene, small camera translation, sparse
flow measurements and correlated noise between flow measurements [2]. The am-
biguity is sometimes called the “bas-relief” ambiguity because the reconstructed
3D points are scaled linearly in the depth dimension.

There have also been studies of ambiguities in structure from motion without

using explicit point correspondences. Brodsky has studied the absolute ambigu-

16
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ities when the input data is only the direction (not the magnitude) of the flow
field. If more than half of the viewing sphere is imaged, there is no ambiguity.
Otherwise, the only ambiguity arises if the error in the estimated translation is
perpendicular to the error in estimated rotation and the depth of the scene lies
between a particular second and third order surface [8]. Fermiiller has studied
the negative depth constraint using normal flow as the basic image measurement.
In the case of noise in these measurements, the motion estimates that minimize
the negative depth estimates are constrained so that the translational estimate
lies on a line connecting the image center to the real translation, and the rota-
tional error is perpendicular to the translational error. When the entire sphere is
imaged, given a rotational error, the optimal translation is the correct one; given

a translational error, the optimal rotational error is again perpendicular [18].

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3

Estimation of Optic Flow

3.1 Introduction

The set of all the image intensity measurements /(z,y,t) is exactly the informa-
tion recorded in a video sequence. However, this set of pixel intensities is not
closely related to either the camera motion or the scene structure. Other represen-
tations of how the images are changing are easier to analyze. The most common
approach computes two-dimensional image measurements which correspond to
the velocity measurements of image patterns, called optical flow. This chapter
demonstrates that optic flow is very hard to estimate; common approaches to
calculate the optic flow vector field give a bias. This bias is related to the local
image structure, the true motion, and the distribution of error in the local image
measurements. To estimate, or correct for the bias, it is necessary to estimate

this error distribution, a task that is especially difficult for sensors that move

18
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through natural scenes. The form of this bias also explains a number of percep-
tual illusions. The algorithms that are presented in subsequent chapters use only
the derivatives of the image intensity function, a representation of image change

that does not suffer from this bias.

3.2 Computing Optic Flow

The optical flow field represents an approximation of the projection of the field
of motion vectors of the 3D scene points on the image. Computational consid-
erations as well as biological measurements suggest that optical flow is derived
in a two-stage process[l, 66]. In a first stage, from local image measurements,
the velocity component perpendicular to linear features is computed. The situa-
tion is illustrated in Figure 3.2. The velocity vector of a one-dimensional feature
(such as a line or piece of contour) viewed through a small aperture is inherently
ambiguous, as it is consistent with any vector falling on the constraint line [63].
Only the velocity component perpendicular to the feature in the direction of the
motion is well defined. In the computational literature this component is referred
to as normal flow and the ambiguity is referred to as the aperture problem[42].
In a second stage, normal flow measurements from features in different direc-
tions residing in a neighborhood are combined in order to derive the complete
optical flow. The combination of flow vectors, however, constitutes an intricate

computational problem. Computational problems arise at the locations of flow

19
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Figure 3.1: A pattern similar to one by Ouchi [51]. Slight motion of the page
will give a distinct impression of independent motion.

discontinuities [29, 32}, which are due to objects at different depths or differently
moving scene elements. Within small image patches arising from coherently mov-
ing, smooth parts of the scene, the optical flow field is well approximated with a
parametric model varying, for example, as a constant, linear or quadratic func-
tion of the image coordinates [6]. At the locations of discontinuities, however, it
is not, and if image measurements across discontinuities are combined, very er-
roneous optical flow measurements may be derived [32]. To avoid the smoothing
over boundaries, knowledge of where the discontinuities are seems to be necessary,
which is difficult to obtain from local image measurements.

Even within areas of smooth flow, the computation of optical flow poses a
problem. The focus of this chapter is to show that for statistical reasons it is

very difficult to obtain accurate optical flow estimates. The ideas underlying

20
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the statistical explanation of optical flow estimation are as follows: Local one-
dimensional flow components — normal flow measurements — are estimated
with error. We assume that the estimates of these components are unbiased.
However, when combining the one-dimensional measurements in a neighborhood
an estimate of optical flow is obtained which is biased. The estimated value
depends on the distribution of image gradients, the actual flow, and the error in
the normal flow.

The statistical model explains a number of psychophysical findings, which
are concerned with the perception of motion in patterns with a sparse, limited
set of spatial frequencies. The gradient distribution in the patterns is such that
the bias is highly pronounced. In particular, we elaborate on the Ouchi illusion
and related experiments (27, 28, 38, 37]. The Ouchi illusion, as shown in Figure
3.1, consists of two black-and-white rectangular checkerboard patterns oriented
in orthogonal directions — a background orientation surrounding an inner disc.
Scanning eye movements over these patterns generate the striking perception
of relative movement of the inner disc. Our explanation lies in the estimation
of differently biased flow vectors in the two patterns which in turn give rise to
different 3D motion estimates that cause one pattern to move relative to the
other. Furthermore, we explain a number of observations found in the study of
moving plaids. These two-dimensional patterns consist of two one-dimensional

gratings (with sine, cosine, or rectangular underlying waveforms) with different

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(@ (®)

Figure 3.2: Aperture problem: (a) Line feature observed through a small aper-
ture at time ¢. (b) At time ¢t + 8t the feature has moved to a new position. It
is not possible to determine exactly where each point has moved to. From local
measurements only the flow component perpendicular to the line feature can be
computed.

orientations whose motion appears coherent or incoherent depending on various
parameters such as contrast, speed, and spatial frequency. They were introduced
originally by Adelson and Movshon in [1] and have since then been studied ex-
tensively to assess models used in the explanation of human flow computation
(34, 68]. The combination of measurements of patterns different than plaids has
sought to determine when smooth contours are seen to move rigidly as opposed
to non-rigidly [47, 48].

Models used in the computational and biological literature to estimate the
optical flow in a two-stage process can be placed in roughly two categories, those
modeling computations in image space and those in spatiotemporal frequency
space. The modeling conducted in this chapter concentrates on the first category.

In image space models, the one-dimensional motion component of features is
estimated by assuming the conservation of image intensity or some function of

it. The gradient based approaches assume that image intensity does not change
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over a small time interval. Denoting the image intensity as I, its spatial (in z
and y direction) and temporal derivatives as I, I, and I;, respectively, and the
velocity of image points in z and y direction as u and v, the following constraint

is obtained:
Lu+lv+1,=0 (3.1)

This equation, called the optical flow constraint equation [31], defines the compo-
nent of flow in the direction of spatial gradient (/;, I,)—the normal flow. Other,
more elaborate techniques consider functions of the image intensity or the local
intensity distribution to be conserved. In order to derive the optic flow from
the normal flow measurements in a neighborhood, a second constraint has to be
invoked. Usually it is assumed that optical flow varies smoothly. This is achieved
by either modeling the flow field explicitly as a polynomial in the image coordi-
nates, or modeling the smoothness through some function in the derivatives of
the flow values leading to a regularization formulation (26, 29, 53).

The estimation of flow then amounts to an optimization problem minimizing
some function of deviation from the model; usually, a least squares minimization is
used. The intersection of constraints (IOC) model often used in the psychological
literature is a typical instance of a smoothness constraint. It assumes the optical
flow to be constant within a neighborhood, an assumption that is justified within
small regions, or if the motion in view originates in a translation due to a fronto-

parallel plane.
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In the modeling conducted here, we employ the optical flow constraint equa-
tion and assume constant flow within a neighborhood. As the psychological ex-
periments analyzed in this chapter are concerned with translations in the fronto-
parallel plane, this model is appropriate and simplifies the exposition. For com-
bining normal flow vectors into optical flow, we use the least squares estimation
model. We will show, however, that the bias found in the estimation of flow is
not due to the particular models employed, rather it is inherent in the geometry
of the constraints placed on combining one-dimensional motion components into
optical flow.

The remainder of this chapter is organized as follows: In Section 3.3, we dis-
cuss the psychophysical studies detailing the perception of the Quchi illusion and
related biases in the perceptions of plaid motion. In Section 3.4, we analyze an
[IOC type model to compute estimates of patch velocity directly from noisy mea-
surements of image derivatives. We then discuss the bias and provide graphic
illustrations of the estimated flow for the patterns of limited sets of gradient di-
rections occurring in the psychophysical stimuli. In Section 3.5, this analysis is
used to explain why local patch velocities do not combine to form a coherent
perception of pattern motion in the Ouchi illusions and related patterns, and
also to explain both coherence judgments and directional biases in the percep-
tion of plaid motion. Section 3.6 is devoted to a general discussion of statistical

techniques proposed in the literature on estimation theory to deal with the noise
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model used in the analysis and the inherent problems in applying these tech-
niques to the problem of optical flow estimation. As will be shown, correcting
the bias would require knowledge of noise not attainable from a limited set of
measurements of the particular psychophysical stimuli—thus demonstrating that

the bias is not a peculiarity of the particular computational models we employ.

