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Abstract

Understanding the pose of an object is fundamental to a
variety of visual tasks, from trajectory estimation of UAVs
to object tracking for augmented reality. Fiducial markers
are visual targets designed to simplify this process by being
easy to detect, recognize, and track. They are often based
on features that are partially invariant to lighting, pose and
scale. Here we explore the opposite approach and design
passive calibration patterns that explicitly change appear-
ance as a function of pose. We propose a new, simple fidu-
cial marker made with a lenticular array, which changes
its apparent color based on the angle at which it is viewed.
This allows full six degree-of-freedom pose estimation with
just two markers and an optimization that fully decouples
the estimate of rotation from translation. We derive the ge-
ometric constraints that these fiducial markers provide, and
show improved pose estimation performance over standard
markers through experiments with a physical prototype for
form factors that are not well supported by standard mark-
ers (such as long skinny objects). In addition, we experi-
mentally evaluate heuristics and optimizations that give ro-
bustness to real-world lighting variations.

1. Introduction

Many visual applications are based on tracking the pose
of an object relative to a camera. Often, fiducial markers
are attached to those objects to simplify this pose estima-
tion process. These markers are designed to be easy to de-
tect and to track, for example small spheres that look similar
from any viewpoint. In this paper, we consider an alterna-
tive in fiducial marker design, creating markers whose col-
ors change based on their relative pose to the camera.

There are many possibilities for non-lambertian materi-
als that might support this process, from active electronics
to holographic materials, but we would like to select for
three properties. First, we would like something easy to cre-
ate from available materials. Second, we would like a pas-
sive marker that does not require power. Third, we would
like a clear geometric interpretation to the appearance.

Figure 1. Gluing a lenticular plastic sheet (left) to a color pattern
(center) from a standard color printer is a convenient source of
fiducial markers (right) whose apparent color has a clear geometric
relationship to the relative orientation to the camera. Several small
markers are shown leaning against a nickel and they appear to be
different colors because they are oriented differently relative to the
camera. This paper discusses the design of these markers and how
to use them as fiducial markers for pose estimation.

Lenticular sheets are available in hobby shops and often
used to create children’s toys, bookmarks, or promotional
material that show an animated pattern as they turn. The
optical properties of the lenticular plastic use ambient light
to show different patterns when viewed from different di-
rections. In this paper we describe how to use lenticular
printing to create fiducial markers. Figure 1 illustrates the
process. We design a pattern that can be printed on standard
color laser printer. Adhering this to the back of a plastic
lenticular sheet creates small markers whose color relates
to their orientation. The contributions of this paper are:

1. The description and evaluation of a cheap way to create
fiducial markers that explicitly change their apparent
color based on their orientation relative to the camera.

2. The derivation of geometric constraints relating the lo-
cation and color of lenticular fiducial markers to object
pose.

3. Experimental demonstration of pose estimation with
these fiducials showing them to be less sensitive to
noise than a standard calibration pattern made of four
dots arranged in a rectangle.

4. Optimizations to improve the performance of these
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color varying fiducial markers under varied lighting
conditions.

Current fiducial markers are based on points that are spa-
tially spread apart in a plane or in 3D. One important appli-
cation domain of colored fiducial markers is in creating pose
estimation for skinny, elongated objects. In these cases, the
spatial separation required to solve for pose from current
fiducial markers is difficult to obtain, and results are very
sensitive to noise. Because colored fiducial markers do not
have this limitation, they could support novel applications
of augmented reality or item tracking, especially those re-
quiring estimates of the pose of thin objects like pencils or
scalpels.

2. Related Work

Most current approaches rely on fiducial markers that
have known coordinates relative to the object they are on.
They use the apparent position of those markers in the im-
age to solve for the relative pose of the object and the
camera. For example, Zhang’s widely used camera cali-
bration method [24] is based on a large black-and-white
checkerboard pattern, whose image is easy to interpret.
Standard augmented reality libraries such as ARtoolkit [9],
ARTag [5, 6] and CALTag [!] define black and white pat-
terns designed to simplify the process of determining which
fiducial marker is which, and have patterns with strong
edges and corners so that line-fitting approaches can give
sub-pixel image coordinates. Research in fiducial marker
design also seeks markers that are easy to find at multiple
scales [20, 7], or are designed to be imperceptible to hu-
mans [12, 23].

Solving from the pose estimation based on cues extend
beyond the observed position of fiducial markers. In situ-
ations where the vertical direction is known for the cam-
era (e.g. from an Inertial Measurement Unit), it is possi-
ble to solve for the pose of a camera with 2 corresponding
points [10, 14]. Recent work also derives a two point solu-
tion if the observed points in the world have a known direc-
tion that projects to the image (e.g. building corners where
the vertical edge is visible), and characterizes the degenera-
cies of these constraints [2].

