
COLING 2004

WORKSHOP ON

Computational Approaches to Arabic
Script-based Languages

University of Geneva
Geneva, Switzerland

August 28, 2004

WORKSHOP THEME

Recently, there has been a surge of interest in the study of the languages of the Middle
East, especially Arabic, Persian (Farsi), Pashto, Kurdish and Urdu. This sudden and urgent
interest is manifested by the availability of funding for rapid development of practical systems for
processing large volumes of data in these languages. Computational applications for proper name
identification, entity recognition, categorization, information retrieval, summarization, machine
translation and other implementations are currently in high demand. This comes at a time when
advances in formal and computational linguistics over the last fifty years are being consolidated,
while work on machine learning and statistical methods has been showing great promise.

There exists a considerable body of work in computational linguistics specifically
targeted to these middle eastern languages. Much of the research and development has been the
result of initiatives by individual research establishments or industry firms. Furthermore, the
usage of the Arabic script gives rise to certain issues that are common to all these languages
despite their being of distinct language families. Hence, these languages share properties such as
the absence of capitalization, right to left direction, lack of clear word boundaries, complex word
structure, a high degree of ambiguity due to non-representation of short vowels in the writing
system, and related encoding issues.

The goal of this workshop is to provide a forum for those involved in the development of
NLP systems in Arabic script languages to exchange ideas, approaches and implementations of
computational systems; to discuss the common challenges faced by all practitioners; and to assess
the state of the art in the field. In addition, one of the aims of the workshop is to identify
promising areas for future collaborative research in the development of NLP systems for Arabic
script languages. Solutions that are designed to solve the specific problems of these languages
could very well have wider applications and relevance to the rest of the NLP community.

INVITED SPEAKER

Martin Kay, Stanford University

ORGANIZING COMMITTEE

Ali Farghaly, SYSTRAN Software, Inc.
Karine Megerdoomian, Inxight Software, Inc. and University of California, San Diego

PROGRAM COMMITTEE

Jan W. Amtrup, Bowne Global Solutions
Tim Buckwalter, Linguistic Data Consortium
Miriam Butt, Konstanz University, Germany
Violetta Cavalli-Sforza, Carnegie Mellon University
Joseph Dichy, Lyon University
Abdelkadir Fassi Fehri, Mohammed V University-Souissi Rabat, Morocco
Andrew Freeman, University of Washington
Nizar Habash, University of Maryland, College Park
Masayo Iida, Inxight Software, Inc
Simin Karimi, University of Arizona
Martin Kay, Stanford University
Kevin Knight, USC/Information Sciences Institute
Farhad Oroumchian, University of Wollongong in Dubai
Ahmed Rafea, The American University in Cairo
Jean Senellart, SYSTRAN Software
Bonnie Glover Stalls, University of Southern California
Rémi Zajac, SYSTRAN Software

FURTHER INFORMATIONS

Emails:

Ali Farghaly, AliFarghaly@aol.com
Karine Megerdoomian, karinem@inxight.com

www: http://members.cox.net/karinem/COLING2004

WORKSHOP PROGRAM

OPENING AND OVERVIEW

8:30 – 9:00 Computer Processing of Arabic Script-based Languages: Current State and
Future Directions
Ali Farghaly

SESSION 1: LEXICON AND CORPORA

9:00 – 9:30 Developing an Arabic Treebank: Methods, Guidelines, Procedures, and Tools
Mohamed Maamouri and Ann Bies

9:30 – 10:00 Preliminary Lexical Framework for English-Arabic Semantic Resource
Construction
Anne R. Diekema

10:00 – 10:30 The Architecture of a Standard Arabic Lexical Database: Some Figures, Ratios
and Categories from the DIINAR.1 Source Program
Ramzi Abbès, Joseph Dichy and Mohamed Hassoun

10:30 – 10:45 BREAK

 SESSION 2: MORPHOLOGY

10:45 – 11:15 Systematic Verb Stem Generation for Arabic
Jim Yaghi and Sane Yagi

11:15 – 11:45 Issues in Arabic Orthography and Morphology Analysis
Tim Buckwalter

11:45 – 12:15 Finite-State Morphological Analysis of Persian
Karine Megerdoomian

12:15 – 2:00 LUNCH & DEMO SESSIONS

 DEMONSTRATIONS

 Urdu Localization Project
Sarmad Hussain

 FarsiSum – A Persian Text Summarizer
Martin Hassel and Nima Mazdak

 Stemming the Qur’an
Naglaa Thabet

 Language Weaver Arabic->English MT
Daniel Marcu, Alex Fraser, William Wong and Kevin Knight

INVITED SPEAKER

2:00 – 2:45 Arabic Script-Based Languages Deserve to be Studied Linguistically
Martin Kay

 SESSION 3: STATISTICAL APPROACHES

2:45 – 3:15 An Unsupervised Approach for Bootstrapping Arabic Sense Tagging
Mona T. Diab

3:15 – 3:45 Automatic Arabic Document Categorization Based on the Naïve Bayes Algorithm
Mohamed El Kourdi, Amine Bensaid and Tajje-eddine Rachidi

3:45 – 4:00 BREAK

 SESSION 4: SPEECH PROCESSING

4:00 – 4:30 A Transcription Scheme for Languages Employing the Arabic Script Motivated
by Speech Processing Applications
Shadi Ganjavi, Panayiotis G. Georgiou and Shrikanth Narayanan

4:30 – 5:00 Automatic Diacritization of Arabic for Acoustic Modeling in Speech Recognition
Dimitra Vergyri and Katrin Kirchhoff

5:00 – 5:30 Letter-to-Sound Conversion for Urdu Text-to-Speech System
Sarmad Hussain

5:30 – 6:00 Discussion and Closing
Ali Farghaly and Karine Megerdoomian

 Contents
Papers

 Computer Processing of Arabic Script-based Languages: Current State
 and Future Directions

Ali Farghaly ………………………………………………………………………………..1

Developing an Arabic Treebank: Methods, Guidelines, Procedures, and Tools
Mohamed Maamouri and Ann Bies ………………………………………………………..2

Preliminary Lexical Framework for English-Arabic Semantic Resource Construction
Anne R. Diekema ………………………………………………………………………….10

The Architecture of a Standard Arabic Lexical Database: Some Figures, Ratios and
Categories from the DIINAR.1 Source Program
Ramzi Abbès, Joseph Dichy and Mohamed Hassoun ……………………………………..15

Systematic Verb Stem Generation for Arabic
Jim Yaghi and Sane Yagi …………………………………………………………………..23

Issues in Arabic Orthography and Morphology Analysis
Tim Buckwalter …………………………………………………………………………….31

Finite-State Morphological Analysis of Persian
Karine Megerdoomian ……………………………………………………………………...35

Arabic Script-Based Languages Deserve to be Studied Linguistically
Martin Kay ………………………………………………………………………………….42

An Unsupervised Approach for Bootstrapping Arabic Sense Tagging
Mona T. Diab …………………………………………………………………………… ..43

Automatic Arabic Document Categorization Based on the Naïve Bayes Algorithm
Mohamed El Kourdi, Amine Bensaid and Tajje-eddine Rachidi ………………………51

A Transcription Scheme for Languages Employing the Arabic Script Motivated
by Speech Processing Applications …………………………………………………….......59
Shadi Ganjavi, Panayiotis G. Georgiou and Shrikanth Narayanan

Automatic Diacritization of Arabic for Acoustic Modeling in Speech Recognition
Dimitra Vergyri and Katrin Kirchhoff ………………………………………………………66

Letter-to-Sound Conversion for Urdu Text-to-Speech System
Sarmad Hussain ……………………………………………………………………………..74

Demonstrations

Urdu Localization Project
Sarmad Hussain …………………………………………………………………............... 80

FarsiSum – A Persian Text Summarizer
Martin Hassel and Nima Mazdak ………………………………………………………….82

Stemming the Qur’an
Naglaa Thabet ………………………………………………………………………….......85

Language Weaver Arabic->English MT
Daniel Marcu, Alex Fraser, William Wong and Kevin Knight …………………................89

Computer Processing of Arabic Script-based Languages:
 Current State and Future Directions

 Ali Farghaly
 SYSTRAN Software, Inc.
 9333 Genesee Ave
 San Diego, CA 92121, USA
 alifarghaly@aol.com

Arabic script-based languages do not belong to a single language family, and therefore exhibit
different linguistic properties. To name just a few: Arabic is primarily a VSO language
whereas Farsi is an SVO and Urdu is an SOV language. Both Farsi and Urdu have light verbs
whereas Arabic does not. Urdu and Arabic have grammatical gender while Farsi does not.
There are, however, linguistic and non-linguistic factors that bring these languages together. On
the linguistic side it is the use of the Arabic script, the right to left direction, the absence of
characters representing short vowels and the complex word structure. Non-linguistic common
properties that bind the majority of speakers of these languages include: the Qur’an that every
Moslem has to recite in Arabic, proximity of the countries speaking these languages, common
history and, to a large extent, a common culture and historical influx . It is not surprising, then,
that the surge of interest in the study of these languages and the sudden availability for funding
to support the development of computational applications to process data in these languages
come for all these languages at the same time.

This also occurs at crucial period in the field of Natural Language Processing (NLP). It is
becoming increasingly evident that statistical and corpus-based approaches, though necessary,
are not sufficient to address all issues involved in building viable applications in NLP. Arabic
script-based languages share in different degrees an explosion of homograph and word sense
ambiguity. The absence of the representation of short vowels in normal texts dramatically
increases the number of ambiguities. At SYSTRAN, the average number of ambiguities of a
token in many languages is 2.3, whereas in Modern Standard Arabic, it reaches 19.2. Dealing
with such a problem represents a real challenge to NLP systems. Resolving ambiguity in NLP
requires representation not only of linguistic and contextual knowledge but also of domain and
world knowledge. It is not clear how number crunching of linguistic data could address this
problem. Ambiguity in Arabic is enormous at every level: lexical, morphological and
syntactic. Another serious problem is tokenization. It is extremely common in Arabic to find a
token such as “مѧѧѧѧѧѧورأيته” which is actually a sentence consisting of a conjunction, a verb, a
subject, an object in that order. Moreover, within the verb itself, there is tense, number and
gender and mood. Within the object, which is only two alphabet letters, there is number, gender
and case. The complexity of tokens and the abstractness of information, such as the meanings
of prosodic templates (McCarthy, 1981), present challenges in the processing of Arabic
script—based languages.