3.3 Psychophysical Experiments on Motion Per-
ception

The striking illusion discovered in 1977 by the graphic artist H. Ouchi is evoked
by a stationary picture which consists of a checkerboard pattern superimposed on
another rectangular checkerboard oriented in orthogonal direction (Figure 3.1).
Small retinal motions, or slight movements of the paper, evince a segmentation
of the inset of the pattern, and motion of this inset relative to the surround. The
illusion remains under a variety of viewing distances and angles. Some observers
report an apparent depth discontinuity, with the center floating as it moves atop
the background [58]. Here, we summarize the findings from psychophysical ex-
periments which have studied this illusion specifically, and then continue with
results of plaid experiments which attempt to find general parameters of how

local flow measurements are combined.
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Khang and Essock [38, 37] performed experiments with a number of varia-
tions of the original pattern to evaluate the impact of various parameters, such
as orientation and size of the pattern elements, luminance, and blurring, on the
perceived strength of the illusion. In most of the figures they used a simplified
version of the illusion with just a one-dimensional square wave grating present in
the inset. We concentrate here on the first set of experiments in [38] conducted
with only two-dimensional patterns. In these experiments they replaced the pe-
riodic rectangular checkerboard patterns in the inset and surround by various
other 2D periodic patterns, each composed of two 1D functions, one of a short
frequency and one of an orthogonal longer frequency.

The particular patterns used, namely the original rectangular checkerboard,
a sinusoidal, a trapezoidal, a triangular, a sawtooth and an added sinusoidal
pattern are described and shown in Figure 3.3. Subjects were asked to view the
patterns freely and rate the magnitude of the apparent motion; the results of
their findings are displayed in Figure 3.4.

The second set of studies [27, 28] used a simplified stimulus replacing the 2D
patterns in the inset and surround with sinusoidally modulated contrast gratings
of the same spatial frequency. The two gratings as shown in Figure 3.5a were
tilted symmetrically about the vertical axis: /2 degrees to the left and right,
respectively. To give the illusion, this stimulus was presented moving vertically

on a computer screen, which can be simulated through vertical up-and-down
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Figure 3.3: Variations of the OQuchi pattern used in [38]. Patterns were formed by
combining two one-dimensional periodic functions. (a) Rectangular checkerboard
composed by muitiplying a horizontal square-wave and a vertical square-wave
function. (b) Sawtooth pattern composed of the product of a sawtooth-wave and
a square-wave function. (c) Trapezoidal pattern composed of the product of a
trapezoidal-wave and a square-wave function. (d) Triangular pattern composed
of the product of a triangular wave and a square-wave function. (e) Sinusoidal
pattern composed of the product of a horizontal sine wave and a vertical sine
wave function. (f) Added sinusoidal pattern composed by adding a horizontal
sine-wave and a vertical sine-wave function.
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Figure 3.4: Means and standard errors of the magnitude of the motion illusion
as a function of the six different 2D patterns [38).

movements of the paper. The apparent motion of the inset is seen orthogonal
to the grating orientation, oriented in the direction whose angle with the overall
motion of the paper is less than 90°.

The parameters, which they varied in their figures, were the spatial frequencies
and the angle between the gratings. With short presentation times preventing
the possibility of tracking motions, they found that the strength of the illusion
of relative motion decreases with the angle between the gratings, and strong
responses only for angles smaller than 90 degrees and frequencies between 6-12
cycles/degree as shown in Figure 3.5b.

As a possible explanation for the illusion, Hine et al. [27, 28] suggest an
anomaly of the visual system in integrating local velocity signals into a rigid per-
cept - component motion vectors that differ in direction by more than 120° stim-

ulate entirely different grating cells and motion channels and are not combined.
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Figure 3.5: (a) Reduced stimulus in experiments used in [27, 28]. The surround
and inset gratings were tilted symmetrically about the vertical meridian, each by
an angle /2 from this meridian. (b) Strength of the relative illusion (evaluated
by average ratings) as a function of the angle # and spatial frequency of the
stimulus, plotted for each observer. In HV the inset was vertical and surround

horizontal. The acute angles (8 < 90°) produced a greater illusory effect than
obtuse angles.

a

(b)

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Khang and Essock [37, 38], cite as a possible cause the interactions between spa-
tially overlapping ON and OFF units — in particular, saturation and non-linear
response profiles of visual channels responsive to brightness changes leads to an
overall impression of motion. In particular, there is (a) a non-linear response of
channels responding to luminance change over time, and (b) the visual system
cannot report accurate local pattern intensity if contrast reversals occur abruptly
over large parts of the image. These are distortions of the spatial and temporal
image intensity derivatives — a formal analysis of the effects of these errors on
the integration of local flow measurements is the focus of this chapter.

The integration of local velocity signals has been studied extensively in the
context of understanding the perception of moving plaids. Plaids are combina-
tions of two wave gratings of different orientations each moving with a (typically
identical) constant speed. For any such “moving plaid”, there is always some
planar velocity the whole pattern can undergo which would produce exactly the
same retinal stimuli. However, for particular variations of the spatial frequencies
of the component gratings, their relative orientations, contrasts or speeds, human
perception is of two separate motions, with one grating “sliding” over the other.
In particular cases, one can perceive a constant, coherent motion of the pattern,
biased away from the unique velocity which would account for all retinal signals.

Whether or not a particular plaid pattern is judged to be coherent depends

upon the contrast, spatial frequency and motion directions of the components [1].
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If the component motion directions differ by more than 90 degrees, the plaid
motion is not perceived as coherent for a variety of contrast and spatial frequency
conditions [39]. A plaid made of high contrast orthogonal gratings is perceived
as coherent despite spatial frequency differences of up to 3 octaves [56]. If the
component gratings are square waves, the luminance profile of the intersection
regions also changes the perception of coherence, independently of other changes
in spatial frequency or contrast [60].

The motion of a coherent plaid pattern can be theoretically computed using
the intersection of constraints model (IOC) — the vector component obtained
from each individual grating constrains the local velocity vector to lie upon a
line in velocity space, the intersection of the lines defines the motion of the
plaid [1}. Some plaid patterns are perceived as coherently moving, but with
a velocity different than that predicted by the IOC model. This bias affects
both the direction and magnitude of the perceived velocity. The velocity of
plaid patterns made of different one dimensional gratings is biased towards the
grating of higher contrast [60, 40]. For type 2 plaids, where the IOC velocity
is not between the component directions [20], the bias is towards the average of
the component vectors (21, 10]. Plaids comprised of gratings of different spatial
frequencies are also biased in both direction and length [57, 40]. In no case is the

there an overestimate of the plaid velocity compared to the IOC prediction.
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Monte-Carlo experiments have attempted to determine the expected value
and variance of velocity calculated with the IOC method, for the case where the
one dimensional motion is measured with some Gaussian distributed error (21,
47]. Both experiments proceeded by generating a speed measurement for each
component direction, corrupting this measurement with Gaussian noise, and then
computing the IOC prediction from this pair of constraints. The distribution of
estimates created in this method is not biased away from the IOC motion [21],
and the variance of these estimates is correlated with accuracy of directional
perception [47]. The next section extends the analysis of the IOC model to
accept more than two noisy local motion measurements, and finds a bias that is

dependent on the distributions of the local orientations.

3.4 Analysis of Optical Flow Estimation

We analyze the estimation of optical flow from local measurements of changes in
the image intensity using least squares minimization of the optic flow constraint
equation. We assume that the flow is constant within the region of gradient
measurements. As input we consider a set of estimated spatial and temporal

gradient measurements (I, Iy, I;,) which are compounded of the actual values
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(Ir;, I, It,) and noise (ng,,n,,,ny).

a

I, =I; +n (3.2)
I, =1, +n, (3.3)
Iy = I, +n, (3.4)
with
] g
L=|r [, | ad L=|] (3.5)
| J .

The optical flow constraint equation relates the locally image intensity deriva-
tives to the image velocity. Assuming that the optical flow u = (u, v) is constant
within the region considered, it thus is described by the following over-determined

system of equations:
fu+i =0 (3.6)
Solving (3.6) by a standard least squares estimation for the flow u yields
u= - (i71,) ' I71, (3.7)

We consider the effects of the following noise model. The measurement of each
image derivative is corrupted by an additive error, these errors are zero mean

Gaussian random variables, independent at different image locations, but with
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possible dependencies between the spatial and temporal derivatives at one lo-
cation. The second moments of such noise are simply described through a co-
variance matrix, with one remark. As the model should provide measurements
which are symmetric with respect to reflections along the coordinate axes, we
assume the noise component due to correlation between the spatial and tempo-
ral derivatives dependent in sign on the sign of the derivatives. If one of the
derivatives is positive and the other is negative, such as in the first quadrant,
we assume positive correlation, otherwise we require sign change. This kind of
noise would result if the derivative operations are carried out by a symmetric set
of unidirectional derivative operators which are activated selectively depending
on the sign of the gradients, and thus collectively performing either forward or
backward differentiation.

