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Abstract:  A genetic algorithm is simulated using human beings as "chromosomes" in a 
preliminary study intended to quantify and interpret the effect of intelligent information 
exchange on genetic algorithm performance. Two factors are varied: the amount of 
information supplied to the cohort and the type of data manipulation allowed during the 
exchange. A human simulated genetic algorithm is run for each combination of factors as 
well as a machine simulation for comparison. Qualitative analysis of recorded conversations 
indicate extensive use of memory and development of block biases during genetic algorithm 
evolution. Informal analysis shows that genetic algorithm simulations using complex data 
manipulations combined with exact knowledge of string fitnesses seem to out-perform a 
standard machine implementation for the given optimization fitness function. Interestingly, 
polar combinations: simple data manipulation/minimum information and complex data 
manipulation/maximum information simulations seem to out-perform other combinations.    
 
Keywords:  genetic algorithm, human simulation, intelligent recombination 

 

1. Introduction 

A genetic algorithm can be interpreted as a process of simulated evolution in which chromosome strings 
gradually modify the information encoded in their schemata.  Some form of replication based on string 
fitness is typically used to simulate natural selection and incorporate the Darwinian notion of survival of the 
fittest.  In addition, strings are altered according to the probabilistic rules of various operators, of which 
crossovers and mutations are the most well known.  In this information exchange phase, the strings 
(heretofore referred to as chromosomes) exchange symbols probabilistically to try to improve their fitness in 
order to survive through to the following generation. A building block hypothesis  has been suggested but 
not theoretically proven to be the primary impetus for solution improvement over generations. Efforts to 
develop analytical methods to determine the efficacy of problem coding/operator combinations have met 
with limited success but, nevertheless, strongly support this contention.  According to the hypothesis, 
chromosomes in the genetic population exchange varying sized blocks of consecutive symbols which, over 
time, tend to proliferate in the components of chromosomes that survive from one generation to the next.  In 
current implementations of genetic algorithms, the application of the various operators is probabilistic. In 
most cases these probabilities are chosen based on empirical studies and heuristics and are often non-
optimal for any given application.   

An alternative mechanism is proposed which uses memory and logical reasoning to determine how 
information is exchanged between chromosomes.  If memory, logical reasoning and more complex data 
manipulation could be exploited to streamline the search for these building blocks, the efficacy of the 
genetic algorithm search might be improved and could also lead to more robust automated genetic algorithm 



search.  To investigate this, a preliminary study was conducted using a human simulation of a genetic 
algorithm, under the assumption that human beings are capable of intelligent information exchange 
involving logical reasoning, memory and various forms of data manipulation.  Thus, instead of relying on 
the probabilistic application of crossovers and mutations for information exchange between chromosomes, 
human beings are used to decide which information and how information is exchanged.  Therefore, the 
objective of this research is to simulate a genetic algor ithm using human beings and to quantify and 
interpret the effect of intelligent information exchange on genetic algor ithm per formance. 
 
 
 

2. Human Genetic Algor ithm Simulation 
 

To simulate a genetic algorithm using human subjects, a standard genetic algorithm (SGA) was 
implemented on a computer using an algorithm whose cycle of evolution was made to interface with human 
subjects in the following manner.  Each human subject (one for each string in the population and hereafter 
referred to as a humasome) interacts with a personalized interactive program that leads the cohort through 
the evolutionary cycles of a genetic algorithm simulation.  Following the standard implementation model for 
genetic algorithms, initial random strings are evaluated and assigned to each humasome.  Humasomes are 
then randomly mated, and asked to meet with their mate to discuss their two strings.  Following a brief 
discussion, symbols may or may not be exchanged.  The humasomes then return to their interactive 
programs and enter their new strings.  A mutation operator is then applied to the input strings, after which 
the strings are reproduced in proportion to their fitness, evaluated and redistributed to the humasomes.  This 
cycle is then repeated for the desired number of generations. 