There has been steady progress in computational processing of Arabic script-based languages
in the last few years. The greatest leap since the pioneering efforts made in the early 1980s in
Arabic computational linguistics (Hlal, 1985;Ali 1985, 1987, 1988; Geith 1988; Farghaly,
1987), is the availability of Buckwalter’s morphological analyzer and dictionary which has
recently given a boost in that area. The great work at the LDC in the creation of a corpus of
written and spoken Arabic as well as the Arabic tree bank is another important resource to the
practitioners in the field. What is urgently needed in future research is work on syntactic
analysis and ambiguity resolution.

1

Developing an Arabic Treebank: Methods, Guidelines, Procedures, and Tools

Mohamed MAAMOURI
LDC, University of Pennsylvania

3600 Market Street, Suite 810
Philadelphia, PA 19104, USA

maamouri@ldc.upenn.edu

Ann BIES
LDC, University of Pennsylvania

3600 Market Street, Suite 810
Philadelphia, PA 19104, USA

bies@ldc.upenn.edu

Abstract

In this paper we address the following
questions from our experience of the last two
and a half years in developing a large-scale
corpus of Arabic text annotated for
morphological information, part-of-speech,
English gloss, and syntactic structure: (a)
How did we ‘leapfrog’ through the stumbling
blocks of both methodology and training in
setting up the Penn Arabic Treebank (ATB)
annotation? (b) How did we reconcile the
Penn Treebank annotation principles and
practices with the Modern Standard Arabic
(MSA) traditional and more recent
grammatical concepts? (c) What are the
current issues and nagging problems? (d)
What has been achieved and what are our
future expectations?

1 Introduction

Treebanks are language resources that provide
annotations of natural languages at various levels
of structure: at the word level, the phrase level, and
the sentence level. Treebanks have become
crucially important for the development of data-
driven approaches to natural language processing
(NLP), human language technologies, automatic
content extraction (topic extraction and/or
grammar extraction), cross-lingual information
retrieval, information detection, and other forms of
linguistic research in general.

The Penn Arabic Treebank began in the fall of
2001 and has now completed two full releases of
data: (1) Arabic Treebank: Part 1 v 2.0, LDC
Catalog No. LDC2003T06, roughly 166K words of
written Modern Standard Arabic newswire from
the Agence France Presse corpus; and (2) Arabic
Treebank: Part 2 v 2.0, LDC Catalog No.
LDC2004T02, roughly 144K words from Al-Hayat
distributed by Ummah Arabic News Text. New
features of annotation in the UMAAH (UMmah
Arabic Al-Hayat) corpus include complete
vocalization (including case endings), lemma IDs,
and more specific part-of-speech tags for verbs and
particles. Arabic Treebank: Part 3 is currently

underway, and consists of text from An-Nahar.
(Maamouri and Cieri, 2002)

The ATB corpora are annotated for
morphological information, part-of-speech,
English gloss (all in the “part-of-speech” phase of
annotation), and for syntactic structure (Treebank
II style). (Marcus, et al., 1993), (Marcus, et al.,
1994)

In addition to the usual issues involved with the
complex annotation of data, we have come to
terms with a number of issues that are specific to a
highly inflected language with a rich history of
traditional grammar.

2 Issues of methodology and training with
Modern Standard Arabic

2.1 Defining the specificities of ‘Modern
Standard Arabic’

Modern Standard Arabic (MSA), the natural
language under investigation, is not natively
spoken by Arabs, who acquire it only through
formal schooling. MSA is the only form of written
communication in the whole of the Arab world.
Thus, there exists a living writing and reading
community of MSA. However, the level of MSA
acquisition by its members is far from being
homogeneous, and their linguistic knowledge, even
at the highest levels of education, very unequal.
This problem is going to have its impact on our
corpus annotation training, routine, and results. As
in other Semitic languages, inflection in MSA is
mostly carried by case endings, which are
represented by vocalic diacritics appended in
word-final position. One must specify here that
the MSA material form used in the corpus data we
use consists of a graphic representation in which
short vowel markers and other pertinent signs like
the ‘shaddah’ (consonantal germination) are left
out, as is typical in most written Arabic, especially
news writing. However, this deficient graphic
representation does not indicate a deficient
language system. The reader reads the text and
interprets its meaning by ‘virtually providing’ the
missing grammatical information that leads to its
acceptable interpretation.

2

2.2 How important is the missing
information?

Our description and analysis of MSA linguistic
structures is first done in terms of individual words
and then expanded to syntactic functions. Each
corpus token is labeled in terms of its category and
also in terms of its functions. It is marked
morphologically and syntactically, and other
relevant relationship features also intervene such as
concord, agreement and adjacency. This
redundancy decreases the importance of the
absence of most vocalic features.

2.3 The issue of vocalization

The corpus for our annotation in the ATB
requires that annotators complement the data by
mentally supplying morphological information
before choosing the automatic analysis, which
amounts to a pre-requisite ‘manual/human’
intervention and which takes effect even before the
annotation process begins. Since no automatic
vocalization of unvocalized MSA newswire data is
provided prior to annotation, vocalization becomes
the responsibility of annotators at both layers of
annotation. The part-of-speech (POS) annotators
provide a first interpretation of the text/data and a
vocalized output is created for the syntactic
treebank (TB) annotators, who then engage in the
responsibility of either validating the interpretation
under their scrutiny or challenging it and providing
another interpretation. This can have drastic
consequences as in the case of the so-called
‘Arabic deverbals’ where the same bare graphemic
structure can be two nouns in an ‘idhafa
(annexation or construct state) situation’ with a
genitive case ending on the second noun or a
‘virtual’ verb or verbal function with a noun
complement in the accusative to indicate a direct
object. In Example 1, genitive case is assigned
under the noun interpretation, while accusative
case is assigned by the same graphemic form of the
word in its more verbal function (Badawi, et al.,
2004, cf. Section 2.10, pp. 237-246).

Example 11
Neutral form: <xbArh Al+nb> إخباره النبا
Idhafa: <ixbAruhu Al+naba>i ِخبارُهُإِ النَبَأ
 his receipt (of) the news [news genitive]
Verbal: <ixbAruhu Al+naba>a َإِخبارُهُ النَبَأ
 his telling the news [news accusative]

These are sometimes difficult decisions to make,
and annotators’ agreement in this case is always at

1 For the transliteration system of all our Arabic

corpora, we use Tim Buckwalter’s code, at
http://www.ldc.upenn.edu/myl/morph/buckwalter.html

its lowest. Vocalization decisions have a non-
trivial impact on the overall annotation routine in
terms of both accuracy and speed.

Vocalization is a difficult problem, and we did
not have the tools to address it when the project
began. We originally decided to treat our first
corpus, AFP, by having annotators supply word-
internal lexical identity vocalization only, because
that is how people normally read Arabic – taking
the normal risks taken by all readers, with the
assumption that any interpretation of the case or
mood chosen would be acceptable as the
interpretation of an educated native speaker
annotator. In our second corpus, UMAAH, we
decided that it would improve annotation and the
overall usefulness of the corpus to vocalize the
texts, by putting the necessary rules of syntax and
vocalization at the POS level of annotation – our
annotators added case endings to nouns and voice
to verbs, in addition to the word-internal lexical
identity vocalization. For our third corpus,
ANNAHAR (currently in production), we have
decided to fully vocalize the text, adding the final
missing piece, mood endings for verbs. In
conclusion, vocalization is a nagging but necessary
“nuisance” because while its presence just
enhances the linguistic analysis of the targeted
corpus, its absence could be turned into an issue of
quality of annotation and of grammatical
credibility among Arab and non-Arab users.

3 Reconciling Treebank annotation with
traditional grammar concepts in Arabic

The question we had to face in the early stages
of ATB was how to develop a Treebank
methodology – an analysis of all the targeted
syntactic structures – for MSA represented by
unvocalized written text data. Since all Arabic
readers – Arabs and foreigners – go through the
process of virtually providing/inserting the
required grammatical rules which allow them to
reach an interpretation of the text and consequent
understanding, and since all our recruited
annotators are highly educated native Arabic
speakers, we accepted going through our first
corpus annotation with that premise. Our
conclusion was that the two-level annotation was
possible, but we noticed that because of the extra
time taken hesitating about case markings at the
TB level, TB annotation was more difficult and
more time-consuming. This led to including all
possible/potential case endings in the POS
alternatives provided by the morphological
analyzer. Our choice was to make the two
annotation passes equal in difficulty by transferring
the vocalization difficulty to the POS level. We
also thought that it is better to localize that

3

difficulty at the initial level of annotation and to try
to find the best solution to it. So far, we are happy
with that choice. We are aware of the need to have
a full and correct vocalization for our ATB, and we
are also aware that there will never be an existing
extensive vocalized corpus – except for the
Koranic text – that we could totally trust. The
challenge was and still is to find annotators with a
very high level of grammatical knowledge in
MSA, and that is a tall order here and even in the
Arab region.

So, having made the change from unvocalized
text in the ‘AFP Corpus’ to fully vocalized text
now for the ‘ANNAHAR Corpus,’ we still need to
ask ourselves the question of what is better: (a) an
annotated corpus in which the ATB end users are
left with the task of providing case endings to
read/understand or (b) an annotated ATB corpus
displaying case endings with a higher percentage
of errors due to a significantly more complex
annotation task?

3.1 Training annotators, ATB annotation
characteristics and speed

The two main factors which affect annotation
speed in our ATB experience are both related to
the specific ‘stumbling blocks’ of the Arabic
language.