To obtain a more compressed notation, we also assume the noise in the two
spatial components is equal. This might be an oversimplification for real systems,
but it does not affect the forthcoming analysis. This means that the variances

and covariances of the noise components are given as:
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E(ny) = E(n,) = E(n,)=0
E(n) = o2, E(n) = E(n},) = o?
E(n;n,)=0

E(n;;n,) = 0 = —sgn(Iz. 1) - ou
E(nyny) = oy = —sgn(ly;I;;) - ot

a

In the absence of error in the spatial gradient measurements I,, standard least
squares methods give an unbiased estimator. The expected value E(u), obtained
from (3.7), corresponds to the true optical flow uo.

However, errors in this measurement matrix can lead to a bias such that the
expected value of the estimated flow 4 = FE(u) is no longer the true optical
flow. The form of this bias is apparent in the second order Taylor expansion
of the expected value of the least squares solution as a function of the variance
and covariances of the noise in the measurement matrices. The first order terms

vanish, the only non zero terms that remain in the expansion at zero noise (n = 0)

are:
= o 5 (V1) g T
u = U : an(z'y")ig n=0 )
o? -1 a* N,
Z: on Adng-(M b)Jn:od’n;,»m,- + Z m(M b).lll=06"y.-m.» (3.8)

where M = f,ri, and b = ‘, i,.
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Algebraic manipulation of the above derivative leads to an expression of 4
which can be written as a sum of three components: the true optical flow uy,
a component which is due to the variance in the spatial derivative noise only
(which we refer to as variant noise), and a component which originates from the
covariance terms of the noise in the temporal and spatial measurements (which
we refer to as covariant noise). The exact expression is given in the appendix; its

dominant factors are

a=u - K, (Z M“uo) - Z K;M™! [:gg: ; (3.9)

with K, = 0? and K3, = ;"g;-(af+af+a,o¢+2£§; +(:—.’§‘;u+%‘,“-v)(af+2a,ag))
and M = IT1,, the matrix of uncorrupted spatial gradient values.

The effect of the gradient distribution on the bias of the computed flow can
be interpreted through its effect on the matrix M~!. In the case of a uniform
distribution of image gradients in the region where flow is computed, M, (and
therefore M~1) are multiples of the identity matrix, leading to a bias solely in
the length of the computed optical flow. Both the variant term and the covariant
term lead to an underestimation in the length. In a region where there is a
unique gradient vector, M will be of rank 1, this is the aperture problem. In
the general case, the bias can be understood by analyzing the eigenvectors of M.
As M is a real, symmetric matrix, its two eigenvectors are orthogonal to each

other with the direction of the eigenvector corresponding to the larger eigenvalue

dominated by the major direction of gradient measurements. M~! has the same

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



eigenvectors as M and inverse eigenvalues. Thus, the eigenvector corresponding
to the larger eigenvalue of M~! has a direction dominated by the normal to the
major orientation of image gradients, and the product of M~ with any vector is
most strongly influenced by this orientation. This effects the variant term to lead
to an underestimation in the length of the optical flow and a bias in direction
toward the major direction of gradients. The covariant term in most cases also
leads to an underestimation in the length and its influence on the direction can
be either way, toward or away from the major direction of gradients, depending
on the particular gradient distribution.

The following figures illustrate the bias. Figure 3.6 displays the expected
values of the noise terms for a gradient distribution as it occurs in one of the
regions of the Quchi illusion shown in Figure 3.1 with blocks four times longer
than they are wide. In particular, image gradients are in two orthogonal directions
with four times as many measurements in the one direction as in the other. The
actual optical flow is along the positive y axis and of length one and the plots show
the change in the bias as the relative angle between the perpendicular gradients
and the true flow direction varies. The angle 6 is measured between the positive
r axis and the direction of more gradients; the other gradient direction forms an
angle 8 + /2 with the z axis (see Figure 3.6a). Figures 3.6(b,c) show the error

in length and angle due to the variant term and Figures 3.6(d,e) show the same
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errors for the covariant terms. The plots are based on the exact second order
Taylor expansion as given in the appendix.

For such gradient distribution the bias can be understood rather easily. The
eigenvectors of M are in the directions of the two gradient measurements with
the larger eigenvalue corresponding to the more gradients. As up = (0,1), the
variant term in (3.9) leads to a bias in length as shown by the curve in Figure
3.6b, which takes its minimum at 0 and maximum at 7/2 (that is, when uq is
aligned with the major gradient direction). The error in angle is greatest for 7 /4
(that is, when ug is exactly between the two eigenvectors of M™! and it is 0 for
0 and 7/2 (Figure 3.6c). Overall, this means the bias due to the variant term
is largest when the major gradient direction is normal to the flow and is nearly
eliminated when it is aligned with the flow, that is, in the Ouchi pattern, when
the long edge of the block is perpendicular to the motion. It is always negative
in length and towards the major gradient direction.

Regarding the covariant term, as K3, in (3.9) is constant within the range
of 0 to m/2 and the vectors (sgn(0-,;),sgn(oy,)) are along the first and second
meridian, the covariant term can be written as KM™'a, with K a positive con-
stant and a = 4(1,1) + (-1,1) = (3,5). This leads to error functions, as shown
in Figures 3.6(d,e) which appear to be shifted to the left of the § axis with regard
to the variant bias. This bias is always negative in length and mostly toward the

minor gradient direction. The bias for angles § between 7 /2 and 7 is obtained
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Figure 3.6: (a) 16 measurements are in a direction at angle 6 from the z axis
and 4 measurements are in the direction 6 4 7/2. The optical flow is along the
positive y axis and of length one. (b) Expected error in length of variant term.
(c) Expected error in angle due to variant term measured in radians between the
expected flow and the actual flow. (d, e) Expected error in length and angle for
covariant term. The error has values o, = 0, = 0.15 and o, = 0.1 - 02.
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Figure 3.7: Expected length of optical flow and expected error in angle for the
gradient distribution and error terms of Figure 3.6.

from the above plots by reflecting the curves upon 7/2 and changing the sign for
the error in angle (such that the variant bias is always toward the major and the
covariant term mostly toward the minor direction).

To see the combined effect of the error terms, Figures 3.7(a,b) show the ex-
pected length of the estimated flow and the error in angle for the same configu-
ration as in Figure 3.6. As we expect the covariant to be much smaller than the
variant term, the graph is mostly determined by the latter.

Figure 3.8 illustrates the measurements of component motions in the reduced
Ouchi stimulus or symmetric plaids. The two gradient directions are symmetric
with regard to the y axis (the direction of motion) with the angle ¢ measured
between the direction of more gradients and the z axis (Figure 3.8a). The correct
pattern motion is of length one, and the bias is shown for a receptive field which

has more measurements in rightward component direction, simulating a receptive
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Figure 3.8: (a) Gradients motions in symmetric diagonal directions; For a re-
ceptive field with four times as many measurements in the rightward component
direction, (b, c) give the error in length and angle due to both variant and co-
variant term. The noise has values o, = 0, = 0.1 and o,, = 0.1 - 2. (d, €) show
the residual error of the least squares solution, when combining measurements in
a small receptive field (d) and a much larger receptive field (e).
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field position to receive more input from the inset of the pattern than the outset.
The same relative number of measurements would come from a plaid pattern
made from components of different frequency. Figure 3.8 (d,e) show the residual
of the least squares solution for different receptive field sizes — this residual is much
smaller in regions where the receptive field only gets input from one component
direction. A small receptive field gives a more clear demarcation of where no

optic flow fits well with the measured constraints, it is more difficult to localize

the boundary with a broader receptive field.