Various parameters affect the performance of a genetic algorithm in any given application, including the 
application itself, or fitness function in the context of the genetic algorithm. Additional parameters are:  the 
number of strings in the population, the size of the strings, the number of symbols in the coding, the types of 
operators and the probabilities associated with them.  In the case of the human genetic algorithm (HGA) 
simulation, information exchange was determined not by fixed probabilities, but by the decisions made by 
the humasomes.  Two parameters were postulated to affect the decisions of the humasomes: amount of 
information supplied to the humasomes regarding the fitness of their strings, and the type of data 
manipulation allowed during an exchange of symbols.  The latter two parameters were factors of the 
experiment and all others were fixed.  

An optimizing function of moderate difficulty was selected based on the results of a HGA pre-pilot study 
which suggested that reasonable solution convergence could occur within about 10 generations of evolution.  
It was important that the cohort did not immediately guess the solution to insure interesting results, nor take 
too long to arrive at a reasonably good solution so that differences in convergence time (as factors were 
varied) could be observed. Therefore, the following fitness function was selected, requiring a correct 
sequencing of a set of symbols to optimize the result: 
 

     

where si is the string to be evaluated, b is the number of symbols in a correct position, q is the number of 
correct pair subsequences, and p is the number of pairs of duplicate symbols.   

A string length of five was chosen to make it easier for the humasomes to remember past strings, thus 
encouraging the use of memory and past experience.  A six symbol alphabet was chosen to insure that 
humasomes would not guess the optimum string with high confidence (computed to be greater than 92%).  
Vowels were excluded from the potential set of symbols to prevent humasomes from developing word 
biases.  Numbers were excluded to prevent humasomes from assuming mathematical relationships between 
symbols.  Favourite and least favourite symbols were excluded to reduce the bias humasomes may have 

f (s  )  = i b + q + 0.25•p [1]



toward certain symbols.  Finally, a random mapping function was used to map symbols to numbers, 
blinding both the controller and humasomes, to reduce possible bias due to alphabetical ordering of 
characters. 

 

 

3. HGA Exper iment 
 

In order to quantify and interpret the effect of intelligent information exchange on genetic algorithm 
performance, a series of experiments was designed to validate the following research hypotheses: 

 

Research Hypothesis 1: 

Performance of an HGA will vary with the type of data manipulation and the amount of information 
supplied during information exchange for the given fitness function. 

 

Research Hypothesis 2: 

The extent to which humasomes make use of memory and logical reasoning will vary with the type 
of data manipulation and the amount of information supplied during information exchange for the 
given fitness function. 

 

For purposes of comparison, an SGA control was tested using the same implementation model and same 
fixed parameters, but using a crossover operator for information exchange.  Mutation rates for all HGA and 
SGA experiments were machine controlled and fixed. 

 

 

3.1 Exper iment Factors 

Two different levels for the amount of information supplied to the humasomes prior to information 
exchange were tested.  Maximum information provided the humasomes with the absolute fitness value of 
their string as computed by the fitness function. Minimum information provided the humasomes only with 
information regarding string survival.   

Two types of data manipulation were tested.  Standard data manipulation allowed humasomes to 
exchange symbols using two-point crossovers only.  Complex data manipulation allowed humasomes to 
exchange symbols in any manner desired.    

3.2 Per formance Metr ics 

To measure the effect of the factors on HGA performance, two metrics were used.  The first relates to how 
close the strings of a population are to the optimum fitness: the Convergence Measure (CM), given for 
generation j  by: 

 



=
Σ
i = 1

n
1
n

Fmax

if (s  ) 
generation = j

CM  j
[2]

 
 

where si is the i th string of a total of n strings in generation j  and Fmax is the maximum possible fitness using 
the given fitness function f. A second metric for measuring HGA performance, the Per formance Matching 
Generation Count, was the number of generations required for the SGA to match the convergence measure 
of the HGA in the last generation of the HGA simulation. 

To measure the extent to which humasomes make use of memory and logical reasoning, three metrics were 
used: the number of explicitly stated explanations regarding motivations for information exchange 
(humasome reasoning), the number of explicitly stated references to previous strings (use of memory) and 
the number of explicitly stated symbol combination biases. 