1. The first factor which affects annotation
accuracy and consistency pertains to the
annotators’ educational background (their
linguistic ‘mindset’) and more specifically to their
knowledge – often confused and not clear – of
traditional MSA grammar. Some of the important
obstacles to POS training come from the confusing
overlap, which exists between the morphological
categories as defined for Western language
description and the MSA traditional grammatical
framework. The traditional Arabic framework
recognizes three major morphological categories
only, namely NOUN, VERB, and PARTICLE.
This creates an important overlap which leads to
mistakes/errors and consequent mismatches
between the POS and syntactic categories. We
have noticed the following problems in our POS
training: (a) the difficulty that annotators have in
identifying ADJECTIVES as against NOUNS in a
consistent way; (b) problems with defining the
boundaries of the NOUN category presenting
additional difficulties coming from the fact that the
NOUN includes adjectives, adverbials, and
prepositions, which could be formally nouns in
particular functions (e.g., from fawq فوق NOUN to
fawqa َفَوق PREP “above” and fawqu ُفَوق ADV
etc.). In this case, the NOUN category then
overlaps with the adverbs and prepositions of
Western languages, and this is a problem for our

annotators who are linguistically savvy and have
an advanced knowledge of English and, most
times, a third Western language. (c) Particles are
very often indeterminate, and their category also
overlaps with prepositions, conjunctions,
negatives, etc.

2. The second factor which affects annotation
accuracy and speed is the behemoth of
grammatical tests. Because of the frequency of
obvious weaknesses among very literate and
educated native speakers in their knowledge of the
rules of ‘<iErAb’ (i.e., case ending marking), it
became necessary to test the grammatical
knowledge of each new potential annotator, and to
continue occasional annotation testing at intervals
in order to maintain consistency.

While we have been able to take care of the first
factor so far, the second one seems to be a very
persistent problem because of the difficulty level
encountered by Arab and foreign annotators alike
in reaching a consistent and agreed upon use of
case-ending annotation.

4 Tools and procedures

4.1 Lexicon and morphological analyzer

The Penn Arabic Treebank uses a level of
annotation more accurately described as
morphological analysis than as part-of-speech
tagging. The automatic Arabic morphological
analysis and part-of-speech tagging was performed
with the Buckwalter Arabic Morphological
Analyzer, an open-source software package
distributed by the Linguistic Data Consortium
(LDC catalog number LDC2002L49).

The analyzer consists primarily of three Arabic-
English lexicon files: prefixes (299 entries),
suffixes (618 entries), and stems (82158 entries
representing 38600 lemmas). The lexicons are
supplemented by three morphological
compatibility tables used for controlling prefix-
stem combinations (1648 entries), stem-suffix
combinations (1285 entries), and prefix-suffix
combinations (598 entries).

The Arabic Treebank: Part 2 corpus contains
125,698 Arabic-only word tokens (prior to the
separation of clitics), of which 124,740 (99.24%)
were provided with an acceptable morphological
analysis and POS tag by the morphological parser,
and 958 (0.76%) were items that the morphological
parser failed to analyze correctly.

Items with solution 124740 99.24%
Items with no solution 958 0.76%
Total 125698 100.00%
Table 1. Buckwalter lexicon coverage, UMAAH

4

The ANNAHAR coverage statistics after POS 1
(dated January 2004) are as follows:

The ANNAHAR Corpus contains 340,281
tokens, of which 47,246 are punctuation, numbers,
and Latin strings, and 293,035 are Arabic word
tokens.

Punctuation, Numbers, Latin strings 47,246
Arabic Word Tokens 293,035
TOTAL 340,281

Table 2. Token distribution, ANNAHAR

Of the 293,035 Arabic word tokens, 289,722

(98.87%) were provided with an accurate
morphological analysis and POS tag by the
Buckwalter Arabic Morphological Analyzer.
3,313 (1.13%) Arabic word tokens were judged to
be incorrectly analyzed, and were flagged with a
comment describing the nature of the inaccuracy.
(Note that 204 of the 3,313 tokens for which no
correct analysis was found were typos in the
original text).

Accurately analyzed
Arabic Word Tokens

289,722 98.87%

Commented Arabic Word
Tokens/ items with no
solution

3,313 1.13%

TOTAL 293,035 100.00%
Table 3. Lexicon coverage, ANNAHAR

COMMENTS ON ITEMS WITH NO SOLUTION
(no comment) 1741 52.55%
MISC comment 566 17.08%
ADJ 250 7.55%
NOUN 233 7.03%
TYPO 204 6.16%
PASSIVE_FORM 110 3.32%
DIALECTAL_FORM 68 2.05%
VERB 37 1.12%
FOREIGN WORD 34 1.03%
IMPERATIVE 24 0.73%
ADV 9 0.27%
GRAMMAR_PROBLEM 9 0.27%
NOUN_SHOULD_BE_ADJ 7 0.21%
A_NAME 6 0.18%
NUMERICAL 6 0.18%
ABBREV 5 0.15%
INTERR_PARTICLE 4 0.12%
TOTAL 3313 100.00%
Table 4. Distribution of items with no solution,
 ANNAHAR

4.2 Parsing engine

In order to improve the speed and accuracy of
the hand annotation, we automatically pre-parse
the data after POS annotation and before TB
annotation using Dan Bikel's parsing engine
(Bikel, 2002). Automatically pre-parsing the data
allows the TB annotators to concentrate on the task
of correcting a given parse and providing
information about syntactic function (subject,
direct object, adverbial, etc.).

The parsing engine is capable of implementing a
variety of generative, PCFG-style models
(probabilistic context free grammar), including that
of Mike Collins. As such, in English, it gets
results that are as good if not slightly better than
the Collins parser. Currently, this means that, for
Section 00 of the WSJ of the English Penn
Treebank (the development test set), the parsing
engine gets a recall of 89.90 and a precision of
90.15 on sentences of length <= 40 words. The
Arabic version of this parsing engine currently
brackets AFP data with recall of 75.6 and precision
of 77.4 on sentences of 40 words or less, and we
are in the process of analyzing and improving the
parser results.

4.3 Annotation procedure

Our annotation procedure is to use the automatic
tools we have available to provide an initial pass
through the data. Annotators then correct the
automatic output.

First, Tim Buckwalter’s lexicon and
morphological analyzer is used to generate a
candidate list of “POS tags” for each word (in the
case of Arabic, these are compound tags assigned
to each morphological segment for the word). The
POS annotation task is to select the correct POS
tag from the list of alternatives provided. Once
POS is done, clitics are automatically separated
based on the POS selection in order to create the
segmentation necessary for treebanking. Then, the
data is automatically parsed using Dan Bikel’s
parsing engine for Arabic. Treebank annotators
correct the automatic parse and add semantic role
information, empty categories and their
coreference, and complete the parse. After that is
done, we check for inconsistencies between the
treebank and POS annotation. Many of the
inconsistencies are corrected manually by
annotators or automatically by script if reliably
safe and possible to do so.

4.4 POS annotation quality control

Five files with a total of 853 words (and a
varying number of POS choices per word) were
each tagged independently by five annotators for a
quality control comparison of POS annotators. Out

5

of the total of 853 words, 128 show some
disagreement. All five annotators agreed on 85%
of the words; the pairwise agreement is at least
92.2%.

For 82 out of the 128 words with some
disagreement, four annotators agreed and only one
disagreed. Of those, 55 are items with “no match”
having been chosen from among the POS choices,
due to one annotator’s definition of good-enough
match differing from all of the others’. The
annotators have since reached agreement on which
cases are truly “no match,” and thus the rate of this
disagreement should fall markedly in future POS
files, raising the rate of overall agreement.

5 Specifications for the Penn Arabic
Treebank annotation guidelines

5.1 Morphological analysis/Part-of-Speech

The guidelines for the POS annotators are
relatively straightforward, since the task essentially
involves choosing the correct analysis from the list
of alternatives provided by the morphological
analyzer and adding the correct case ending. The
difficulties encountered by annotators in assigning
POS and case endings are somewhat discussed
above and will be reviewed by Tim Buckwalter in
a separate presentation at COLING 2004.

5.2 Syntactic analysis

For the most part, our syntactic/predicate-
argument annotation of newswire Arabic follows
the bracketing guidelines for the Penn English
Treebank where possible. (Bies, et al. 1995) Our
updated Arabic Treebank Guidelines is available
on-line from the Linguistic Data Consortium at:
http://www.ldc.upenn.edu/Catalog/docs/LDC2004
T02/

Some points where the Penn Arabic Treebank
differs from the Penn English Treebank:

• Arabic subjects are analyzed as VP
internal, following the verb.

• Matrix clause (S) coordination is
possible and frequent.

• The function of NP objects of transitive
verbs is directly shown as NP-OBJ.

We are also informed by on-going efforts to
share data and reconcile annotations with the
Prague Arabic Dependency Treebank (two Prague-
Penn Arabic Treebanking Workshops took place in
2002 and 2003). Some points where the Penn
Arabic Treebank differs from the Prague Arabic
Dependency Treebank:

• Specific adverbial functions (LOC,
TMP, etc.) are shown on the adverbial
(PP, ADVP, clausal) modification of
predicates.

• The argument/adjunct distinction within
NP is shown for noun phrases and
clauses.

• Empty categories (pro-drop subjects and
traces of syntactic movement) are
inserted.

• Apposition is distinguished from other
modification of nouns only for proper
names.

In spite of the considerable differences in word
order between Modern Standard Arabic and
English, we found that for the most part, it was
relatively straightforward to adapt the guidelines
for the Penn English Treebank to our Arabic
Treebank. In the interest of speed in starting
annotation and of using existing tools to the
greatest extent possible, we chose to adapt as much
as possible from the English Treebank guidelines.

There exists a long-standing, extensive, and
highly valued paradigm of traditional grammar in
Classical Arabic. We chose to adapt the
constituency approach from the Penn English
Treebank rather than keeping to a strict and
difficult adherence to a traditional Arabic grammar
approach for several reasons:

• Compatibility with existing treebanks,
processing software and tools,

• We thought it would be easier and more
efficient to teach annotators, who come
trained in Arabic grammar, to use our
constituency approach than to teach
computational linguists an old and
complex Arabic-specific syntactic
terminology.