3.5 Explanation

The previous analysis underlies the nature of the Ouchi illusion. The relative
angles between the real motion and the predominant gradient direction differ
in the inset and the surround, so the regional velocity estimates are biased in
different ways. When, instead of freely viewing the pattern of Figure 3.1, the
page is moved in different directions, we observe that the illusory motion of the
inset is mostly a sliding motion orthogonal to the longer edges of the rectangle
and in the same general direction as the motion of the paper. Using Figure 3.7,
it can be verified that the projection of the vector resulting from the difference
of the bias vector in the inset and the bias vector in the surrounding area is, for
almost all angles in this direction. For example, when the motion is along the first

meridian (to the right and up), the bias in the inset is found in the graph at angle
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Figure 3.9: The residual regional motion vector field. The vectors shown are the
difference between the true motion and the calculated motion. One block is shown
to show the relative orientation for the inset and the outset of the illusion, the
width of the block gives the relative number of vertical and horizontal gradient
measures. The line from the center is the direction of the true motion. The
noise is Gaussian and the spatial gradient magnitude is one. In (a) and (b),
o, = 0, = 0.1 and there is no covariance; in (c) o, = 0, = 0.2 and o,, = 0.2 - 0,2,

= 7/4 and in the outset at § = 3r/4. The two bias vectors are of about the
same length, each in direction towards the gradients of the longer edge, and the
resulting projection of difference vectors is to the right. If the motion of the paper
is to the right, the difference in bias vectors is mostly due to length resulting in
a perceived motion to the right, and if the motion of the paper is upwards, the
difference vector is downwards. Its projection on the major gradient direction
of the inset is close to zero and thus hardly any illusory motion is perceived.
Figure 3.9 shows, for a set of true motions, the biases in the perceived motion.
The three bias fields were created with a variety of noise magnitudes, receptive
field sizes, and covariance between the noise in the gradient measurements to

show the robustness of the effect.
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We assume that in addition to computing flow the system also performs seg-
mentation, which is why a clear relative motion of the inset is seen. When expe-
riencing the Ouchi illusion under free viewing conditions, the triggering motion
is due to eye movements which can be approximated through random, fronto-
parallel translations. As the difference in the bias vectors of the inset and sur-
round has a significant projection on the dominant gradient direction of the inset
for a large range of angles (that is, directions of eye movements) the illusion is
easily experienced.

In the figures of Khang and Essock [38], patterns were used which have more
than just two spatial gradient directions. From the rectangular to the sawtooth,
the trapezoidal, the triangular, and the sinusoidal to the added sinusoidal, there
occurs an increase in the range of gradients. With the spreading of directions, the
amount of bias in the estimated flow decreases, as shown in Figure 3.10, which
explains the decrease in the perceived illusory motion found in the experiments.

Khang and Essock [38] have experimentally found the illusory motion to be
strongest when the rectangular grid has elements with size 15-50 min in height
4-8 min in width — corresponding to a lower frequency component of at least 0.6
cpd and a higher frequency component of less than 7.5 cpd.

In the reduced Ouchi illusion [27, 28] the inset and surround regions are each
sine-wave gratings of the same frequency, oriented in different directions (fig-

ure 3.5); solving for the pattern motion requires combining measurements from
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Figure 3.10: Expected length of optical flow and expected error in angle for the
following three gradient distributions. (a) Rectangular checkerboard pattern with
16 vectors in major and 4 vectors in minor gradient directions. (b) 12 vectors in
major direction, two vectors each at 10° and 20° to the left and right of major
direction, 2 vectors in minor direction, (90° from the major) and 2 vectors at 10°
to the left and right of the minor direction. (c) Approximation to distribution of
gradients of the function f(z,y) = sin(z) - sin(5y). The optical flow is (0, 1) and
os = g, = 0.15. With an increase in the spread of gradient directions, a decrease
in the amount of bias occurs.
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both the inset and the surround. However, the requirement that one never com-
bine measurements across a motion discontinuity requires a decision of whether
a set of one dimensional component measurements comes from one common pat-
tern motion or several. The residual of the least squares solution provides an apt
measure; in the absence of noise, the least squares solution of any set of compo-
nent motions deriving from a single pattern motion will be zero. In the presence
of noise, a relatively uniform distribution of component directions also gives a
consistently small residual. The problem is that, with noise, the residual of the
least squares solution for measurements from a limited set of orientations is in-
distinguishable from the residual of a solution when measurements are combined
from entirely different pattern motions.

Experimental results find the inset to be segmented consistently for grating
frequencies between 5 and 12 cpd [27, 28]. For grating speeds ranging from 0.2
to 2 cycles per degree (in this experiment the component speed changes with the
relative angle of the inset and surround), the human visual system is sensitive
to spatial frequencies between approximately 0.5 and 14 cycles per degree [36].
The receptive field size of cells in the visual pathway responding to gradients of
different frequencies varies; the size of the receptive field changes the accuracy
with which a boundary can be detected. Figure 3.8d shows the residual of a
least squares solution for measurements collected in very small regions — the

sudden spike in the residual magnitude when the region contains both orientations
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indicates a likely motion boundary. When collecting measurements from a larger
receptive field, as in figure 3.8 e, the position of the boundary is much less clear.

Figure 3.8(d,e) also shows that even in regions of a single direction, there is a
non-zero residual, the ratio of this background residual to the residual calculated
from measurements from differently oriented components determines whether or
not the pattern is perceived as coherent. Figure 3.11 presents the ratio of the
background residual to the residual of a receptive field on the boundary; all points
are computed with a Monte Carlo simulation adding Gaussian noise to the deriva-
tive measurements, points marked with an “x” show component motion angles
tested in the reduced ouchi stimulus (in [27], those with a “+” are component
motion angles in experimentally tested symmetric plaid stimuli [39]. This ratio
give a clear separation (on the y-axis) of the stimuli that were judged to be coher-
ent (those whose orientation difference was less than or equal to 45°), and those
that either gave a segmentation in the reduced ouchi stimulus or non-coherent
perception of plaid motion (the rest).

For plaid patterns that are perceived as coherent, we can predict the bias in the
perceived direction; Figure 3.12 explicitly considers the plaid patterns considered
by Smith and Edgar [57]. Since for gratings of different spatial frequency 90
degrees apart, the bias is in the direction of the major gradient direction (motion

direction of higher spatial frequency) the estimated flow of the plaid should be
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Figure 3.11: Ratio of background residual to boundary residual for noise ¢ = 0.1.
The x-axis is one half of the angle between component motion directions.

closer in direction to the motion of the higher spatial frequency grating than
predicted by the IOC model.

In summary, recalling that the bias in plaid velocity is in direction of the
eigenvector corresponding to the largest eigenvalue of M™!, we can directly map
changes in the plaid pattern to the expected bias. If the contrast of one com-
ponent sine-wave grating increases, the major eigenvector moves towards the
direction of motion of that component. For components of equal contrast and
frequency, the major eigenvector is the vector average of the component motion
vectors. In type II plaids, where both component motion vectors are on the

same side of the IOC motion, this gives a bias towards this vector average di-
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Figure 3.12: Expected length of optical flow and expected error in angle for
gradient distribution with measurements in the ratio (6 : 1, 3: 1 and 1 : 1) at
angle ¢ and ™ — ¢ from the z axis. The actual flow is along the y axis and of
length one. For the symmetric distribution in the ratio 1 : 1 no error in angle
occurs.

rection. The effects of different frequencies can be modeled as different numbers
of measurements in each direction; this also changes the direction of the major
eigenvector. In the absence of noise, the residual of the least squares solution to
the optic flow would be a perfect measure of the existence of a flow boundary —
modeling the effects of noise on the magnitude of the residual proves that it is a

measure of human perception of non-coherent motion.

3.6 Correcting the Bias?

In the statistical literature the model we used to describe the estimation of flow

is referred to as the classic, “Errors-In-Variable” (EIV) model. It is usually
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expressed in the notation Ax = b with A = Ag + §A and b = by + 6b where
A, and by are the true but unobservable variables (in our case the actual spatial
and temporal derivatives I, I, I, at points i), § A and §b are the measurement
errors, A and b are the corresponding observable variables and x the unknown
parameters to be estimated (in our case u and v).

It is well known from the literature that estimation with least squares (LS)
generally provides an inconsistent and biased estimate of the true parameter x.
The LS estimator gives an unbiased solution only for the regression model, that
is, when 8 A is considered to be zero and measurements §b are independent, zero
mean and equal distributed. The literature on estimation theory also provides
a wealth of information on techniques dealing with the EIV model and how to
compensate for the bias. However, to apply these techniques to the problem of
flow estimation for navigating vision systems is computationally very difficult. In
many situations, theoretically it should be possible to improve upon the estima-
tion, but the particular stimuli discussed here pose problems for any statistical
procedure.

The motion field on the eye of a moving system is due to the relative motion
and the distance between the system and the scene in view. The assumption
of constant flow is strictly true only for a scene consisting of a fronto-parallel
plane moving with translation parallel to the image plane. To cope with general

motions and scenes, the processing of flow has to be carried out in several stages.
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In a first stage, normal flow measurements should only be combined very locally
to generate an estimate of optical flow in a small patch of the image. In following
stages, flow measurements of neighboring patches can be compared to find larger
regions of common 3D motion or to delineate motion boundaries.