A few prior works have explicitly created fiducial mark-
ers whose relative appearance depends on the direction from
which they are viewed. Agam fiducials [4], take advantage
of properties of 3D stairstep like structures where the ver-
tical part of all steps are painted a different color than the
horizontal parts of each step. When viewed from afar, the
darkness of this pattern relates to the angle at which the
stairstep is viewed. A recent patent proposes using small
lenticular markers that vary in color based on the orienta-
tion from which they are viewed for the purpose of pose-
estimation [11]. However, they do not describe the nec-

essary constraints to determine pose in practice. More re-
cently BoKodes [12] created a highly structured pattern of
light projected away from one point in a scene. This struc-
tured pattern is based on thousands of small QR-codes.
When a defocussed camera takes a picture of a scene, this
pattern is visible, and the identity of QR-codes in view in-
dicates the relative direction of the camera relative to the
bokode marker.

Lenticular arrays and their 2d counterpart, microlens ar-
rays, have been used previously to geometrically constrain
the relative orientation of an object or the relative path of
a ray of light. Previous research has used microlens ar-
rays as light field probes for Schlieren photography [21],
for the reconstruction of surface geometry of transparent
objects [22], and for the reconstruction of the refractive in-
dex of gases [8]. Lenticular arrays have been created to
change color with changes in orientation and were used to
estimate object rotation [15] with correspondences. Other
research has used lenticular arrays to augment existing fidu-
cial markers [17, 19] and microlens arrays as a fiducial
marker [16, 18]. These fiducial markers, called LentiMark
and ArrayMark, change appearance base on orientation.
This appearance change manifests as a relative change in
location of a mark that translates in reference to the rest of
the fiducial marker.

We propose a set of markers made from lenticular arrays,
so that the apparent color of the marker depends on their
relative orientation and position to the camera.

3. The Geometry of Lenticular Arrays

Lenticular arrays are usually made of plastic and have
a flat-surface (the back-plane) and a front surface that is
comprised of parallel cylindrical surfaces, called lenticules.
The major axis of the lenticular array runs the length of the
lenticules and gives the orientation of the array. The lentic-
ules act as a partial lens focusing parallel planes of light
onto the back-plane.

3.1. Viewing Angle and Hue Response

When observed from a particular direction, all the light
leaving the lenticular array in a particular direction comes
from a thin strip behind each lenticule. Therefore, if the
backplane is made up of multiple colors that are interleaved
behind each lenticule, rotating the lenticular array results in
the perception of different colors. This lenticular geometry
is depicted in Figure 2(a). As described in [15], we cre-
ate lenticular markers by adhering blank lenticular arrays
to interleaved hues and then cutting the arrays into smaller
markers.

As shown in [15], the apparent color of a lenticular patch
smoothly varies depending almost exclusively on the view-
ing direction rotated around the lenticular array’s major
axis. This relationship is referred to as the Hue Response
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(@) (b)

Figure 2. (a) The top surface of a lenticular array is comprised
of parallel cylindrical parts that focus parallel rays onto particular
rows of a backplane. (b) Relative to the major axis x, any view
vnue Of the lenticular array with a particular hue, lie on a plane
denoted by its surface normal npye.

Function (HRF). Relative to the major axis, any view, Uy,
of the lenticular array with a particular hue, lies on a plane
denoted by its surface normal 7iy,.. Different viewed col-
ors have differently oriented 774,. This relationship is de-
picted in Figure 2(b) for a lenticular array with a major axis
Z along an object’s x-axis.

3.2. Lenticular Arrays as a Fiducial Marker

Given this strong relationship between hue and viewing
angle, we derive a formulation for pose estimation based
on observing fiducial markers composed of small lenticu-
lar arrays. Information about the pose of an object comes
from both the position and the hue of the observed lenticu-
lar fiducial marker. Many configurations of lenticular fidu-
cial markers are possible and interesting, but we first derive
the constraints for two markers attached to the same plane.
Because the hue of a marker changes primarily due to rota-
tions around the major axis of the lenticular array, we orient
the major axes of our lenticular markers to be perpendicular
to each other so that they provide complementary informa-
tion about the surface normal. The derivations of pose con-
straints for other configurations of two lenticular patches are
similar, and we explore using more than 2 lenticular arrays
to improve pose estimation accuracy.

Figure 3 shows an example of a skinny planar object with
one lenticular fiducial at location C'1, and a coplanar lentic-
ular fiducial at location C which is oriented orthogonally.