Nonetheless, it was important to adhere to an
approach that did not strongly conflict with the
traditional approach, in order to ease the cognitive
load on our annotators, and also in order to be
taken seriously by modern Arabic grammarians.
Since there has been little work done on large data
corpora in Arabic under any of the current
syntactic theories in spite of the theoretical
syntactic work being done (Mohamed, 2000), we
have been working out solutions to Arabic syntax
by combining the Penn Treebank constituency
approach with pertinent insights from traditional
grammar as well as modern theoretical syntax.

For example, we analyze the underlying basic
sentence structure as verb-initial, following the
traditional grammar approach. However, since the
verb is actually not the first element in many
sentences in the data, we adopt a topicalization
structure for arguments that are fronted before the
verb (as in Example 2, where the subject is
fronted) and allow adverbials and conjunctions to
appear freely before the verb (as in Example 3,
where a prepositional phrase is pre-verbal).

6

Example 2

(S (NP-TPC-1 Huquwq+u ُحُقُوق

(NP Al+<inosAn+i ِالإِنْسَان))
(VP ta+qaE+u ُتَقَع

(NP-SBJ-1 *T*)
(PP Dimona َضِمْن

(NP <ihotimAm+i+nA إهْتِمامِنا)
)))

 حُقُوقُ الإِنْسَانِ تَقَعُ ضِمْنَ إهْتِمامِنا
human rights exist within our concern

Example 3

(S (PP min مِن

(NP jih+ap+K ٍجِهَة
>uxoraY أُخرَى))

(VP ka$af+at َفَتآَش
(NP-SBJ maSAdir+u ُمَصادِر

miSoriy~+ap+N ٌمِصْرِيَّة
muT~aliE+ap+N ٌمُطَّلِعَة))

(NP-OBJ Haqiyqata َحَقِيقَة
(NP Al->amri ِالأَمر)))

تآَشَفَ مَصادِرُ مِصْرِيَّةٌ مُطَّلِعَةٌ حَقِيقَة الأَمرِ مِن جِهَةٍ أُخرَى
from another side, well-informed Egyptian
sources revealed the truth of the matter

For many structures, the traditional approach and

the treebank approach come together very easily.
The traditional “equational sentence,” for example,
is a sentence that consists of a subject and a
predicate without an overt verb (kAna or “to be”
does not appear overtly in the present tense). This
is quite satisfactorily represented in the same way
that small clauses are shown in the Penn English
Treebank, as in Example 4, since traditional
grammar does not have a verb here, and we do not
want to commit to the location of any potential
verb phrase in these sentences.

Example 4

(S (NP-SBJ Al-mas>alatu (المَسأَلَةُ

(ADJP-PRD basiyTatuN ٌبَسِيطَة))

 المَسأَلَةُ بَسِيطَةٌ
the question is simple

5.3 Current issues and nagging problems

In a number of structures, however, the
traditional grammar view does not line up
immediately with the structural view that is
necessary for annotation. Often these are
structures that are known to be problematic in a
more general sense for either traditional grammar
or theoretical syntax, or both. We take both views
into account and reconcile them in the best way
that we can.

5.3.1 Clitics
The prevalence of cliticization in Arabic

sentences of determiners, prepositions,
conjunctions, and pronouns led to a necessary
difference in tokenization between the POS files
and the TB files. Such cliticized constituents are
written together with their host constituents in the
text (e.g., Al+<inosAn+i ِالإِنْسَان “the person” and
 bi+qirA’ati “with reading”). Clitics that بِقِراءَةِ
play a role in the syntactic structure are split off
into separate tokens (e.g., object pronouns
cliticized to verbs, subject pronouns cliticized to
complementizers, cliticized prepositions, etc.), so
that their syntactic roles can be annotated in the
tree. Clitics that do not affect the structure are not
separated (e.g., determiners). Since the word
boundaries necessary to separate the clitics are
taken from the POS tags, and since it is not
possible to show the syntactic structure unless the
clitics are separated, correct POS tagging is
extremely important in order to be able to properly
separate clitics prior to the syntactic annotation.

In the example below, both the conjunction wa
“and” and the direct object hA “it/them/her” are
cliticized to the verb and also serve syntactic
functions independent of the verb (sentential
coordination and direct object).

Example 5

 وستشاهدونها
wasatu$AhiduwnahA
wa/CONJ+sa/FUT+tu/IV2MP+$Ahid/VERB_IMP
ERFECT+uwna/IVSUFF_SUBJ:MP_MOOD:I+h
A/IVSUFF_DO:3FS
and + will + you [masc.pl.] +
watch/observe/witness + it/them/her

The rest of the verbal inflections are also

regarded as clitics in traditional grammar terms.
However, for our purposes they do not require
independent segmentation as they do not serve
independent syntactic functions. The subject
inflection, for example, appears readily with full
noun phrase subject in the sentence as well
(although in this example, the subject is pro-

7

dropped). The direct object pronoun clitic, in
contrast, is in complementary distribution with full
noun phrase direct objects. Topicalized direct
objects can appear with resumptive pronouns in the
post-verbal direct object position. However,
resumptive pronouns in this structure should not be
seen as problematic full noun phrases, as they are
parasitic on the trace of movement – and in fact
they are taken to be evidence of the topicalization
movement, since resumptive pronouns are
common in relative clauses and with other
topicalizations.

Thus, we regard the cliticized object pronoun as
carrying the full syntactic function of direct object.
As such, we segment it as a separate token and
represent it as a noun phrase constituent that is a
sister to the verb (as shown in Example 6 below).

Example 6

(S wa- -و

(VP sa+tu+$Ahid+uwna- سَتُشاهِدُون
(NP-SBJ *)
(NP-OBJ –hA ها)))

 وستشاهدونها
and you will observe her

5.3.2 Gerunds (Masdar) and participials
The question of the dual noun/verb nature of

gerunds and participles in Arabic is certainly no
less complex than for English or other languages.
We have chosen to follow the Penn English
Treebank practice to represent the more purely
nominal masdar as noun phrases (NP) and the
masdar that function more verbally as clauses (as
S-NOM when in nominal positions). In Example
7, the masdar behaves like a noun in assigning
genitive case.

Example 7

(PP bi- -ِب
(NP qirA’ati ِقِراءَة

(NP kitAbi ِآِتاب
(NP Al-naHwi ِالنَحو))))

 بِقِراءَةِ آِتابِ النَحوِ
with the reading of the book of syntax
[book genitive]

In Example 8, in contrast, the masdar functions
more verbally, in assigning accusative case.

Example 8

(PP bi- -ِب

(S-NOM (VP qirA’ati (قِراءَةِ
(NP-SBJ fATimata َفاطِمَة -)
(NP-OBJ Al-kitAba َالكِتاب

))))

 بِقِراءَةِ فاطِمَةَ الكِتابَ
with Fatma’s reading the book
[book accusative]

This annotation scheme to allow for both the

nominal and verbal functions of masdar is easily
accepted and applied by annotators for the most
part. However, there are situations where the
functions and behaviors of the masdar are in
disagreement. For example, a masdar can take a
determiner ‘Al-‘ (the behavior of a noun) and at
the same time assign accusative case (the behavior
of a verb).

Example 9

(PP bi -ِب
(S-NOM

(VP Al+mukal~afi المُكَلَّف
(NP-SBJ *)
(NP-OBJ <injAza َإِنجاز

(NP Al+qarAri القَرَارِ
Al+mawEuwdi

المَوعُودِ)))))

 بِالمُكَلَّفِ إِنجازَ القَرَارِ المَوعُودِ
with the (person in) charge of completion (of)
the promised report [completion accusative]

In this type of construction, the annotators must

choose which behaviors to give precedence
(accusative case assignment trumps determiners,
for example). However, it also brings up the issues
and problems of assigning case ending and the
annotators’ knowledge of Arabic grammar and the
rules of ‘<iErAb.’ These examples are complex
grammatically, and finding the right answer (even
in strictly traditional grammar terms) is often
difficult.

This kind of ambiguity and decision-making
necessarily slows annotation speed and reduces
accuracy. We are continuing our discussions and
investigations into the best solutions for such
issues.

8

6 Future work

Annotation for the Arabic Treebank is on-going,
currently on a corpus of An-Nahar newswire
(350K words). We continue efforts to improve
annotation accuracy, consistency and speed, both
for POS and TB annotation.

Conclusion

In designing our annotation system for Arabic,
we relied on traditional Arabic grammar, previous
grammatical theories of Modern Standard Arabic
and modern approaches, and especially the Penn
Treebank approach to syntactic annotation, which
we believe is generalizable to the development of
other languages. We also benefited from the
existence at LDC of a rich experience in linguistic
annotation. We were innovative with respect to
traditional grammar when necessary and when we
were sure that other syntactic approaches
accounted for the data. Our goal is for the Arabic
Treebank to be of high quality and to have
credibility with regards to the attitudes and respect
for correctness known to be present in the Arabic
world as well as with respect to the NLP and wider
linguistic communities. The creation and use of
efficient tools such as an automated morphological
analyzer and an automated parsing engine ease and
speed the annotation process. These tools helped
significantly in the successful creation of a process
to analyze Arabic text grammatically and allowed
the ATB team to publish the first significant
database of morphologically and syntactically
annotated Arabic news text in the world within one
year. Not only is this an important achievement
for Arabic for which we are proud, but it also
represents significant methodological progress in
treebank annotation as our first data release was
realized in significantly less time. Half a million
MSA words will be treebanked by end of 2004,
and our choice of MSA corpora will be diversified
to be representative of the current MSA writing
practices in the Arab region and the world. In spite
of the above, we are fully aware of the humbling
nature of the task and we fully understand and
recognize that failures and errors may certainly be
found in our work. The devil is in the details, and
we remain committed to ironing out all mistakes.
We count on the feedback of our users and readers
to complete our work.