 

 

3.3  Exper iment Procedure 

HGA Simulation. For each HGA simulation, a cohort was selected consisting of 10 college level students 
from varying technical educational backgrounds, a variety of nationalities, with approximately equal 
proportions of each gender.  Subjects were seated in a closed, air-conditioned room in front of numbered 
computer terminals as shown in figure 1.  The interface program, written in ANSI C, ran on a UNIX 
mainframe and was accessed by each subject through a Macintosh terminal.  A super-program, operated by 
the controller, was used to coordinate inter-program communication between the interface programs and 
control the flow of the experiment.  The experiment proceeded as follows.  After seating the cohort, a brief 
oral explanation of the cycle of evolution was presented, excluding a detailed explanation of fitness 
functions.  Participants were told to treat the experiment like a game, where the goal was to identify the best 
set of symbols, given the conditions of the experiment.  In addition, an instruction sheet was provided 
describing how to initiate the interface program, how and when to use the sound recorders, and how 
symbols were to be exchanged.  Approximately 5 minutes were allotted for questions to clarify the rules of 
the experiment.  During the experiment, only questions regarding a clarification of the rules of information 
exchange were answered by the controllers, and discussions were allowed only between humasome mates.    

First, a brief pretest was administered through each interface program to determine favourite and least 
favourite letters for each humasome.  Results were used to modify the HGA alphabet on the fly to reduce 
bias.  The cycle of evolution proceeded as follows.  Initial strings were randomly generated by the super-
program and then randomly distributed to each humasome, displaying each humasome’s string on the 
appropriate monitor.  In the case of minimum information, the humasome was told whether or not the string 
had survived from the previous generation (except in the very beginning when the strings are random).  In 
the case of maximum information, a fitness value also accompanied the display of the string.  At this time, 
each humasome was also informed of their mate by number (randomly determined by the computer).  
Humasomes were then instructed to meet with their mates, start recorders and begin discussing their strings 
with the intent of possibly (but not necessarily) exchanging symbols in a manner consistent with their initial 
instructions.  Paper and pencil were provided to encourage participants to remember past strings and past 
string performance.  A time limit of approximately 3 minutes was set for information exchange with a 
suggestion to "hurry" issued 30 seconds before and every 30 seconds thereafter until the humasomes 
complied of their own free will.  Once information exchange was completed, humasomes were instructed to 
stop the recorders, return to their terminals and to input their newly modified strings into their interface 
program.   



A mutation operator was applied by the super-program using a mutation rate of 0.02 (2 mutations per 100 
symbols processed).  Note that this same mutation rate was used in the SGA machine implementation later 
for comparison.  Strings were then reproduced in proportion to their fitness, evaluated and redistributed to 
the humasomes.  If a humasome’s string survived, that string was funneled to that humasome; all others 
were randomly redistributed to the remaining participants.  Once redistributed, the strings were displayed on 
the appropriate monitors with the corresponding information regarding string fitness, and the entire cycle 
repeated.  Ten generations were run, for a total duration of approximately 45 minutes (with no breaks) for 
each simulation. 

 

SGA Control.  As a control, 30 repetitions of an SGA machine simulation were run with different random 
seeds, using the same mutation rate as for the HGA (0.02) with three different crossover probabilities: 0.60, 
0.75 and 0.85.  The best run out of the 30 simulations for each crossover rate was used in comparisons with 
the HGA.  The same code was used for both HGA and SGA simulations with the only difference being the 
application of the crossover (which, in the HGA, were substituted by human interaction). 

 

 

4.  Results 
 

Fitness values for all strings after each generation (for both HGA and SGA simulations) were stored to data 
files for later analysis.  Recorded conversations were codified using a list of acronyms shown in figure 2 
which were then entered into a spreadsheet for analysis.  Approximately 6 hours per experiment were 
needed to properly codify the conversations.  Acronyms are related to 1. humasome reasoning expressed 
during information exchange, and 2. general observations regarding humasome behavior. 