4. Minimally Constrained Pose Estimation

Figure 3 also illustrates our pose estimation problem. A
pinhole camera (on the right) observes an object (on the
left), which contains two lenticular patches.

For simplicity, we assume that the coordinate system of
the object is centered at point C so that, in the coordinate
system of the object, the first lenticular fiducial marker has
coordinate (0,0,0). We assume the second lenticular patch
is a distance d away in the direction of the x-axis of the

Object with two lenticular
fiducial markers

Image of object and
fiducial markers

Camera
Center
R,T e

_

Transformation from camera coordinate system to object coordinate system

Figure 3. A pinhole camera (right) sees an image of an example
flat object (left), which has two lenticular patches. The pose esti-
mation problem asks to solve for the R, T" describing the rotation
and translation mapping the coordinate system of the camera to
the coordinate system of the object.

object so Cs has object coordinates (d,0,0). These lenticular
patches are not just points, they also have an orientation,
and this orientation affects the apparent color of the patch.
In Figure 3, the patch at C'; has its major axis along the x-
axis of the object and the patch at C5 is oriented along the
y-axis of the object.

The pose estimation problem is to solve for the rotation
matrix R and translation vector 7" mapping a point in the
object coordinate system into a point in the camera coordi-
nate system. In our case, the lenticular marker at C in the
object coordinate system will move to RC7 + T, and Cy
will become RCoy + T'.

For lenticular patches, the question is to solve for the
R, T that is consistent with p; being the image of RC; + T
and po as the image of RCs + T, and both p; and p, have
the correct hue for the angle at which they are being viewed.
We formalize these constraints in the next section.

4.1. Pose constraints from two lenticular patches

We consider the pose estimation problem for images
whose geometry is defined by a pinhole camera model. Us-
ing the standard geometric framework, we assume the ori-
gin of the camera coordinate system is centered on the cam-
era, and the camera calibration is known and represented by
a camera calibration matrix K. Then, if a pixel p is repre-
sented in homogeneous coordinates, it views an object that
appears along a ray in space 7 that is defined as:

F=K'p (1)

Therefore, if we see lenticular fiducial markers at locations
p1 and po, then the fiducial markers must lie along rays 1 =
K~ 1p; and 75 = K 1ps.

As described in Section 3.1, the image of the lenticular
fiducial marker may have a different hue depending on the
relative angle between the incident ray and the orientation
of the marker. If the lenticular patch appears red, for exam-
ple, the incident ray must lie in the plane denoted 77}, that
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has the particular orientation around the major axis where
the lenticular marker appears red. 7ij.,. is the cross product
of the lenticular array’s major axis and the viewing direction

Vhue-

Rotational Constraints

The first constraint on the rotation of the object comes from
the apparent color of the first fiducial marker. The ray 73
from the camera that observes that marker must lie in the
plane 77, defined by the hue that the camera observes, and
therefore 77 must be perpendicular to 7. In the coordi-
nate system of the object, 7iy,,,. is defined by the two vectors
that span it: & X Upye. In practice, 7ipq. is determined via
the HRF. The rotation R changes that surface normal to be-
come R(Z X Upye). So our first constraint on the rotation
is that the viewing direction and the surface normal are per-
pendicular:

R(Z X Uhyey) 71 =0 2)

A similar constraint applies when the camera observes the
other lenticular marker, except that the viewing direction is
9, the second lenticular marker is aligned along the y-axis
of the object, and the observed color may be different. This
leads to a second constraint:

R(ﬁ X 6}”1,82) : _’2 =0 (3)

A third constraint relies solely on the locations of the ob-
served lenticular patches. Specifically, three rays are co-
planar: the direction from the camera to the first patch i,
the direction from the camera to the second patch 75, and
the displacement vector between the first and second patch
(RCy+T)— (RCy +T) = R(Cy — C1). This also leads
to a geometric constraint:

R(OQ — Cl) . (’Fl X ’Fg) = 0, (4)

If the coordinate system of the object is such that C is the
origin, this simplifies to:

(RC3) - (7 x ) =0, (@)

This provides three constraints on the rotation matrix that
are independent of the estimation of the translation vector.

Translational Constraints

Once the rotation is known, we can derive three linear con-
straints on the translation. The first constraint is that the
translation must be consistent with the observed location of
the first lenticular marker. Since any point C' in the object
coordinate system is mapped to a location RC' + T, the ray
7" viewing that point must be parallel to the vector from the
origin to RC' + T'. Because we define the first lenticular
marker at location C; to have object coordinates (0,0,0),

RC1 + T simplifies to just 7', and we can use the fact that
the cross-product of two parallel vectors is zero to express
the constraint as:

T x 7 =0. (©6)

The final constraint needed to estimate the translation is
similar to 6, but uses the projection of the second lenticular
marker:

(RCo+T) x5 =0 )

These two constraints on the translation are both vector
equations, so collectively these 5 constraints let us solve the
pose estimation problem in Figure 3.