8 Acknowledgements

We gratefully acknowledge the tools and support
provided to this project by Tim Buckwalter, Dan
Bikel and Hubert Jin. Our sincere thanks go to all
of the annotators who have contributed their
invaluable time and effort to Arabic part-of-speech

and treebank annotation, and more especially to
our dedicated treebank annotators, Wigdan El
Mekki and Tasneem Ghandour.

References

Elsaid Badawi, M. G. Carter and Adrian Gully,
2004. Modern Written Arabic: A Comprehensive
Grammar. Routledge: New York.

Daniel M. Bikel, 2002. Design of a multi-lingual,
parallel-processing statistical parsing engine.
Proceedings of the Human Language
Technology Workshop.

Bracketing Guidelines for Treebank II Style, 1995.
Eds: Ann Bies, Mark Ferguson, Karen Katz,
Robert MacIntyre, Penn Treebank Project,
University of Pennsylvania, CIS Technical
Report MS-CIS-95-06.

Mohamed Maamouri and Christopher Cieri, 2002.
Resources for Arabic Natural Language
Processing at the Linguistic Data Consortium.
Proceedings of the International Symposium on
Processing of Arabic. Faculté des Lettres,
University of Manouba, Tunisia.

M. Marcus, G. Kim, M. Marcinkiewicz, R.
MacIntyre, A. Bies, M. Ferguson, K. Katz & B.
Schasberger, 1994. The Penn Treebank:
Annotating predicate argument structure.
Proceedings of the Human Language
Technology Workshop, San Francisco.

M. Marcus, B. Santorini and M.A. Marcinkiewicz,
1993. Building a large annotated corpus of
English: the Penn Treebank. Computational
Linguistics.

Mohamed A. Mohamed, 2000. Word Order,
Agreement and Pronominalization in Standard
and Palestinian Arabic. CILT 181. John
Benjamins: Philadelphia.

Zdenek Žabokrtský and Otakar Smrž, 2003. Arabic
Syntactic Trees: from Constituency to
Dependency. EACL 2003 Conferenceompanion.
Association for Computational Linguistics,
Hungary.

9

Preliminary Lexical Framework for

English-Arabic Semantic Resource Construction

Anne R. Diekema
Center for Natural Language Processing
4-206 Center for Science & Technology

Syracuse, NY, 13210 USA
diekemar@syr.edu

Abstract

This paper describes preliminary work
concerning the creation of a Framework to aid
in lexical semantic resource construction. The
Framework consists of 9 stages during which
various lexical resources are collected,
studied, and combined into a single
combinatory lexical resource. To evaluate the
general Framework it was applied to a small
set of English and Arabic resources,
automatically combining them into a single
lexical knowledge base that can be used for
query translation and disambiguation in Cross-
Language Information Retrieval.

1 Introduction

Cross-Language Information Retrieval (CLIR)
systems facilitate matching between queries and
documents that do not necessarily share the same
language. To accomplish this matching between
distinct vocabularies, a translation step is required.
The preferred method is to translate the query
language into the document language by using
machine translation, or lexicon lookup. While
machine translation may work reasonably well on
full sentences, queries tend to be short lists of
keywords, and are often more suited for lexical
lookup (Oard and Diekema, 1998).

This paper describes a preliminary framework

for the creation of a lexical resource through the
combination of other lexical resources. The
preliminary Framework will be applied to create a
translation lexicon for use in an English-Arabic
CLIR system. The resulting lexicon will be used to
translate English queries into (unvocalized) Arabic.
It will also provide the user of the system with
lexical semantic information about each of the
possible translations to aid with disambiguation of
the Arabic query. While the combination of lexical
resources is nothing new, establishing a sound
methodology for resource combination, as
presented in this paper on English-Arabic semantic

resource construction, is an important contribution.
Once the Framework has been evaluated for
English-Arabic resource construction, it can be
extended to additional languages and resource
types.

2 Related Work

2.1 Arabic-English dictionary combination

As pointed out previously, translation plays an
important role in CLIR. Most of the CLIR systems
participating in the (Arabic) Cross-Language
Information Retrieval track1 at the Text REtrieval
Conference (TREC)2 used a query translation
dictionary-based approach where each source
query term was looked up in the translation
resource and replaced by all or a subset of the
available translations to create the target query
(Larkey, Ballesteros, and Connell, 2002), (Gey and
Oard, 2001), (Oard and Gey, 2002). The four main
sources of translation knowledge that have been
applied to CLIR are ontologies, bilingual
dictionaries, machine translation lexicons, and
corpora.

Research shows that combining translation

resources increases CLIR performance (Larkey et
al., 2002) Not only does this combination increase
translation coverage, it also refines translation
probability calculations. Chen and Gey used a
combination of dictionaries for query translation
and compared retrieval performance of this
dictionary combination with machine translation
(Chen and Gey, 2001). The dictionaries
outperformed MT. Small bilingual dictionaries
were created by Larkey and Connell (2001) for
place names and also inverted an Arabic-English
dictionary to English-Arabic. They found that
using dictionaries that have multiple senses,

1 There have been two large scale Arabic information

retrieval evaluations as part of TREC. These Arabic
tracks took place in 2001, and 2002 and had
approximately 10 participating teams each.

2 http://trec.nist.gov

10

though not always correct, outperform bilingual
term lists with only one translation alternative.
Combining dictionaries is especially important
when working with ambiguous languages such as
Arabic.

Many TREC teams used translation probabilities

to deal with translation ambiguity and term
weighting issues, especially since a translation
lexicon with probabilities was provided as a
standard resource. However, most teams combined
translation probabilities from different sources and
achieved better retrieval results that way (Xu,
Fraser, and Weischedel, 2002), (Chowdhury et al.,
2002), (Darwish and Oard, 2002). Darwish and
Oard (2002) posit that since there is no such thing
as a complete translation resource one should
always use a combination of resources and that
translation probabilities will be more accurate if
one uses more resources.

2.2 Resource combination methodologies

Ruiz (2000) uses the term lexical triangulation
to describe the process of mapping a bilingual
English-Chinese lexicon into an existing WordNet-
based Conceptual Interlingua by using translation
evidence from multiple sources. Recall that
WordNet synsets are formed by groups of terms
with similar meaning (Miller, 1990). By translating
each of the synonyms into Chinese, Ruiz created a
frequency-ranked list of translations, and assumed
that the most frequent translations were most likely
to be correct. By establishing certain translation
evidence thresholds, mappings of varying
reliability were created. This method was later
augmented with additional translation evidence
from a Chinese-English parallel corpus.

A methodology to improve query translation is

described by Chen (2003). The methodology is
intended to improve translation through the use of
NLP techniques and the combining of the
document collection, available translation
resources, and transliteration techniques. A basic
mapping was created between the Chinese terms
from the collection and the English terms in
WordNet by using a simple Chinese-English
lexicon. Missing terms such as Named Entities
were added through the process of transliteration.
By customizing the translation resources to the
document collection Chen showed an improvement
in retrieval performance.

3 Establishing a Preliminary Framework

The preliminary Framework provides a
methodology for the automatic combination of
various lexical semantic resources such as machine

readable dictionaries, ontologies, encyclopedias,
and machine translation lexicons. While these
individual resources are all valuable individually,
automatic intelligent lexical combination into one
single lexical knowledge base will provide an
enhancement that is larger than the sum of its parts.
The resulting resource will provide better
coverage, more reliable translation probability
information, and additional information leveraged
through the process of lexical triangulation. In an
initial evaluation of the preliminary Framework, it
was applied to the combination of English and
Arabic lexical resources as described in section 4.

The preliminary Framework consists of 9 stages:

1) establish goals
2) collect resources
3) create resource feature matrix
4) develop evidence combination strategies

and thresholds
5) construct combinatory lexical resource
6) manage problems that arise during creation
7) evaluate combinatory lexical resource
8) implement possible improvements
9) create final version of combinatory lexical

resource.

Stage 1: The first stage of the Framework is

intended to establish the possible usage of the
combinatory lexical resource (resulting form the
combination of multiple resources). The
requirements of this resource will drive the second
stage: resource collection.

Stage 2: Two types of resources should be

collected: language processing resources such as
stemmers and tokenizers; and lexical semantic
resources such as dictionaries and lexicons. While
not every resource may seem particularly useful at
first, different resources can aid in mapping other
resources together. During the second stage,
conversion into a single encoding (such as UTF-8)
will also take place.

Stage 3: Once a set of resources has been

collected, the resource feature matrix can be
created. This matrix provides an overview of the
types of information found in the collected
resources and of certain resource characteristics.
For example, it is important to note what base form
the dictionary entries have. Some dictionaries use
the singular form (for nouns) or indefinite form
(for verbs), some use roots, others use stems, and
free resources from the web often use a
combination of all of the above. By studying the
feature matrix the evidence combination strategies
for stage four can be developed.

11

A
ra

b
ic

E
ng

lis
h

w
o

rd

st
em

ro
o

t

vo
ca

liz
ed

u
n

vo
ca

liz
ed

p
o

s

E
ng

lis
h

de
fin

iti
on

A
ra

b
ic

de

fin
iti

on

sy
n

on
ym

s

se
n

se

in
fo

rm
at

io
n

Arabeyes x x x x
Ajeeb x x x x x x x
Buckwalter x x x x x x x x
Gigaword x x x
WordNet 2.0 x x x x x

Table 1: Resource feature matrix

Stage 4: An intelligent resource combination

strategy should be informed by the features of the
different resources. It may be, for example, that
one resource uses vocalized Arabic only and that
another resource uses both vocalized and
unvocalized Arabic. This fact should be taken into
account by the combination strategy since the
second resource can serve as an intermediary to
map the first resource. Thresholding decisions are
also part of stage four because the certainty of
some combinations will be higher than others.

Stage 5: Stage five involves writing programs

based on the findings in stage four that will
automatically create the combinatory lexical
resource. The combination programs should
provide output concerning problematic instances
that occur during the creation i.e. words that only
occur in a single resource, so that these problems
may be handled by alternative strategies in stage
six.