These considerations exclude models which assume that the motion compo-
nent in each direction is computed over very large areas and then the single
components are combined into a common 2D motion estimate with the simple
IOC rule. Such models would not lead to biased optical flow estimates; however,
they are of very limited applicability and cannot be applied to small areas. If
flow is computed only within small image regions from few image measurements,
it is statistically not justified to simply intersect the motion components in single
directions and not to consider the amount of measurements involved. As a small
number of measurements in one direction gives rise to a much larger variance
in the noise (infinite variance for directions with a single measurement) than a
larger number, this could lead to large errors in the flow estimate.

Any statistical technique to compensate for the bias requires knowledge of the
statistics of the noise. For the noise model considered in the previous sections,
this means knowledge of the covariance matrix of the noise vector (nz, ny,n,).
If such is available, the bias in the least squares estimation could be removed.

If the model of constant flow is valid, this can be achieved with the “Corrected
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Least Squares” estimator. If a more complicated model of general smooth flow
within an image patch is necessary, iterative techniques have to be employed.

However, the major problem lies in the acquisition of the statistics of the
noise. The noise parameters are not intrinsic to the system, but depend on the
viewing situation and the scene in view, and in general the statistics can only be
considered patch-wise constant. The noise parameters have to be estimated from
the flow estimates within a spatiotemporal neighborhood by using the model
which relates the image derivatives and noise to the flow estimates. However,
from a limited amount of data, it is very difficult to obtain good estimates.
Furthermore, the variance in the motion estimates turns out to be large with
respect to the bias. For example, in simulations (see Figure 3.13), it has been
found that for a noise level of 10% (that is, o, = 0, = 10% of the value of the
spatial gradient and the length of the flow) the standard deviation is twice as
large as the bias. Thus, correction, even with an accurate estimate of the bias,
in many cases would lead to a worsening of the solution.

In the particular situation of the Ouchi illusion, the 3D motion (either due
to random eye movement or jiggling motion of the paper) changes rapidly. This
makes the temporal integration of measurements very difficult as the system has
only a short time-span to obtain the noise parameters.

In recent years the nonlinear estimator of “Total Least Squares” has received

a lot of attention and it has also been applied to the problem of flow estimation
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Figure 3.13: Expected error in value of length (solid lines) and standard devi-
ation (dotted lines) obtained by a Monte Carlo simulation using Gaussian noise
for three different standard deviations: o, = o, = 0.2,0.1 and 0.05. The optical
flow is (0,1), the magnitude of the spatial gradients is one, and gradients are dis-

tributed with 15 vectors in the direction at angle 6 from the z axis and 5 vectors
at angle /2 + 6.

[64, 65]. This estimator has been shown to provide an asymptotically unbiased
solution for the EIV model in the case of white noise, that is, if the noise values
are independent, and identically distributed. To whiten the noise, however, again
it is necessary to obtain its covariance matrix. Without whitening, total least
squares also gives biased solutions. In addition, total least squares is known to
perform very poorly if outliers are present, and these are difficult to detect from
few measurements.

The estimation and interpretation of optical flow from a statistical point of
view has received attention before in the computational literature [12, 13, 24, 54,
61, 65]. Most relevant is the study of Nagel [45]. He considers an error model

slightly more complicated than ours. In particular, he assumes Gaussian noise in
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the gray values, linearly varying flow, and he considers the dependence of the par-
tial derivatives in the gray value function at neighboring pixels arising from the
computations with filters of discrete size. To compute the flow within neighbor-
hoods he suggests an iterative estimation technique and then he uses hypothesis
tests to compare neighboring flow estimates for whether they are compatible. In
a subsequent study, Nagel and Haag [46] use this error model to find the er-
ror arising from least squares estimation and compensate for it for the purpose
of tracking. The bias they find with their model is similar to our formulation.
However, they only interpret this bias with regard to the underestimation in the
length of the flow, and do not discuss the effects on its direction due to the dis-
tribution of the image gradients. Also, they do not discuss how to obtain the
parameters of the noise distribution, but assume it to be available.

From a computational point of view, the problem of flow estimation is very
difficult. In order to obtain very accurate flow estimates, a sufficiently large
number of normal flow measurements is necessary. This means that data has
to be spatially and temporally integrated via further computational models. As
such computational models are based on assumptions about the 3D motion and
the scene in view, they are not generally valid for systems moving in varied
environments. The integration is possible only in image patches where the data
is approximated well by the model. Thus, for the system to use a certain model,

it first has to test its validity. For example, in order to employ a model of
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smooth flow within a spatiotemporal neighborhood, the system has to check for
discontinuities in a spatial neighborhood, verify that the flow doesn’t change
abruptly between frames and evaluate how well the flow is approximated by the
particular model used. Clearly, these computations cannot be carried out on the
basis of one-dimensional image velocity measurements alone, but require further

spatiotemporal 3D information.

3.7 Conclusion

We have shown the problems of estimating two-dimensional image velocity from
local one-dimensional motion measurements from a statistical point of view. As
noise affects local motion measurements, that is, normal flow vectors, in both
length and direction, the estimation of optical flow is biased. Theoretically, the
design of any unbiased estimator would require knowledge of the statistics of the
noise which often is hard to obtain. The only robust solution is to use local image
measurements to directly constrain the camera motion and the scene structure.

The following chapters lie within this framework.
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Chapter 4

Constructing Models from One Viewpoint

A differential reconstruction is the representation of the scene structure which
can be extracted just from the image derivatives from one viewpoint of a video
sequence. In order to create useful models of scene structure, it is necessary to
extend the basic constraints described in Section 2.4, relating the camera motion,
the image derivatives, and the point depths. This chapter leads in two fundamen-
tal directions. First, Section 4.1 defines a method for segmenting the scene into
regions that are well approximated by planar patches. Previous approaches either
assume that such a segmentation is available, that the scene is globally smooth
so that any segmentation is satisfactory, or try to post-process the scene to de-
termine a segmentation. Section 4.2 gives examples of reconstructions of various
scenes from a single viewpoint. Second, Section 4.3 provides experimental evi-
dence that the standard error measures used to determine camera ego-motion are

incapable of finding the correct direction of translation; there is a one-dimensional
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subset — a valley — of motion parameters that all give low error. This is consis-
tent with recent theoretical results, and is why we only use the differential image
measurements only to define sets of plausible motion estimates. These sets are

refined and explored in Chapter 5 when linking reconstructions from disparate

viewpoints.

4.1 Segmentation

The assumption that each image region can be approximated by a plane requires
a segmentation of the image into patches that avoid depth discontinuities. The
segmented depth model has two parts: an assignment function A, assigning image
points to patches, and the positions in space of the planar patches, parameterized

by G1,...,qn. Together, these define the depth of every image point r;:

1 - -
Z = Qa(r) " T

Finding the “best” set of depth planes for a given translational estimate re-
quires finding the best camera rotation, the best assignment of pixels to patches,
and the best position and orientation of those patches in space. This is equivalent
to the general combinatorial problem of fitting a set of n planes and a parameter
@ to a cloud of points whose position is parameterized by w.

It is not clear how the minimum of this function can be analytically found; this

is a function of 3 x n+3 parameters, with many local minima. We assume that we
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have some estimate of the camera translation t, and estimate a solution with an
iterative process. The iteration begins by defining random convex regions of the
image and solving for the depth planes that best fit these image measurements.
Then, iteratively re-assign image points to pieces of the depth model that best
fit the local image measurements, and recompute the best fitting planes for the

new assignments. More formally, the two steps are:

1. Solve the following linear system for q,... ,qn, and w:

Vi: I,,.+5.--w+(('i4(,i)-r.~)5.--t=0

2. For each pixel, reset the assignment function.

Vi 0 A(ri) = argmin; |Viun — (@) - i = (F: - @) (uee(®) - )|

The initial assignment, the first reassignment, and subsequent iterations are show
in Figure 4.1.

The segmentation converges rapidly to a good solution in a scene with several
sharp depth discontinuities. For scenes with such properties, the iterative process
typically converges in fewer than 20 iterations and gives a segmentation of the
image into large patches that avoid depth discontinuities (Figure 4.2).

The convergence properties of this algorithm depend upon the scene in view
and the camera motion. There are two problematic cases. When the camera

translation is small, the image derivatives are mostly due to the camera rotation.
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Figure 4.1: Discontinuity avoiding scene segmentation. An iterative process re-
cursively modifies the scene structure model and defines image regions consisting
of points whose scene depths are related. The assignment at the initial condition,
and after the first, fifth and fourteenth iteration.

Figure 4.2: For scenes with sharp discontinuities, the iterative algorithm results
in segmentation into large regions.
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Figure 4.3: The segmentation process depends both upon the scene, and the
camera motion. When the camera translational velocity is small, the segmenta-
tion may not converge.