4.2. Optimization of Rotation and Translation

There are several possibilities to solve for the R, T" using
this set of constraints. In our experiments we first obtained
the rotation matrix on its own by optimizing a non-linear
error function over the Rodrigues vectors g that define a
rotation matrix Rp. The error function is the sum of the
squared error for Equations 2, 3, and 5. We use fminunc
in matlab and initialize with the identity matrix.

After we have the rotation matrix R, equations 6 and 7
define a linear system of equations for 7'. Both error func-
tions return solutions with zero error because they are op-
timizing a minimal set of constraints, as we are measuring
6 numbers (two coordinates and one hue for each of the 2
markers) to solve the 6 DOF pose estimation problem. Un-
derstandingthe configurations that lead to degenerate cases
with multiple pose estimates giving zero error is an interest-
ing problem we leave for future work. Later in this paper,
we will extend this optimization routine for n > 2 lentic-
ular arrays to improve pose estimation results and add ro-
bustness to varying ambient light conditions.

S. Experimental Results with Two Lenticular
Markers

In this section we compare end-to-end performance of
a pose estimation procedure, comparing standard fiducial
markers (small points at a known location on the object)
and our new lenticular fiducial markers. We build a physical
prototype of the lenticular fiducial marker to estimate the
pose of an object throughout a video. For the experiment,
we compare accuracy for an object that is long and skinny.

We track a small pair of tweezers by placing lenticular
markers 55mm apart. These lenticular markers are made
from the lenticular arrays detailed in [15]. Each fiducial
marker is a 4mm square, comprising about 12 lenticules.
For comparison, there are also 4 small fiducial markers in
a rectangular pattern that are also 55mm apart in one di-
rection, and 4 mm apart in the orthogonal direction. We
determine the pose of these “corner” markers following the
ARToolkit algorithms [9]. Additionally, the tweezers are
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Figure 4. We compared lenticular fiducial markers with the state of the art “corner” method on a video (of which an example frame is
shown in a). For the length of the video, the pose estimation using lenticular markers produces a better normal direction estimation (b) and
position estimation (c) median with a much more compact distribution. Each box in b) contains the median value in text.

mounted to a large checkerboard so that we can use a stan-
dard toolbox [3], to give ground truth pose estimates per
frame. Figure 4(a) shows this setup in a frame of the exper-
imental video.

We calibrate our lenticular markers and compute the
HRF — and the inverse HRF that maps a measured hue
to a # rotated around the major axis of a lenticular marker
— through a lookup-table from the experimental measure-
ments in a calibration video using the same setup. For each
frame, we hand label the location of the lenticular patches
and corners. All frames that had substantial motion blur,
making fiducial dots difficult to label, were discarded. For
the lenticular patches, we click each corner of the small ar-
ray, and use the centroid as its location. The color of the
entire area of the small lenticular patch is averaged to get
the two hues needed for the lenticular marker. To get a sub-
pixel accuracy estimate for the standard fiducial dots, we fit
a Gaussian distribution over the small dot and use the mean
as the dot location.

Figure 4 shows the pose estimation results for the ro-
tation error, defined as the coplanar angular difference be-
tween the ground truth and estimated Z-axes, and transla-
tion error, defined as the euclidean distance of true position
and estimated position. We show the results as boxplots
with default Matlab parameters. The top and bottom blue
lines of the box indicate 1st and 3rd quartiles, while the
red line in the center of the box indicates the median. The
whiskers indicate the minimum and maximum value con-
sidered an inlier. Outliers (seen as red crosses) lie outside
1.5 times the distance between the 1st and 3rd quantiles be-
yond the nearest quantile. For a normal distribution, this
means outliers are outside 2.7 sigma. For Figure 4(b), the
median error is written in each fiducial marker box. The
median rotation (Figures 4(b)) and translation (Figures 4(c))
errors of pose estimation using the lenticular fiducial mark-
ers are less than that of the state of the art corner method. In

addition, the distribution of errors is much tighter and indi-
cates a more stable pose estimation. We find that this is due
to the fact that our system is more robust to fiducial marker
position noise. In Appendix C, we show pose estimation
results of simulated data, where we can control noise level.