HGA experiments are labeled as follows in all figures:  StdMinInfo for standard data manipulation and 
minimum information, StdMaxInfo for standard data manipulation and maximum information, 
CplxMinInfo for complex data manipulation and minimum information, CplxMaxInfo for complex data 
manipulation and maximum information.  The label StdNoInfo is used for the SGA simulation, since the  
machine simulation can be considered to be equivalent to a HGA experiment where the humasomes are 
given no information.    

Convergence Measure  (CM) was used as a measure of the GA performance. The best SGA result was used 
for comparison in Table 1. The following table lists confidences by which the CMs in the last generation of 
the simulations (generation #9) referred to as “A” simulations are greater than those referred to as “B” 
simulations. The confidences are calculated based on a t-test using 9 dof (number of strings per generation - 
1). 

 

StdNoInfo StdMinInfo StdMaxInfo CplxMinInfo CplxMaxInfo

StdNoInfo  
 
StdMinInfo  
 
StdMaxInfo  
 
CplxMinInfo  
 
CplxMaxInfo

A
B

* 
 
55 
 
42 
 
48 
 
63

45 
 
* 
 
41 
 
44 
 
51

59 
 
59 
 
* 
 
54 
 
92

52 
 
56 
 
46 
 
* 
 
67

37 
 
49 
 
8 
 
33 
 
*

 



       
Table 1:  Confidence that the CM for simulation A is greater than the CM for simulation B. 

 

The standard deviations across generations were calculated to compare the performance of the HGA  
simulation with the SGA simulation.   

The number of generations required for the best machine SGA to match the HGA simulation performance 
was also plotted (not shown).  Negative values indicated that the SGA converged that many generations 
sooner than the HGA.  Positive values indicated that the SGA took that many generations longer to 
converge to the equivalent HGA’s last generation’s average string fitness. Counts of the block biases 
developed by the humasomes in the HGA  simulation simulations were also tracked across generations and  
plotted (not shown).   

The number of explicit memory references verbally expressed by the humasomes during each of the HGA 
simulations were counted. Table 2 illustrates the confidences by which the counts are significantly different 
from one another. 

Twelve reasoning codes were extracted from the transcription of the recorded conversations between 
humasomes. The frequency of these occurrences were plotted per simulation in one composite chart for 
comparison (not shown).  

           

      StdMinInfo     StdMaxInfo     CplxMinInfo   CplxMaxInfo

StdMinInfo * 98 99 99

StdMaxInfo 98 * 98 95

CplxMinInfo 99 98 * 70

CplxMaxInfo 99 95 70 *

 
Table 2:  Confidences that the number of explicit memory references is different from one 

simulation to another. 

 

 

5.  Conclusions and Recommendations 
 

Obviously, the small sample in this preliminary study precludes any firm conclusions. Nevertheless, a 
number of interesting qualitative observations can be made.  

SGA performance was found to be similar over a range of crossover probabilities and across generations for 
this fitness function.  As a result, only the best SGA simulation is included for comparison purposes, 
simplifying the comparison with HGA experiments. 

From table 2 there is a 92% probability that the simulation CplxMaxInfo (complex manipulation combined 
with maximum information) results in performance that is greater than the results obtained from the 
standard manipulations with maximum information (StdMaxInfo).  This was supported by qualitative 
observations of the cohort in which some indicated frustration at not being able to test certain hypotheses 
due to the constraint on data manipulation. 



The result that StdMinInfo and CplxMaxInfo simulations seem to perform better than the other HGA 
simulations (as well as the machine simulation StdNoInfo) is also supported by the number of generations 
required by the machine to catch up to the HGA performance. Note that the best machine simulation out of 
a set of 30 Monte Carlo’d runs was used for comparison.  In both cases the machine simulation needed in 
excess of 21 generations to arrive at the same performance level reached by the StdMinInfo and 
CplxMaxInfo simulations. Results suggest that the machine was able to reach the performance level 
achieved by the other two simulations in generation 9, in less than 4 generations. These results point to an 
interesting observation: when a genetic algorithm simulation is bound by standard GA data manipulations 
and is given minimal information, its performance is better than when the same GA is given either no 
information at all or maximum information. Note, its performance is comparable to (but not quite as good 
as) the HGA simulation bounded by complex manipulations and given maximum information.  