Then, the noise in these measurements swamps the remaining information re-
lating to relative depths. This leads to an arbitrary, noisy, segmentation, where
unrelated scene points which are far apart may be assigned to lie on the same
plane. Figure 4.3 shows the segmentation algorithm for the same scene, from a
part of the video sequence with a much smaller translation velocity. The sec-
ond problem occurs when the scene is mostly smooth but non-planar. In this
case, there are many ways of approximating the scene with planar patches, each
method approximates some regions better than others, and the algorithm does
not converge because there is not a clearly optimal assignment. One example of
this sort are shown in figure 4.4.

In both of these problematic cases the segmentation fails because it is im-
plicitly searching for a piecewise planar representation of the surface, with a few
large planar patches. When the scene is view is not well approximated by a few,

large, planar patches, or when the necessary information is subsumed by noise,
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Figure 4.4: Because a small number of large planes does not approximate large
round surfaces, the segmentation may not converge.

it is necessary to change the target representation. Instead of seeking a segmen-
tation that corresponds to objects in the scene, it is possible to more robustly
define a larger set of much smaller patches, enforcing the condition that patches
never cross depth discontinuities (but perhaps there are many patches on a sin-
gle continuous object). The straightforward algorithm is pictorially illustrated in
Figure 4.5.

This segmentation can be used in a feedback loop, to avoid problems when
using normal flow measurements derived from image derivatives whose filter sup-
port crosses discontinuities. This works best if the segmentation has created large
image regions; then the feedback system erodes each patch to find a central re-
gion such that every image pixel used by the derivative filter is entirely within

the patch. These eroded patches are pictured in Figure 4.6.
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For each pixel i, let z; be the
patch label when the scene is §
segmented using previous algo-
rithm.

For each pixel 7, let y; be the
patch label when segmented into
small square blocks .
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Figure 4.5: When it is not possible to create a segmentation with only few
elements, it may still be possible to make a set of smaller image patches which
respect discontinuities in the scene.
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4.2 Differential Reconstructions

As in (7], creating a differential reconstruction requires finding the best transla-
tion t. This solution proceeds as a search in the space of translational directions.
After the segmentation process, we consider A to be fixed, so the error function
is dependent only on t. The exact formulation of the error function depends on
the choice of scene representation. In this section we consider a set of arbitrarily
oriented planes, and a piecewise planar, continuous mesh. When creating the
differential reconstruction it is not usually possible to robustly solve for higher
order piecewise polynomial models of scene depth, although these constraints can
be written in the same form. Equation 2.10 gave the constraints for a single poly-
nomial scene model. Creating a set of independent polynomial surface patches
or a spline representation involves the same segmentation process as arbitrary
planar patches or the mesh representation. These higher order models may be

appropriate in creating models combining data from disparate viewpoints.

4.2.1 Patch Reconstructions

The representation used in the segmentation process models the scene as a set

of arbitrarily oriented planes. Each translational estimate defines the following

over-constrained linear system, with unknowns w, G, ... , Gn-
Vi: I._.+5,--w+(c'i,4(,i)-r.~)i.--1‘:=0 (4.1)
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Figure 4.6: A new, segmented view of the paper bar(left), and, (right) the image
regions believed to not include depth boundaries. On this data one can compute
highly accurate motion estimates.

Let f(t) be the residual of the least squares solution to the system defined with

translational estimate t.

f(®) = mingw .. 4} LT +bi- @ + (@ary - 1) - £)? (4.2)

Some direction ¢ minimizes the function f. Solving the linear system defined by
that translation t gives values for qi, ... ,qn, and @. This is the differential recon-
struction available from one set of image measurements. It defines the position
and orientation of each patch, and the instantaneous translational and rotational
velocity of the camera. One such reconstruction is shown in Figure 4.6. This
reconstruction uses the segmentation whose iterative steps and final assignment

where illustrated earlier in Figure 4.1.
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4.2.2 Mesh Reconstructions

Another representation is a piecewise planar mesh, made up of patches that
must meet their neighbors and have no discontinuities. This requires a triangular
subdivision of the image plane and a different method of computing the ?1? value
at each pixel. Let py,...,px be the vertex set of the triangular subdivision. The
(unknown) scene depth of each of these points is ¢i,...,qk. (Here we maintain
the use of the variable ¢ as the “unknown scene depth variable™, even though
now it is the depth of a mesh vertex instead of the normal to a planar patch).
Then, the scene depth of an image point r; which is inside triangle p,, ps, p., can

be expressed as:

1

7. = %l + apgp + acqc (4.3)

where (aq, as, @) are the barycentric coordinates of a r; in triangle pa, ps, pc. If

we create the vector X: with three non-zero elements for each point r; so that

e

Ai={(..,0,...,0qy...,0,...,05,...,0,...,0c...,0,...) (4.4)

then we can write the scene depth of each point as a linear function of the depth
of all the mesh vertices: le =X- (q1,... ,qk). The linear system constraining all

the parameters of the differential reconstruction has the familiar form:
Vi: Iy +bi-w+({qu,...,qe) - M) -t =0 (4.5)

This representation is suitable for scenes without sharp depth discontinuities.

One such scene is the rigid part of the standard Yosemitetest sequence. Figure 4.7
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Figure 4.7: An image of the standard Yosemite test sequence, the computed
mesh structure, and a reprojection of the scene to a new viewpoint.

shows one image of this sequence, the mesh structure, a depth map, and the

reconstruction of the scene projected to a new viewpoint.

4.3 Experimental

Given a segmentation that respects depth boundaries in the scene, we can study
the topology of the error surface. The error surface is the error defined for

every possible translational direction. We can ask the question: “How well do
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different translations fit the observed image derivatives”. Since we can express
the constraint as a linear system for a given translation, it is possible to try a
great deal of translations rapidly. This allows the exploration of the topology of
this error surface for a variety of scenes.

As an initial example Figure 4.8 illustrates the error surface for the Yosemite
scene. The figure shows the field of view of the camera, and the error surface. The
known (ground truth) translation is shown as an arrow piercing a sphere around
the camera center. This arrow is the direction in which the camera is traveling.
The sphere is a way of representing all the possible translational directions. For
each direction €, the error of f(t), from Equation 4.2, is encoded as a gray value;
white is smaller error. Only a cut out of the sphere is shown. The minimum
of this error function is well defined, can be accurately localized, and fits the
known ground truth. Because the camera motion is mostly towards the scene (as
opposed to sideways), theoretical results suggest that there is little ambiguity in
such a case.

The topography of the error surface varies qualitatively for different scenes.
For scenes where the objects are far relative to the camera motion, there is little
information, because the translational component of the image motion at a point
on the image is proportional to inverse of the distance to that point. Therefore

these scenes are the most likely to have ambiguous motion.
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Figure 4.8: On top is an illustration of the camera geometry, with the camera
nodal point represented by the dark dot. The image covers only a small part of
the space around the camera, but since the true translation (arrow) passes close
to the image, the error surface has a clear minima (bottom).
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Figure 4.9: Outdoor scenes, where the camera motion is small relative to the
distance to objects in the world. The second scene is looking at clouds, effectively
a plane at infinity.
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Figure 4.9 shows the error function for two different outdoor scenes, both far
from the camera. In both cases, the error function has a large region of trans-
lational directions giving low error. These directions fall in a broad swath that
is oriented towards the image center. The second case is particularly interesting,
the camera is looking vertically, towards a collection of clouds, a scene that is
effectively approximated by a plane at infinity. However, if the -;— term is zero for
every pixel, from Equation 2.8 there should be no constraint at all on the t. The
answer is rather prosaic; this was a windy day, so the clouds had a rather large
absolute velocity. This picture is then an illustration of the well known ambiguity
confounding rotation and translation for a camera with a small field of view.

Close scenes that have simple structure may also be problematic. There exists
a set of surfaces for which even a zero noise motion field may be ambiguous. That
is, there exists camera motions and surfaces such that, a different camera motion,
and a different surface can lead to exactly the same image measurements. These
two interpretations cannot be distinguished. These surfaces are ruled conics [30].
This is a small set of surfaces, and the ambiguity is only present for particular
positions of the camera relative to the surface, but any scene where the depth
can be reasonably approximated by such a conic is likely to be ambiguous in the
presence of noise. Figure 4.10 gives examples of scenes with relatively simple

structure that are close to the camera.
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Figure 4.10: Outdoor scenes, (top) a view down over a step in an amphitheater,
and (bottom) sideways view along a sidewalk. The camera motion is large relative
to the distance to objects in the world. For these scenes, the ambiguity may
disappear for some real camera translational directions.
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Figure 4.11: The error surface for the scene shown in Figure 4.2. When the
translation is large and towards the image, the error function has a clear mini-
mum. In other cases, there remains an ambiguity.
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A scene with sharp depth discontinuities, and a relatively large translation,
gives the best constraints on the camera motion 4.11. The motion is strictly
constrained — either to a particular point, when the camera is moving forward,
or along a valley. This valley passes through the correct translational direction

and is oriented so that it would pass through the image center if it were extended.