6. Over Constrained Pose Estimation

The previous experiment compared pose estimation us-
ing 2 lenticular markers against 4 standard fiducial markers.
Our pose estimation method minimally constrains the 6 de-
grees of freedom of the pose estimation problem with the
2 hue and 4 position measurements of the lenticular mark-
ers, while the standard fiducial marker over constraint with
8 position measurements [9].

In this section, we now build on our algorithm to use
more than 2 lenticular markers to improve pose estimation
results. First, we show how to optimize over existing ro-
tation and translation constraints, but with n > 2 markers.
Second, we introduce a reprojection error refinement. In the
framework of this reprojection optimization, we later intro-
duce 2 additional color scaling variables to add robustness
to different lighting environments.

6.1. Adding Additional Constraints Per Marker

A common approach to improve fiducial marker pose es-
timation results is to increase the number of fiducials and
optimize the over constrained system of equations. As an
example, only 3 corners of a square are needed to solve for
pose, however, optimizing over many corners of a checker-
board drastically improves pose estimation accuracy.

Inspired by this, we show how to optimize over the arith-
metic constraints presented in Section 4 for more than 2
lenticular markers. We generalize these constraints in Ap-
pendix B so that each ith marker has a local position C}, lo-
cal orientation 0;, direction from camera 7, and respective
direction of hue ¥, . In the generalized form, each marker
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has 2 constraints on rotation, 1 using hue and 1 using rela-
tive position to another marker, and 1 constraint per marker
on translation. Thus, similar to with 2 lenticular markers,
we can first optimize for the rotation over all markers with
the following objective function:

+(R(C; — Ci—1) - (Fiz1 X 7:;))2) ®)

and then optimize for the translation:
argmin Z ( (RC; 4+ T) x ﬁ-)Q 9)
T A

6.2. Reprojection Refinement

After using the arithmetic error to optimize for n > 2
lenticular markers, we could optimize over the reprojection
error of all markers to refine pose estimation. Here we show
the object function to simultaneously optimize for R and
T over the reprojection error of hue appreance and image
position:

= 1 2 1 2
argmin —(h(R,T) — hue;)” + —||g(R,T) — p;
gm Z;Al( (R, T) )+ 5 lo(B.T) = pill3

(10)
where h(R,T) projects a hue according to the pre-
calibrated HRF given for a lenticular maker at the projected
image location g(R,T'). Normalizing values A; and A\, are
found empirically to balance hue and position cost.

Color Calibration

The appearance given by lenticular markers can be affected
by environmental lighting factors. Ambient light color may
affect the hue appearance of the lenticular marker at any
orientation, while glare may only change the hue appear-
ance for certain orientations. As a result, the pre-calibrated
hue/viewpoint relationship of the HRF which encodes 77,,¢
does not represent the observed images and orientations in a
different lighting environment. The extra information given
by n > 2 lenticular markers, however, makes it possible to
correct for these uncalibrated lighting environments.
Inspired by white balancing methods, we therefore intro-
duce 2 extra color scaling variables to the objective function
of Equation 10. These two variables, s, and sy, scale the
red and blue channels of the RGB measurement of lenticu-
lar markers to better fit the model of how lenticular markers
appear given a relative orientation. The purpose of s, and
Sp 18 to color correct lenticular marker observations to fit the
pre-calibrated HRF of a different lighting environment. The
optimization in 10 can thus be updated to include the 2 new

Figure 5. With a setup that mounts 4 lenticular markers on the
same plane as a checkerboard, we can ground truth experiments
that explore pose estimation results for more than 2 markers and
color calibration routines.

color correcting variables by scaling the observed color of
each lenticular marker:

n

(i (R(R,T) — hue(M xrgb;))
A1

argmin E
R,T,sr,sp

1 2
5 la(R.T) ~ pil3) an

Here, rgb; is the vector representation of the RGB measure-
ment of a lenticular marker,

S

I~

0
M = 0

0
1 . 12)
0

o o

Sb

and hue(..) is a function that coverts an RGB measurement
to HSV space and returns only the hue.

This optimization function allows the multiple hue mea-
surements of various lenticular markers to “agree” for a pre-
dicted rotation and translation under some global color cal-
ibration.

7. Experimental Results with Four Lenticular
Markers

In this section we show pose estimation results when us-
ing more than 2 lenticular markers. First, we show the effect
of increasing the number of markers and using the arith-
metic error optimization detailed in Section 6.1. Then, we
show the benefit of refining pose estimation using a repro-
jection optimization with and without color calibration ex-
plained in Section 6.2. Finally, we look closely at how op-
timizing for additional color scaling variables changes the
measured hues to match the pre-calibrated HRF.