Stage 6: Most of the problems in stage six are

likely to be uncommon words, such as named
entities or transliteration. A transliteration step,
where for example English letters, i.e. r, are
mapped to the closest Arabic sounding letters, i.e.
� , may be applied for languages that do not share
the same orthographies.

Stage 7: After the initial combinatory lexical

resource has been created it needs to be evaluated.
First the accuracy (quality) of the combination
mappings of the various resources needs to be
assessed in an intrinsic evaluation. After it has
been established that the combination has been
successful, an extrinsic evaluation can be carried
out. In this evaluation the combinatory lexical
resource is tested as part of the actual application
the source was intended for, i.e. CLIR. (For a more

detailed description of evaluation see Section 5
below.)

Stage 8: These two evaluations will inform stage

eight where possible improvements are added to
the combination process.

Stage 9: The final version of the combinatory

lexical resource can be created in stage nine.

4 Application of the Framework to English-
Arabic

The preliminary Framework as described in
section 3 was applied to five English and Arabic
language resources as a kind of feasibility test.
Following the Framework, we first established the
goals of the combinatory lexical resource. It was
determined that the resource would be used as a
translation resource for CLIR that would aid query
translation as well as manual translation
disambiguation by the user. This meant that the
combinatory lexical resource would need
translation probabilities as well as English
definitions for Arabic translations to enable an
English language user to select the correct Arabic
translation. We collected five different resources:
WordNet 2.03, the lexicon included with the
Buckwalter Stemmer4, translations mined from
Ajeeb5, the wordlist from the Arabeyes project6,
and the LDC Arabic Gigaword corpus7. After the
resources were collected the feature matrix was
developed (see Table 1).

3 http://www.cogsci.princeton.edu/~wn
4 http://www.qamus.org
5 http://english.ajeeb.com
6 http://www.arabeyes.org
7

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?cat
alogId=LDC2003T12

12

The established combinatory lexical resource
goals and resource feature matrix were used to
determine the combination strategy. Since the
resource should provide the user with definitions
of Arabic words and WordNet is most
comprehensive in this regard, it was selected as our
base resource. The AFP newswire collection from
the Gigaword corpus was used to mine Ajeeb. As
is evident in the matrix, all resources contain
English terms as a common denominator. The
information used for evidence combination was as
follows. Evidence used for mapping the Ajeeb and
Buckwalter lexicons is part-of-speech information.
Additionally, these two resources also provide
vocalized Arabic terms/stems that can be used for a
more reliable (less ambiguous) match. The
Arabeyes lexicon is not terribly rich but was used
as additional evidence for a certain translation
through frequency weighting. The combinatory
lexical resource was constructed by mapping the
three lexical resources into WordNet using the
evidence as discussed above (see Table 2).

world, human race, humanity, humankind, human
beings, humans, mankind, man, all of the
inhabitants of the earth
all of the inhabitants of the earth

����������	���
������
�����������������������
������������������
���
�����������������	���
�������
������
������ !����"�
#$#��
������%�&����'(&����	�����)*���������������&��������+��%�&����(��	�����,��
���-�������'.&��/%�&0���-%�&0���1&�%�&����-�����2%������3&4�����+������%���
���+%��������������5������/���1%������.��/�����34�����.��/�0���1���

���������34������2�������,&���������������,�����+��0���+���
������$�����1������������������3�4�������������1��0���34�

����
�6�����-�������,����������������	���-�0����
6��������0�����%���
����������

Table 2: Combinatory lexical resource entry

example resulting from Step 5

 After examining the combinatory lexical
resource we found that the Arabeyes Arabic terms
could not be compared directly to the Arabic terms
in the other lexical resources since the determiner
prefixes are still attached to the terms (as in ���$��
for example). More problematic were the
translations mined from Ajeeb since the part-of-
speech information of the Arabic term did not
necessarily match the part-of-speech of the
translations:

���#VB#2.1.2# �����������	

#do_sentry_duty,keep_watch_over,
guard,watchdog,oversee,sentinel,
shield,watch,ward

The first problem is easily fixed by applying a
light stemmer to the dictionary. At this point it is
not clear however, how to fix the second problem.
It was also decided that the translation reliability
weighting by frequency is too limited to be useful.
A back-translation lookup needs to determine how
many other terms can result in a certain translation.
This data can then update the reliability score.

5 Comprehensive Evaluation

While we only have carried out a preliminary
evaluation, we envision a comprehensive
evaluation in the near future. As part of this
evaluation three different types of evaluation can
be carried out:

1) evaluate the process of applying the
Framework;

2) evaluate the combinatory lexical resource
itself; and

3) evaluate the contribution of the
combinatory lexical resource to the
application the resource was created for.

Evaluation of the process of applying the

Framework will provide evidence as to the
advantages and disadvantages of our Framework,
and where it may have to be adjusted.

The construction of a Combinatory Lexical
Resource by applying the Framework is the first
step toward an effective evaluation of the full
Framework. The construction process detailed in
Section 3 should be carefully documented. The
evaluation will focus on the time and effort spent
on the process, difficulties or ease with resources
that are acquired, managed and processed, as well
as problems or issues that arise during the process.

The intrinsic evaluation of the combinatory

lexical resource indicates the quality of the newly
created combinatory lexical resource. For this
evaluation a large random number of entries will
need to be evaluated for correctness. The
evaluation will provide accuracy and coverage
measures for the resource. Also, descriptive
statistics will be generated to provide general
understanding of the lexical resource that has been
produced.

The extrinsic evaluation of the combinatory

lexical resource is intended to measure the
contribution of the resource to an application (i.e.
CLIR, Information Extraction). The application of
choice should be run with the combinatory lexical
resource, and without. Performance metrics
appropriate for the type of application can be
collected for both experiments and then compared.

13

6 Conclusion and future research

A general Framework for lexical resource
construction was presented in the context of
English-Arabic semantic resource combination.
The initial evaluation of the Framework looks
promising in that it was successfully applied to
combine five English-Arabic resources. The stages
of the Framework provided a useful guideline for
lexical resource combination and can be applied to
resources in any language. We plan to extend the
evaluation of the Framework to a more in depth
intrinsic evaluation where the quality of the
mappings is tested. An extrinsic evaluation should
also take place to evaluate the combinatory lexical
resource as part of the CLIR system. As for future
research we hope to extend the evidence
combination algorithms to include more
sophisticated information using back translation
and transliteration.

7 Acknowledgements

This work is supported by the U.S. Department
of Justice.

References

A. Chen, and F. Gey. 2001. Translation Term
Weighting and Combining Translation
Resources in Cross-Language Retrieval. In
“Proceedings of the Tenth Text REtrieval
Conference (TREC-10)”, E.M. Voorhees and
D.K. Harman ed., pages 529-533, NIST,
Gaithersburg, MD.

J. Chen. 2003. The Construction, Use, and
Evaluation of a Lexical Knowledge Base for
English-Chinese Cross-Language Information
Retrieval. Dissertation. School of Information
Studies, Syracuse University.

A. Chowdhury, M. Aljalayl, E. Jensen, S. Beitzel,
D. Grossman, O. Frieder. 2002. IIT at TREC-
2002: Linear Combinations Based on Document
Structure and Varied Stemming for Arabic
Retrieval. In “Proceedings of the Eleventh Text
REtrieval Conference (TREC-11)”, E.M.
Voorhees and C.P. Buckland ed., pages 299-310,
NIST, Gaithersburg, MD.

K. Darwish and D.W. Oard. 2002. CLIR
Experiments at Maryland for TREC-2002:
Evidence combination for Arabic-English
retrieval. In “Proceedings of the Eleventh Text
REtrieval Conference (TREC-11)”, E.M.
Voorhees and C.P. Buckland ed., pages 703-710,
NIST, Gaithersburg, MD.

F.C. Gey, and Oard, D.W. 2001. The TREC-2001
Cross-Language Information Retrieval Track:
Searching Arabic using English, French, or

Arabic Queries. In “Proceedings of the Tenth
Text REtrieval Conference (TREC-10)”, E.M.
Voorhees and D.K. Harman ed., pages 16-25,
NIST, Gaithersburg, MD.

L.S. Larkey, J. Allan, M.E. Connell, A. Bolivar,
and C. Wade. 2002. UMass at TREC 2002:
Cross Language and Novelty Tracks. In
“Proceedings of the Eleventh Text REtrieval
Conference (TREC-11)”, E.M. Voorhees and
C.P. Buckland ed., pages 721-732, NIST,
Gaithersburg, MD.

L.S. Larkey, L. Ballesteros, M. Connell. 2002.
Improving Stemming for Arabic Information
Retrieval: Light Stemming and Co-occurrence
Analysis. In “Proceedings of the 25th Annual
International Conference on Research and
Development in Information Retrieval”, M.
Beaulieu et al. ed., pages 275-282, ACM, NY,
NY.

L.S. Larkey, and M. E. Connell. 2001. Arabic
Information Retrieval at UMass in TREC-10. In
“Proceedings of the Tenth Text REtrieval
Conference (TREC-10)”, E.M. Voorhees and
D.K. Harman ed., pages 562-570, NIST,
Gaithersburg, MD.

G. Miller. 1990. WordNet: An On-line Lexical
Database. International Journal of
Lexicography, 3(4), Special Issue.

D. Oard and A. Diekema. 1998. Cross-Language
Information Retrieval. Annual Review of
Information Science, 33: 223-256.

D.W. Oard, and Gey, F.C.2002. The TREC-2002
Arabic/English CLIR Track. In “Proceedings of
the Eleventh Text REtrieval Conference (TREC-
11)”, E.M. Voorhees and C.P. Buckland ed.,
pages 17-26, NIST, Gaithersburg, MD.

M.E. Ruiz, et al. 2001. CINDOR TREC-9 English-
Chinese Evaluation. In “Proceedings of the 9th
Text REtrieval Conference (TREC-9)”, E.M.
Voorhees and D.K. Harman ed., pages 379-388,
NIST, Gaithersburg, MD.

J. Xu, A. Fraser, R. Weischedel. 2002. Empirical
Studies in Strategies for Arabic Retrieval. In
“Proceedings of the 25th Annual International
Conference on Research and Development in
Information Retrieval”, M. Beaulieu et al. ed.,
pages 269-274, ACM, NY, NY.