4.4 Reconstruction from Motion Valleys

The set of possible translations that minimize Equation 4.2 often lie along a
valley instead of around a point. Figure 4.12 shows the shape reconstructed from
different translations along this valley. The motions along the minimal valleys
all give plausible depth maps. What is important in this set of reconstructions
is their qualitative similarity. None of them have a rugged structure, and each
reconstruction, along with its estimated translation, predicts almost the same set
of image measurements. Therefore creating the full reconstruction does not, by

itself, give additional information to constrain the camera motion.

4.5 Conclusions

From one viewpoint it is theoretically and practically very difficult to compute
accurate camera motion. In general, one view robustly defines an approximately

one dimensional set of “plausible motions”, the set of translational directions in
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Figure 4.12: Reconstructed depth maps for different translations along the valley
minimum.
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the valley of the error function. Each translation has a corresponding rotation
and depth map which approximately fit the image data. In some cases this depth
map has regions of significant negative depth, which can be ruled out a-priori.
However, there typically remains a set of camera translation directions which
all approximately minimize Equation 4.2. Further constraints on the motions are
only possible given new information. The next chapter discusses linking the coor-
dinate systems of reconstructions from different viewpoints. The new viewpoint

gives the additional information necessary to accurately find the camera motion.
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Chapter 5

Linking

To obtain more accurate, robust solutions, it is necessary to combine visual infor-
mation from camera viewpoints that are far apart. Chapter 4 defines a method
for creating a 3D reconstruction from one viewpoint. Because we assume that the
scene stays constant, the reconstructions made from two viewpoints have a nice
relationship, as long as each reconstruction is created using the correct motion
parameters. This relationship is simple to define in the ideal case. In the general
case, searching for this reconstruction amounts to a 2D search — specifically,
searching along the one dimensional set of possible translation directions defined

by each viewpoint

5.1 Differential Linking

The first instance of coordinate system linking concerns two motion fields, cap-

tured from viewpoints that are very close to each other — as will be the case
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for sets of image derivatives whose temporal derivative filters are centered on
subsequent frames of a video. We assume that we already have a camera mo-
tion estimate (£, &) for the first motion field, and a camera motion estimate
(£, &®) for the second motion field. The problem is that each of the translation
vectors has an arbitrary scale factor; within each differential reconstruction one
can assume that the translation has unit magnitude which defines a scale for the
reconstruction. When combining two differential reconstructions, it is necessary
to find the scale factor relating them.

The translation in the initial frame £(!) can still be set to an arbitrary magni-
tude. We define the scale of our 3D reconstruction so that t{}) = (). Since the
scene is assumed to be constant, so should the reconstruction from frame to frame
be constant. Finding the correct scale for £(?), amounts to finding the magnitude
of the 3D translation vector Eﬁ; which creates a scene reconstruction at the same
scale. This requires the solution to linear system, defined by a constraint at every

image pixel in each flow field:
(I +B; - wh) + (Gary - i) -t =0 (5.1)
ka(IP +bi - w®) + (G - 7o) - tP =0 (5.2)

Then, setting tsp, = '-‘k’;ig gives the translation motion vector for the second
motion field. Solving for both k; and k; is more stable that solving for a single
scale factor. This is equivalent to the more intuitive system to find the scale

factor, where k; multiplies directly the t(1) estimate. This system also has the

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



advantage that it is linear in ky, k2, and Gu(r,)- Thus the solution gives both the
relative scale factor and and scene depth model using image measurements from
two seperate frames. However, informal experiments have shown that this does
not appreciably improve the differential reconstructions.

A scene reconstruction using the second motion field, and the translation f3p,
will have the same scale factor as the reconstruction created from the first motion
field using the translational estimate t(!). This constraint can be “chained”, to
put many differential motion estimates into a common coordinate system.

Given the differential motions (£, &™), (®,&?),...(#M,&"), the dis-
crete rotation R; which transforms directions in the ith frame into directions

in the coordinate system of the first frame is:
B.{ = 3132 cee B,'-l (53)

B; is the rotation matrix which corresponds to the displacement caused by the

angular velocity w; over one frame.
1 -1 1
Bi=(I- 5[“’]’:) I+ 5["’]X) (5.4)

where [w]x is a skew-symmetric matrix corresponding to the cross product with

vector w = [a, §,4]T:

0 — B
-8 a 0
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The other component of the rigid transformation between from frame i to frame
1 is the translation T;. This must be calculated recursively, at the same time as

the scale factor (because we can only find the scale factor between subsequent

frames):

s =1
™™ = [0,0,0]
o = -0, b
tap,_,
TG = 761 4 SOROEO (5.6)

One example of this frame linking is shown in Figure 5.1, where the differential
motions were computed between consecutive frames for a 300 frame video se-
quence. These motions were linked into the coordinate system of a one viewpoint
and are displayed together with the segmented differential reconstruction from
that viewpoint. This frame linking is possible only because the camera motion
direction was forward. Because the translation direction was within the field
of view, the motion parameters are better constrained and not subject to sever
ambiguities.

There are three limitations of this approach of linking frames. First, Equa-
tion 5.2 requires that the motion of the camera between the first and second
motion field is small; specifically, the same segmentation must be valid for both

motion fields, and the depth of each particular pixel must change minimally.
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Figure 5.1: A differential scene reconstruction from a single normal flow field.
The 3D motion of the camera was computed between consecutive frames and
the positions plotted in the coordinate system of the reconstruction. A coordi-
nate axis is shown every tenth frame to indicate camera rotations. The camera
trajectory becomes erroneous after a camera jerk breaks the differential motion
assumption.
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These are reasonable assumptions in video sequences with a high frame rate.
There may be statistical bias introduced in particular cases, such as when most
surface patches are consistently oblique with respect to the camera optical axis.
Second, because the scale factor is linked only between consecutive frames, there
is no error correction. Small errors in computing the relative scale factor between
frame one and two will be propagated throughout the entire set of frames to
be linked. Third, motion fields from consecutive frames are unlikely to be able
to resolve the motion ambiguities addressed in Section 4.3, because the camera
motion is not likely to change sufficiently between subsequent motion fields.
The subject of the next section is to address all of these considerations by
explicitly linking reconstructions from viewpoints that are further apart. The
disparate viewpoints provide stronger constraints on the scene structure, but the

constraints are no longer expressible as linear systems.

5.2 Linking Disparate Viewpoints

Looking at a scene from viewpoints that are far apart gives more constraints on
the scene structure. More information is available than exists in motion fields
from one viewpoint. Here we consider the case where we have captured motion
fields from two different viewpoints. These motion fields are assumed to be some-
what overlapping, so that some of the scene is imaged in each viewpoint. Since the

scene is assumed to be constant, the reconstructions from each viewpoint should
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also match. We discuss methods to use the new constraints to find the correct
differential camera motion. These methods build on top of the processing done
on each motion field individually — that is, they assume that we have a set of
candidate motions (and therefore candidate reconstructions) created separately
from each viewpoint.

The methods and heuristics discussed in this section involve more computation
than methods discussed in Section 4.3. It is also the case that there is, in fact,
more time available between the capture of far apart viewpoints. The goal of
the reconstruction is no longer a moment-to-moment approximation of the local
scene, but rather a fully three dimensional scene model. We should not need to
reconstruct such a complicated scene model in every frame, so the time constraints
for a “real-time reconstruction system” are on the order of seconds instead of
hundredths of seconds.

First, we need to introduce a modicum of new notation. In the coordinate
system defined at the first viewpoint, let V(!) be the set (a valley) of candi-
date translations, t() be the (unknown) correct camera translation, and t™) be
any estimated translation. We will only consider t(*) € V(1) the preprocessing
of each motion field has reduced the two dimensional space of possible transla-
tion directions to this set V(!) of candidates. The same applies to the second
viewpoint, V), t(2) £() will be the set of plausible translational directions, the

correct translation, and single candidate translations, respectively. Finally, there
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is a rigid motion between the first viewpoint and the second viewpoint, defined
by the rotation matrix R(!~?and the translation T(1—2),
In general terms, the algorithm to link disparate viewpoints is then the fol-

lowing:
1. Find V), V(3 the set of plausible translational directions from each frame.
2. For all pairs (t(,t®), with t1) € V(1) and t® ¢ V@)

e Create the differential reconstructions using t(*) and t®

¢ With respect to some error function, solve for the best fitting equiform

transformation that matches these reconstructions.

e Record error measure for how well this pair of reconstructions can be

matched.
3. Choose the pair (t(),t(?)) for which the reconstructions matched the best.