For this section, we use the setup shown in Figure 5. In
this setup, we have 4 coplanar lenticular markers arranged
in a rectangle, oriented as catacorner pairs with orthogo-
nal orientations. We surround the lenticular markers with a
radial hue pattern inspired by [13] to facilitate automated
identification. Because the radial patterns are concentric
rings, they are motion blur resistent; the radial pattern is
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unblurred along the direction of motion. We use concentric
hues as a cue to refine centroid positioning of each lenticu-
lar marker. On the same plane as the markers, we include a
checkerboard. Using the camera calibration toolbox in Mat-
lab 2014a, the checkerboard serves to ground truth the pose
of the lenticular markers. As before, we use this ground
truth to also calibrate the HRF for each lenticular marker
with a calibration video.

7.1. Pose Estimation with » > 2 Markers

We first look at the benefit of overconstraining the pose
estimation problem with more than 2 lenticular markers us-
ing the optimization of Section 6.1. In this experiment, we
estimate the pose of frames from a video 3 times, each iter-
ation adding the information from one additional lenticular
marker. We estimate pose for the same video frames used
to calibrate each marker’s HRF in order to avoid any dele-
terious effects from different light environments. The video
has 700 frames and captures the minimum and maximum
relative orientations possible for the lenticular markers. As
before with the physical prototype, we show the summary
rotation and translation errors as boxplots.

In Figure 6, we show pose estimation performance as
more lenticular markers are progressively used. For both
the rotation and translation results, we group by trials using
2, 3, and 4 markers. Figure 6(a) shows the coplanar angular
error of the individual local axes of the plane. For example,
X2 indicates the error of the x-axis estimation when using
2 markers. Results show that additional lenticular mark-
ers reduces rotation error for each axis. The accuracy for
the z-axis or the surface normal is especially improved. In
addition, the inlier extremes and quantiles tend to become
tighter, indicating a higher precision. The improvement in
performance is due to the extra angular and positional in-
formation gained from adding markers across the plane.

Figure 6(b) shows the euclidian distance error of posi-
tion estimation. We see slight gains in having 4 markers
versus 2 or 3. The translation performance is already under
2 mm of error, so there is little room for improvement.

7.2. Reprojection and Color Calibration Refine-
ment

Next, we show that optimizing the reprojection error
can refine pose estimation results and increase rotation and
translation accuracy. For this experiment, we use 3 videos,
each containing around 300 frames, taken in lighting condi-
tions different from the calibration video used to determine
the HRF. The calibration video was taken under flourescent
lights away from any window. Two test videos were taken
outside: one in full direct sun (“sunny”) and one on a com-
pletely cloudy day during the early afternoon (“cloudy”).
The third video (“office”) was taken indoors without lights
turned on, but next to a window early in the afternoon. For

Rotation Estimation Error Translation Estimation Error
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® ® O

Angle Error
»

Distance Error (mm)
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X2 X3 X4 Y2 Y3 Y4 Z2 Z3 Z4 2 3 4
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Figure 6. Although two lenticular markers are sufficient to con-
strain the pose estimation problem, using more lenticular markers
improves rotation performance. Here we show the performance ef-
fects of increasing the number of lenticular markers in a) rotation
estimation and b) translation estimation.

each video, we compare the pose estimation results 3 times:

e using the arithmetic optimization of Section 6.1 using
4 markers,

e intializing off of this pose estimation and doing the re-
projection optimization of Section 6.2 using 4 markers,

e and using the extended reprojection optimization that
solves for 2 additional color scaling variables.

To start, we show results for the test data in full sun,
shown in Figure 7. In Figure 7(a) we analyze the rotation
error. Similar to before, we show the rotation and transla-
tion error grouped by each local axes and vary the optimiza-
tion method. As examples, X4, XR, and XC show the ro-
tation error for the arithmetic optimization, the reprojection
optimization, and the color calibration optimization for the
x-axis, respectively. We can see that for each axis, reprojec-
tion substantially improves precision and accuracy. How-
ever, by adding color calibration, we can further ameliorate
rotation estimation: rotation estimation error drops down to
about 1-1.5 degrees of median error, with most errors being
less than 2 degrees. The same improvements can be seen in
translation estimation results shown in Figure 7(b). Using
reprojection refinement improves translation precision and
accuracy substantially, with additional (smaller) improve-
ments by color calibrating as well. The median translation
error for color calibration is 1.6 mm versus 1.9 with only
reprojection optimization.