14

The Architecture of a Standard Arabic lexical database: some figures, ratios
and categories from the DIINAR.1 source program

Ramzi ABBÈS
SIIa / SILATb,

ENSSIBc,
17-21, bd. du 11 nov.

1918,
69623 Villeubanne
Cedex, France
abbes@enssib.fr

a SII: Systèmes d’Information et Inter-
faces, research centre, ENSSIB

Joseph DICHY
ÉLISAd / SILATb,

Université Lumière-Lyon 2,
86, rue Pasteur

69365 Lyon Cedex 07, France
joseph.dichy@univ-lyon2.fr

d ÉLISA: Épistémologie, Linguistique,
Ingénierie et Sémiologie de l’Arabe,
research centre, Lumière-Lyon 2
University

Mohamed HASSOUN
SIIa / SILATb,

ENSSIBc,
17-21, bd. du 11 nov.

1918,
69623 Villeubanne Cedex, France

hassoun@enssib.fr

c ENSSIB: École Nationale Supérieure
des Sciences de l’ Information et des
Bibliothèque.

b SILAT: Systèmes d’ information, Linguistique, Ingénierie de l’Arabe et Terminologie, research group common to the
Lyon 2 Lumière University and ENSSIB. (Silat is Arabic for “ link” , “ relation” .)

Abstract

This paper is a contribution to the issue –
which has, in the course of the last decade,
become critical – of the basic requirements
and validation criteria for lexical language
resources in Standard Arabic. The work is
based on a critical analysis of the architecture
of the DIINAR.1 lexical database, the entries
of which are associated with grammar-lexis
relations operating at word-form level (i.e. in
morphological analysis). Investigation shows a
crucial difference, in the concept of ‘ lexical
database’ , between source program and
generated lexica. The source program un-
derlying DIINAR.1 is analysed, and some fig-
ures and ratios are presented. The original
categorisations are, in the course of scrutiny,
partly revisited. Results and ratios given here
for basic entries on the one hand, and for
generated lexica of inflected word-forms on
the other. They aim at giving a first answer to
the question of the ratios between the number
of lemma-entries and inflected word-forms
that can be expected to be included in, or
generated by, a Standard Arabic lexical dB.
These ratios can be considered as one overall
language-specific criterion for the analysis,
evaluation and validation of lexical dB-s in
Arabic.

Keywords: Arabic lexical databases – Arabic
script – word-formatives grammar – lemma-
entries – morphosyntactic specifiers.

1 Introduction

In the present state of the art in the development
of software and language resources in Arabic, there
is an urgent need for evaluation and validation
criteria based on solid analytic grounds: there ex-
ists nowadays a subsequent number of Arabic lexi-
cal databases, and more are under completion.

Existing lexical dB-s are not always, for the time
being, available as such to researchers and/or de-
velopers, because they are usually embedded in
software (such as a morphological analyser or a
parser), and are still very difficult to make use of
independently. It is to be expected, though, that the
issue of availability will be overcome in a reasona-
bly near future, and that a number of Arabic lexical
databases will be found on the market, or on cata-
logues such as, in Europe, that of ELRA1, and in
the USA, that of LDC2. The on-going European
project NEMLAR is presently working on the
availability of language resources including lexical
databases3. As a result, the crucial question of the
quality and consistency of these databases should
be met as soon as possible.

1 European Language Resources Association, 55,

rue Brillat-Savarin – 75013 Paris,
France.

2 Linguistic Data Consortium, University of Pennsyl-
vania, 3600 Market Street, Suite 810, Philadelphia, PA
19108, USA.

3 NEMLAR (Network for Euro-Mediterranean LAn-
guage Resources) is coordinated by Pr. Bente
Maegaard, Center for Sprogteknologi (CST), Copenha-
gen. E-mail and site: nemlar@cst.dk,
www.nemlar.org.

15

One of the criteria for the evaluation and valida-
tion of a lexical database for Arabic is both quan-
titative (how many?) and qualitative (what of,
precisely?). In this paper, which refers to previous
work on the processing of Arabic and the related
lexical resources4, we will try and give evidence on
the structure of a lexical database, founded on an
analysis of the DIINAR.1 database5. Quantitative
results are only interesting if they can be inter-
preted in such a way as to yield information on the
actual structure and categories of the lexicon of the
language under consideration. We will endeavour
to show that a quantitative and qualitative analysis
of the lexical categories incorporated in DIINAR.1
can be interpreted with this respect. Moreover, the
investigation leads to proposing a more consistent
organisation of lexical information and relations,
which should be included in future versions of
DIINAR.

2 The type of lexical dB required by the auto-
matic analysis of Arabic

What are the fundamental requirements of a
lexical database in Arabic? The first challenge to
be met upon endeavouring to build language re-
sources in Arabic is that of the structure of the
writing system of the language (Dichy, 1990), the
two main features of which are: non diacriticized
script in standard texts (§ 2.1) and the structure of
the word-form (§ 2.2). The combined effect of
these features entails the need for a lexical data-
base that includes a subsequent number of gram-
mar-lexis relations (§ 2.3). Such a dB is to be
considered as a sine qua non condition of high-
level and elaborate Arabic NLP.

4 The research and development work referred to in

the SILAT research group goes back to the 1980ies and
has been going on since (Desclés et alii 1983, Dichy &
Hassoun, eds. 1989, Dichy 1984/89, 1987, 1993, 1997,
2000, Lelubre 1993, Braham 1998, Braham & Ghazali
1998). It includes a number of doctoral dissertations
(Hassoun 1987, Abu Al-Chay 1988, Dichy, 1990, Gader
1992, Ghenima 1998). For further developments, see:
Ezzahid 1996, Labed & Lelubre 1997, Abbas 1998,
Dichy & Hassoun 1998, Ammar & Dichy 1999a et b,
Abbès 1999, Dichy 1998, 2001a et b, Ghazali &
Braham 2001, Lelubre 2001, Ouersighni 2002, Zaafrani
2002, Dichy & Fargali, 2003.

5 DIINAR.1 (DIctionnaire INformatisé de l’Arabe),
Arabic acronym Ma‘âlî (“Mu‘jam al-‘Arabiyya l-’âlî”),
is a comprehensive Arabic Language dB operating at
word-form level (morphological analysis or generation).
It has been completed in close cooperation, in Tunis by
IRSIT (now SOTETEL-IT - A. Braham and S. Ghazali),
and in France by ENSSIB (M. Hassoun) and the
Lumière-Lyon 2 University (J. Dichy). See Dichy,
Braham, Ghazali & Hassoun, 2002.

2.1 Non diacriticized writing

It is well-known that Arabic script belongs to a
group of Semitic writings originating from ancient
Phoenician alphabets, such as Hebrew, Aramaic or
Syriac. Phonographic translation is basically re-
stricted to the notation of consonants and “long
vowels”. In the course of time, these writing sys-
tems have developed additional diacritic symbols,
mainly for the needs of the oral reading of sacred
texts (Bible, New Testament, Koran). Arabic writ-
ing has thus been provided with a sophisticated
system of diacritical marks (comparable to the
Massora diacritics which were later devised for the
Hebrew Bible). Standard writing nevertheless dis-
regards these symbols. This results in a high de-
gree of homography, accounting for the multiple
analyses encountered in a majority of single words
by morphological analysers (which are, needless to
recall, bound to consider every word off-context).

2.2 “Nucleus” and “extensions”: a quick re-
call of the structure of word-forms in
written Arabic

Unlike automatic recognition software, human
readers are, of course, able to combine semantic,
syntactic and morphological analyses. They are
helped in their reading of Arabic written utterances
by another major feature of the writing system: the
very regular structure of the word-form. This
structure has been introduced and extensively de-
scribed previously (Desclés ed., 1983; Dichy 1984,
1990; Hassoun, 1987 – after the pioneering work
of Cohen, 1961/70), and is only recalled here for
the sake of clarity.

Word-forms in Arabic can be described on the
whole as consisting of a nucleus formative (hence-
forth NF) to which extension formatives (hence-
forth EF) are added, either to the left or to the right
(Dichy, 1997). Ante-positioned EF-s are abbrevi-
ated as aEF, and post-positioned ones as pEF. The
nucleus formative, usually called stem, can be rep-
resented in terms of prosodic or non-concatenative
morphology (after J. McCarthy’s original and
much discussed insights, 1981). In Semitic mor-
phology, the stem is considered, according to a
somewhat recent, but very widely followed tradi-
tion, as a compound of root and pattern. One must
keep in mind, though, that many nouns cannot be
analysed in such a way: they are referred to as
quasi-stems (Dichy & Hassoun, eds., 1989).

Arabic word-forms consist of:
– proclitics (PCL), which include mono-consonan-

tal conjunctions, e.g. wa-, ‘and’ , li -, ‘in order
to’, or prepositions, i.e. bi-, ‘in, at’ or ‘by’, etc.;

– a prefix (PRF). The category, after D. Cohen’s
representation of the word-form, only includes

16

the prefixes of the imperfective, e.g., ya-, pre-
fixed morpheme of the 3rd person;

– a stem, which can be represented in terms of a
ROOT (an ordered triple of consonants, or, by
extension of the system, a quadruple) and a
PATTERN (roughly: a template of syllables, the
consonants of which are the triple of the ROOT to
which monoconsonantal affixes are added). The
stem takabbar, ‘to be haughty’, thus consists of
the 3-consonant ROOT /k-b-r/ and of the
PATTERN /taR1aR2R2aR3/, where R1, R2 and R3
stand for ‘radical consonant 1, 2, 3’, and are in-
stantiated by the triple of the ROOT (R1=k, R2=b,
R3=r). Nouns that cannot be analysed in ROOT

and PATTERN are conventionally referred to as
quasi-stems, e.g.: ’ismâ‘îl, ‘Ishmael’, yûnîskû,
‘UNESCO’, kahramân, ‘amber’;

– suffixes (SUF), such as verb endings, nominal
cases, the nominal feminine ending -at, etc.;

– enclitics (ECL). In Arabic, enclitics are comple-
ment pronouns.