The remaining work is to define an error measure that indicates whether or
not two reconstructions match. The following section considers the ideal case, an
introduction to finding the equiform transformation between two reconstructions

if corresponding points in each reconstruction are given.

5.2.1 The Ideal Case

Assuming zero noise in the image derivative measurements, and correct ego-

motion estimates, the 3D reconstruction from each viewpoint will be an accurate
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Euclidean reconstruction scaled by an unknown factor. The relationship be-
tween two such (ideal) reconstructions is an equiform transformation, which is
a rotation, a translation, and a uniform scaling. This corresponds to the rigid
transformation between the viewpoints, and a resolution of the different scale
factors used in each reconstruction.

The relationship between a point in the first reconstruction, P(") and the same

point in the second reconstruction P is:
sR1-2pM) 4 T2 = p@2) (5.7)

Three non-linear corresponding points suffice to completely constrain R(*~?and
T(=2), However since R('—2) € SE(3), the elements are not independent, and
this cannot be expressed and solved as a linear system. If the coordinates of the
3D point were specified accurately, this constrained optimization problem can be
formulated as a search for the minimum of the following function, and efficiently

solved with a BFGS-Quasi Newton method:

{R(l—oZ)’ T(l"’z), 3} = argmin{R(l-l)’T(l-z)'.} Z ISR(I—'Q)P‘(l) + T(l—oz) — R(2)| .

(5.8)

With real data, however, this method fails to take into account how 3D points
are reconstructed. Creating the 3D coordinates of a reconstructed point P; com-
bines the image coordinates p; and the computed depth at that point. Because
of the inverse relationship between the depth of a point and its motion on the

image, the differential reconstruction is actually computing the inverse depth at
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a pixel zl' So small errors in image measurements will lead to small errors in
the estimation of zl;’ but could lead to large errors in the absolute depth, or in
position of reconstructed 3D points.

In order to alleviate this problem, we define a transformation between a point
P in 3D, and a point {(P) in “reconstructed space”. Specifically, if P = (X, Y, Z),
then {(P) = (%, -‘é—,'y%), which are the image coordinates of the point augmented
with the some linearly scaled inverse depth. The v term is necessary — the
image points and the inverse depth are computed with different processes so it
is not clear what the appropriate relative weighting should be in measuring their
error. Determining v for one method of finding correspondence between different
viewpoints is the subject of Section 5.2.2.

Since we are using standard non-linear minimization techniques to find the
best equiform transformation between viewpoints, it is simple to now write the
correct error function (where {(P) is transforms a point to “reconstruction space”,

and there is a parameter 4 which does not appear):

{R("’z), T(l"z), s} =

argmin pu—n ra-n.4) 3 |[¢(sRO=DP) 4+ TO=) — ¢(PD)| (5.9)

The actual minimization of this function uses Rodrigues parameters to encode
the rotation matrix R("—? with three independent parameters. This is the min-

imization function used in the remainder of this chapter.
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5.2.2 Approximate Correspondence

The straightforward method of finding the equiform transformation between two
viewpoints requires known correspondences between points visible in each view-
point. The following algorithm generates a set of such correspondences between

two disparate viewpoints from the same video sequence.

1. Define R, to be a set of k points in image 1.
2. For each frame: j =1 —n

(a) Compute (tV),w(?) the camera ego-motion for frame j.
(b) For each point r; € R;.
i. Compute 3- from small patch around point r;

i, & = —4(& x (t9) x 1)) + (2 x (¢ x (w9 x 1))

i, ripr =1 +6;
3. The point sets R;, R, are approximately corresponding point sets.

This is an intentionally primitive algorithm; it ignores local image texture
information. However, it possible to estimate the accumulated error as these
points are tracked between frames. Let & be the error in propagating a point
location between frame j and j + 1 for some point i, assumed to be the same
point for the remainder of this discussion. Suppose -le has an error ¢;, and in

general, % has an error that can be expressed as a zero-mean random variable
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with variance e. Then from Equation 2.4, the magnitude of ¢€; is bounded by ¢;

(by definition, %, r;, and t are unit vectors):
6] = 87" — &} = |ex(8 x (ti x 1)) S & (5.10)

This error is never fixed and it accumulates from frame to frame, leading to

a total a final error in correspondence:

n-1
Elan =D € (5.11)
i

Since the errors have some random component, we can do better than the trivial
bound |&;—~.| < ne. Since €; is dependent on t;, the accumulated error for the
sequence depends on the consistency of the camera motion. Assuming the the
errors in subsequent frames are independent, then if t is roughly constant for the
sequence, the tracking error for each frame is perpendicular to to direction t x r.
What remains is to determine the the expected value of the magnitude of this

€error:

E(jfienl?) < EG (et x 1)) < EQ- ) = 3 E(e) = n(e?)

=1 i=1 i=1
(5.12)

sO,

E(|&i—nl) < ev/n (5.13)

In other words, the expected tracking error over n frames is bounded by /n times

the error in estimating % in each frame. This simple form derives from the fact
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that we use a normalized camera and we scale the translational motion in each
frame to be of unit magnitude.

What is a reasonable estimate for the variance €¢? This is a complicated
question that is directly related to the study of the depth distortion function [4, 5,
11, 19]. However, the parameter v necessary for defining the error in Equation 5.9
is the ratio of the tracking error, and the depth estimation error. This ratio is

independent of the absolute magnitude e.

5.2.3 Linking Algorithm

Suppose now that we have known corresponding points in two viewpoints. This
allows the definition of an error measure that determines how well Equation 5.9
can be satisfied for these points and some equiform transformation. This error
is computed for every pair of translations, one from each viewpoint along this
valley. The best pair defines the camera translation for each camera. Figure 5.2,
shows the error function for all pairs of translations chosen from along the valleys
in each viewpoints.

Formally,
o For all pairs (£{", &%), with £/ € V), and £ € v

— Create the differential reconstructions using £{" and fzm, and use this
g 3 k

differential reconstruction to calculate the corresponding scene point

sets P, p()
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Figure 5.2: The x and y axes of the above figure are the positions along the
ambiguous valley for each viewpoint. Each position along this axis defines a
reconstruction made from different translations along the valley. The z axis rep-
resents the error: a measure of how well some equiform transformation can map
points reconstructed from one viewpoint to (manually corresponded) points re-
constructed from the other viewpoint.
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— compute matching error:

g(j, k) = min{g(x—-z)'y(l-oz)"} z:'. IC(SR(I—J)P'_(I) + T(l—o?)) - C(P‘_(Z))I
e Let (5*, k*) be coordinates of the minimim error of g.

— The “best translational estimates” are Eﬁ-?,f}j’

— Use these translation estimates to compute P{*), P(2+)
— The best equiform transformation relating the reconstructions is:
{R(l—"&’)"’ T(l—d)"’ 3"} =

argmin pu-2 ra-a,s) Li lC (sRA=2 P 4 T=2)) — ((PF)

This process gives a method for choosing the correct translational velocity at
each viewpoint. Figure 5.3 shows reconstructed depth maps for both viewpoints,
showing the final depth map (on the left), and the depth map originally created
with the translation vector that best fit the image data from only one viewpoint
(on the right).

In order to make higher quality models of the scene structure, it is necessary
to combine texture data from each viewpoint and correlate more than a sparse
collection of matched points. The translation and rotation of the best equiform
transformation: (R(1—2",T(1=?") is the rigid motion relating the two camera
viewpoints. This allows the use of standard stereo algorithms to compute the
depth maps. We use texture based stereo with normalized cross correlation using

the differential reconstruction to give an initial depth map. Figure 5.3 (on the
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Figure 5.3: On the right are the depths maps for the lowest error translation in
each frame. When all pairs of plausible translations for each frame are combined,
the best pair gives the reconstructions shown on the left.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



top left) shows the differential reconstruction starting condition. Patches with
approximately the same depth were combined to define a mesh structure. The
mesh vertices were then optimized based on normalized cross correlation of the
textured model projected into the second image and the second image itself.

Figure 5.4 shows the final result from new and quite different viewpoints.
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-

Figure 5.4: After finding the Equiform Transformation between viewpoints,
standard stereo techniques can accurately fix the depth maps. In this case, a
continuous mesh was defined over the head region automatically segmented us-
ing the techniques in Section 4.1. Texture based stereo using normalized cross
correlation was use to optimize the mesh depths, using the differential reconstruc-
tion as an initialization.
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