Now, we show similar pose estimation results in Fig-
ure 8, but for the cloudy and office datasets as well. In the
interest of space, we only present the z-axis error for rota-
tion results. We denote the different datasets by S for sunny,
O for Office, and C for Cloudy and the 3 optimization meth-
ods as 4,R, and C. For both rotatation and translation results
across all datasets, we see an improvement over arithmetic
optimization with reprojection refinement, with the highest
accuracy and precision by optimizing for additional color
scaling variables. Across a variety of light environments
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Figure 7. Optimizing for reprojection error and color calibration
variables mitigates the negative effects of a lighting environment
very different from calibration, such as full sun shown here. The
a) rotation error reduces for each axis and b) the translation error
reduces with the reprojection color calibration routine.
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Figure 8. Despite these varying lighting conditions, reprojection
optimization with color calibration produces results with very high
accuracy and precision in a) surface normal estimation and b)
translation estimation. Sunny, Office, and Cloudy datasets are de-
noted by S, O, and C respectively and 4, P, and C correspond to
the three optimization routines discussed in Section 7.2.

using our color calibration optimization, we see the median
rotation error to be around 2 degrees of error and median
translation error less than 3 mm.

By refining the pose estimation with a reprojection opti-
mization, we see pose estimation results improve. The re-
projection objective function allows “wiggle room” in the
observed position and hue of the lenticular markers ver-
sus what would be modeled from a pinhole camera. In ef-
fect, this reprojection objective makes the algorithm robust
against both position and hue measurement noise for indi-
vidual markers. Therefore, any errors in automatically find-
ing the position of a marker is mitigated, as well as some
lighting effects for specific angels such as glare. The two
color scaling variables, on the other hand, allow a color cal-
ibration across all markers that adjusts individual frames to-
wards different global lighting environments.

7.3. Color Calibration Analysis

In this final section, we look more closely at color cal-
ibration effect. The main challenge with different lighting
environments is that the HRF no longer becomes a precise

Office Office Color Corrected
[0] o
z z
3 4 8
° k3]
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o 0zl o
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0 02 04 06 08 1 0 02 04 06 08 1
Raw Hue Corrected Hue
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Figure 9. For a video in an office next to a window, we show color
calibration results. On the left, we see the observed hue differing
from the hue predicted by the HRF for the known orientations.
On the right, we see that color corrected hues match the predicted
hue and thus provides robustness for pose estimation in varying
lighting environments.

representation of the hue/orientation relationship. Rather,
in a new lightning environment, a given orientatation will
result in a different hue than anticipated by the calibrated
HRE. Indeed, any global light changes should affect all the
markers. Therefore, a global color calibration can transform
the observed hues of all the markers in an image to hues that
match the HRF, and thus the lighting environment present
during calibration of the HRF.

For the office data set, we analyze the observed hue
and the calibrated hue versus the anticipated hue for each
marker given the ground truth orientation and position in
Figure 9. On the left, we see the observed hue versus pre-
dicted hue before any color correction. On the right, we
see the corrected hue (via the color calibration optimiza-
tion) versus the predicted hue. In the ideal case, when the
observed or corrected hues match the HRF predictions per-
fectly, all points would be along the diagonal black line.
However, as seen in Figure 9(a), all markers have system-
atic errors in matching the hue predictions before color cor-
rection. In particular, there are systematic color warps with
hues above 0.5 shifted towards 0.8, and colors below 0.2
shifted higher.

With color correction, however, we see these lighting ef-
fects mitigated. In Figure 9(b), we see most of the points
along the black line and thus the color corrected hues match
the hues predicted by the pre-calibrated HRF. We show sim-
ilar trends for the full sun and cloudy videos in Appendix C.
The 2 optimized color scaling variables succeed in recover-
ing the global lighting environment present during calibra-
tion of the HRF.
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8. Conclusion

This work introduces a novel fiducial marker that can be
made from easily accessible materials and commodity tools.
This fiducial marker explicitly changes appearance due to
viewpoint and two markers are sufficient to completely con-
strain the pose of an object. For objects that are long and
skinny, these color based markers are more accurate than
pose estimation based entirely on the tracking of the posi-
tion of nearby fiducial points. In addition, by adding more
markers and optimizing for a color calibration per frame, we
can mitigate the negative effects of lighting environments
different from the calibration environment, improving pose
estimations.
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A. Pose Estimation Simulation of a Skinny Ob-
ject

To test the impact of noise on pose estimation using
lenticular markers, we simulated the physical implemen-
tation of Section 5. We randomly generate locations for
the simulated object by defining translations uniformly dis-
tributed in a box between 0.5 and 2 meters in front of the
camera. Rotations are generated randomly with the con-
straint that the angle between the surface normal of the ob-
ject and the z-axis of the camera is less than 35°.