Unfortunately, there is only a 63% possibility that the apparent best experiment (CplxMaxInfo) is better in 
performance than the machine simulated genetic algorithm.  And, in fact, the standard manipulation with 
minimum information (StdMinInfo) appears to be (inexplicably) a close second best at 55% (see table 2).  It 
may be that to make full use of the amount of information, complex data manipulation is required.  
Otherwise, the amount of information is not as important and simple manipulations do just as well. 

By looking at the Block Biases developed across generations per simulation, all except the StdMinInfo 
simulation seem to show an increase near the middle generations of evolution.  This is consistent with the 
idea that people might begin with few biases, then develop biases as more information becomes available to 
them, and finally reduce their biases as they converge to a possible solution. 

Results show that the number of memory references in the StdMinInfo simulation is greater than the 
number of the same type with more than a 98% confidence level (using a single-tailed version of the data in 
table 2).  This suggests that in cases where data manipulation was constrained with minimal information, 
more references to previous strings occurred, that is, people tended to rely more on their memories to try 
and extract as much information as possible in a difficult situation.  However, in the case of complex data 
manipulation, this contrast is not as great (only a 70% confidence in a difference). 

Regarding reasoning codes, it is interesting to note the diversity of reasoning in such a short simulation.  
Symbol homogeneity and heterogeneity (in the authors’ opinion, the simplest of all reasoning) were most 
often cited in all simulations except in CplxMaxInfo where Symbol Location Reasoning clearly prevailed.  
This suggests that given a large amount of information and complex manipulations, people were able to 
progress to a more complex hypothesis (and in the case of this fitness function, more relevant) more 
quickly.   

In general, it seems feasible that memory and reasoning could augment the search for potential solutions in 
a genetic algorithm, especially if a larger population were used (as is the case in most GA simulations).  A 
learning automaton could be a very qualified substitute for the humasome and could provide a very testable 
machine simulation for exploring further hypotheses.  For example, in the human experiment, one important 
characteristic of the program was to funnel strings that survived to those humasomes that were responsible 
for that string’s survival.  In this way, the humasomes could develop consistent hypotheses as to the reason 
for their string’s continuing success.  Given this same strategy, a learning automaton might be able to 
develop specific biases similar to those in a human by identifying the building blocks consistent with the 
string’s survival and fitness.  The building block hypothesis would then no longer be a hypothesis, but a real 
mechanism exploited by the genetic algorithm for solution search.  How this affects the search for global 
optimal solutions and the effect on general convergence rate would have to be determined.  However, the 
results of this experiment perhaps remotely suggest that such an investigation might be warranted.  
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Figure 1:  Layout schematic of the laboratory. 
 
 
 
 
 

GDR:  Generation  Dependence  Reasoning

SSSR: Separate  Similar Symbol  Reasoning

SNLR: Symbol Not Location Reasoning

HOSR: HOmogeneous Symbol Reasoning
HESR: HEterogeneous  Symbol Reasoning

SYR:  SYmmetry  Reasoning

SLR:  Symbol Location  Reasoning

CSR:  Cancelling Symbol  Reasoning

HRSR: HigheR Symbol Reasoning

ALTSR: ALT ernating Symbol  Reasoning

SOR:  Symbol Order Reasoning

LIMSR: L imiting pool of Strings Reasoning

AR:  Ambiguous Reasoning 

ER:  Emotional Reasoning

MLR: M eta-Level  Reasoning

DSB:  Developed Symbol  Bias

DBB:  Developed Block Bias 

NIE:  No Information Exchange
IE:  Information  Exchange

BOC(n): Backward Other Context (level) 
BSC(n): Backward  Self Context  (level)

SM:  Symbol M anipulation

NSM:  No Symbol M anipulation

DNC:  Do Not  Care

SFR:  Self Fitness Reflection
OFR:  Other Fitness Reflection

Reasoning Codes Observation Codes

 



 
 

Figure 2:  List and brief description of acronyms used to codify recorded human 
conversations. 
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