For each object location we project the locations of the
standard fiducial markers and our lenticular fiducial mark-
ers to get image positions of simulated markers. To simulate
the color of the lenticular fiducial marker, we assumed that
the printing process created no artifacts and implemented a
simple ray tracer to model the optical effects at each lentic-
ule (including the failure of the elliptical lenticular lens to
perfectly focus parallel rays) in order to compute the hue.

With this setup, we model noise to hue measurements
by adding noise in the range [—0.01,0.01] to capture un-
modeled effects that might come from, for example, glare
off the lenticular array. We model location error as a 2D
Gaussian whose standard deviation is a multiple of 0.1 pix-
els. Figure 10 shows the relative error in pose estimation as
this noise increases. Rotation error is measured as the an-
gular error between the surface normal measured from the
simulated object position and the surface normal returned
by the pose estimation process. Translation error is mea-
sured as the Euclidean distance between the simulated cen-
ter of the object and the center of the object as estimated by
the pose estimation process.

Figure 10(a) show the results for different noise levels.
At zero added noise, the standard approach based on track-
ing corners is perfect (because there is no error in the simu-
lated point locations) while our system has noise introduced
in the estimation of the hue. However, for all but the small-
est noise levels, the lenticular fiducial marker has lower me-
dian error and more consistent error magnitudes for both
translation and rotation.

B. Generalized Geometric Constraints for Pose
Estimation Per Lenticular Marker

We solve for the same pose estimation problem of a pin-
hole camera that views the lenticular markers shown in Sec-
tion 4, but generalize to accomidate n > 2 lenticular mark-
ers.

In the local coordinate system of an object, each marker
i has a local position C; and local orientation ¢; in refer-
ence to a local coordinate system of the lenticular markers.
The pose estimation problem then solves for the rotation
matrix R and translation vector 7" mapping a point in the
object coordinate system into a point in the camera coor-
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Figure 10. By using lenticular fiducial markers instead of the typi-
cal 4 corner markers, we achieve ameliorated pose estimations for
rotation (a) and translation (b). In both figures, we increase the
amount of error simulated along the x-axis, and show the median
value for each simulation surrounded by the 1st and 3rd quantile.

dinate system. Therefore, each lenticular marker at local
position C; will move to RC; + T in the camera coordinate
system. For geometric constraints, we relate the direction
of viewing the markers and their observed hues to a single
R and T that describes this movement.

Rotation Constraints

Each lenticular marker gives a constraint related to its
observed hue. Similar to Equation 2, the observed direction
of the marker 7; must be perpendicular to the rotated plane
¥t ... spanned by the marker’s orientation ; and the local
direction corresponding to the observed hue o7 _:

R(; X Tpye) - 75 =0 (13)

In addition, each marker gives a constraint related to
its relative position to another marker. Generalizing Equa-
tion 4, the directions from the camera to two lenticular
markers 7; and 7;_; and the relative displacement between
the two markers should be coplanar:

R(C; — Ci—q) - (Fi—1 x 7)) =0, (14)

For the origin marker, this relative position constraint in-
volves the position of the origin marker and the n;;, marker:

R(CZ — Co) . (’170 X ’F;) = 0, (15)

For n > 2 markers, each marker gives 2 geometric con-
straints on R. Therefore, there are a total of 2n constraints
to solve for R. For example, for 3 markers there are twice
as many contraints as free variables in R.

Translational Constraints

With the rotation known, we can now solve for the trans-
lation. We extend Equation 7 for an arbitrary number of
lenticular markers. In this constraint, the direction of the

11

pixel location of the lenticular marker 7; should be paral-
lel to the direction of the 3d location of the marker in the
camera’s coordinate space:

(RC;+T) x 7 =0 (16)

This constraint is a vector equation, so each marker gives
3 constraints. With n markers, we thus have 3n constraints
to solve for T'. Therefore, in total we have 5n constraints
with n markers to solve for the 6 degrees of freedom of the
pose estimation problem.

C. Additional Color Calibration Results

In Figure 11, we show color calibration results of all
datasets with different lighting environments than the en-
vironment used to calibrate each marker’s HRF. In the left
column, we show the observed hue versus the predicted hue
based on the known location and orientation of each marker.
In the right column, we show the better hue predictions after
color calibration. For all three datasets, we see that points
fall closer to the diagonal line, indicating color corrected
hues that better match the hue/orientation relationship of the
pre-calibrated HRF.
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Figure 11. For three different lighting environments, we show
color calibration results. In the left column, we see the observed
hue differing from the hue predicted by the HRF for the known
orientations. In the right column, we see that color corrected hues
match the predicted hue and thus provides robustness for pose es-
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timation in varying lighting environments.
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