In the table below two apparently equivalent rep-

resentations of the structure of the Arabic word-
form are given. The main difference between them
lies in the fact that (2) aims at highlighting the
relations between nucleus and extension forma-
tives (NF and EF-s), featuring a triangle (in bold-
face below). The rules governing the relations
between morphemes embedded in the word-form
are included in a word-formatives grammar
(henceforth WFG – Dichy, 1987, 1997). These
rules, and the features they involve, are distributed
along these three relations, a great number of
which are related to the lexical nucleus, and have
to rely upon the finite set of grammar-lexis rela-
tions operating at word-level (formalised in Dichy,
1990).

(1)
‘Traditional’
representation
of the word-
form (D.
Cohen,
1961/70, Des-
clés, ed., 1983)

maximal

______word-form______
| |

minimal
__word-form__

| |

##PCL # PRF +STEM+ SUF # ECL##

STEM = <ROOT¤¤PATTERN>

(2)
Nucleus-
extensions
representation
(Dichy, 1997)

NF

/ \
aEF — pEF
/ \ / \

PCL PRF SUF ECL

Table 1: Structure of the word-form in Arabic

2.3 Word-formatives grammar (WFG) and
word-level grammar-lexis relations

Complex as it may appear, the above structure is
regular, and remains, up to a certain point,
recognisable from a psychological stand. It is,
subsequently, very restrictive: Arabic word-forms
include one lexical stem and one only6. In fact, the
word-formatives grammar (WFG) accounts for the
regular structure of the word-form.

Rules involving word-formatives (the above nu-
cleus and extension formatives, NF and EF) are
based on three fundamental types of relations
(Dichy, 1987):
�

 ‘entails’, ≠≠≠≠>>>> ‘excludes’, ** ‘is
compatible with’ (or ‘admits’), the third of which
is attached to the opposed pair of the first two as an
‘elsewhere’ relation of a special kind, directly
connected to ambiguity in language analysis
processes (Dichy, 2000). In generation, all
‘compatibility’ (or ‘admit’) relations can in fact be
rewritten in terms of ‘entail’ or ‘exclude’ rules
associated with specific sets of word-formatives.
‘Compatibility’ relations are mostly useful in the
formalisation of recognition rules, when ambiguity
is at stake7. The formal structure of the WFG thus
includes relations of the three types above, which
are, in turn, involved in either one of the two
following combination schemes:

� EF � EF combinations, such as PCL → SUF

rules, e.g.:
 PCL = bi
�

 SUF = {i, in, a, an, îna, î, ayni, ay}
 which can be phrased as: ‘the proclitic preposi-

tion bi# entails one of the indirect (or genitive)
case suffixes’. Other rules will point to a given
case suffix in a given utterance.

� NF � EF combinations, such as STEM → SUF

rules, e.g.:
STEM = ‘diptote’ � SUF = {u, a, i}

 which can be phrased as: ‘a stem whose declen-
sion is diptote entails case-endings belonging to
the listed set’. (Diptote stems may also be com-
patible with dual or plural suffixes, which is
taken into account in another rule.)

Another type of relation to be encoded in a lexi-

cal database is:

6. A few exceptive compound items exist, but they are

kept marginal by the structure of the language, for the
obvious reasons hinted at here, unlike what has hap-
pened in Modern Hebrew, as opposed to the Biblical
and Medieval state of the language (Kirtchuk, 1997).

7. Automatic recognition and generation are not to be
considered as reverse processes. Evidence from Arabic
is given in Desclés, ed., 1983; Dichy, 1984, 1997, 2000.

17

� NF � NF linking combinations, which have to
be encoded whenever the morphological varia-
tion is not rule-predictable (cf. Mel�uk’s concept
of syntactic, 1982). This is the case in a majority
of singular � ‘broken plural’ links in nouns or
adjectives, as well as in ‘perfec-
tive’ � ‘imperfective’ (mâdî � mudâri‘) links,
in verbs belonging to ‘simple’ PATTERNS (al-fi‘l
al-mujarrad).

In an Arabic lexical dB, lexical entries (NF-s or

STEMS in the above representation) need to be as-
sociated with morphosyntactic specifiers ensuring
their insertion in word-forms, and their morpho-
logical variation (conjugation or declension). Mor-
phosyntactic specifiers, in other words, account
for:
– grammar-lexis relations, i.e. NF � EF combina-

tions;
– morpho-lexical variation, i.e. NF � NF linking

combinations.

Lexical entries thus ‘entail’, ‘exclude’ or ‘admit’

a number of grammatical morphemes listed in the
various fields of the word-form as word-forma-
tives, either on a non regular basis, or on the basis
of rules founded on semantic features that cannot
be deduced from the formal structure of the mor-
pheme. As shown in Dichy (1997), morphosyntac-
tic specifiers make up formally, in a lexical
database, for information associated in the
speaker’s memory to various levels of linguistic
analysis (morpho-phonological, syntactic or se-
mantic features).

This structure has often been disregarded in the
elaboration of Arabic lexical databases on the as-
sumption that the representation of lexical entries
as a mere combination of PATTERN and ROOT (plus
a number of suffixes) is sufficient. This is defi-
nitely not the case: evidence recalled in this para-
graph (also in Hassoun & Dichy, eds. 1989, Dichy,
1997, Dichy & Fergaly, 2003) show that grammar-
lexis relations operating at word-form level can
only be taken into account if information is associ-
ated to whole stems (or nuclei), or to stem+suffix
‘frozen’ compounds. These relations cannot be
predicted on the sole basis of patterns.

The description of the WFG outlined in this
paragraph has led to the elaboration of exhaustive
and finite sets of morphosyntactic specifiers liable
to be associated to the non finite lexical entries of
an Arabic database (Dichy, 1997). These sets have
been associated with the entries of the DIINAR.1
Arabic Language database. The WFG has been on
the other hand implemented in the related genera-
tion and analysis source programs.

Another lexical LR including morphosyntactic
information at word level is the lexicon elaborated
and completed by Timothy Buckwalter, which has
been used in the finite-state morphological analy-
ser elaborated at the European Xerox Research
Centre (Meylan, France)8.

3 A few figures and ratios from DIINAR.1:
generated lexica vs. source lexicon

In the previous section, we outlined the structure
of the WFG and the information associated with
lexical entries in the source program of the
DIINAR.1 database.

It is essential to note that the expression lexical
database is ambiguous, i.e. that it is liable to refer,
either:
– to a source program drawing on lists of basic

lexical or grammatical items (related to a gram-
mar of the kind outlined in the previous section),

– or a set of generated lexica, the items of which
can be either basic (as in the source program) or
combined, i.e. resulting from the combination of
basic items, according to the rules of the word-
formatives grammar.

Software relying partly or entirely on morpho-
logical analysis may, or may not, need all the in-
formation outlined in section 2. They draw on
lexica generated by the source program associated
with the dB (Hassoun, 1987). Generated lexica can
be restricted to a subset of information, as in a
spelling checker (Gader, 1992), or extended to all
available information, as in a parser (Ouersighni,
2002) or in an interactive language teaching soft-
ware (Zaafrani, 2002). In the current section, we
will examine the architecture of the DIINAR.1
database, from the standpoint of the relation be-
tween the figures of the basic entries included
(§ 3.1 and 3.2), and that of the inflected word-
forms (§ 3.3).

3.1 The basic figures of the DIINAR.1 source
program

The total number of lemma-entries in the
DIINAR.1 database is : 121,522.

This includes 445 tool-words belonging to vari-
ous grammatical categories (e.g.: prepositions,
conjunctions, etc.) and the prototype of a proper
names database of 1,384 entries. Both types of
entries are associated with a particular word-for-
matives grammar, and with their own subsets of
morpho-syntactic specifiers.

The main parts of the database include:

8. Beesley, 1998, 2001, Beesley and Karttunen, 2003.

Also: Buckwalter, 2002.

18

Nouns, including adjectives 29,534
[Broken plural nominal forms] [9,565]
Verbs 19,457
Deverbals:
- infinitive forms (masdar) 23,274
- active participles (’ism al-fâ‘il) 17,904
- passive participles (’ism al-
maf‘ûl)

 13,373

- ‘analogous adjectives’ (sifa
musabbaha)

 5,781

- ‘nouns of time & place’ (’ism
al-makân wa-z-zamân)

 10,370

Total number of deverbals [70,702]
Subtotal of lemmas 119,693

Table 2: Number of lemmas and items belonging
to main major lexical categories

3.2 Comments and critical analysis

(1)
Table 2 features two ratios of general interest for

the structure of the Arabic general Lexicon:
– The ratio between broken plural nominal forms

(which are not counted as lemmas9) and nouns
and adjectives is roughly of one to four.

– Deverbals appear to be 3.6 more numerous than
verbs.

(2)
The above categorisation follows that of tradi-

tional Arabic grammar. Two sub-categorisations
should, nevertheless be revisited for linguistic con-
sistency reasons:
– Adjectives (although they can appear as nouns in

many syntactic structures) should be isolated.
This will be needed, of course, in parsing – even
in ‘shallow parsing’. Adjectives in Arabic can be
identified through syntactic tests.

– ‘Nouns of time and place’ (’asmâ’u l-makân wa-
z-zamân) should not, in future versions of
DIINAR, remain in the ‘deverbal’ category.
They are in fact (except for the earliest stages in
the development of the language) inserted in
syntactic structures as full nouns.

(3)
It is to be noted, on the other hand, that (except

for ‘nouns of time and place’) DIINAR.1 is very
consistent in distinguishing between nouns and
deverbals: deverbals re-used as nouns, and
showing full nominal features appear, in the dB,

9. ‘Broken plural’ forms are related to a singular

noun-form lemma. Links between singular and plural
forms, in the dB, are described as NF � NF linking
combinations (see § 2.3).

twice (as ‘deverbals’ and as ‘nouns’, with their
related morphosyntactic specifiers), e.g.:
• sâkin, plur. sâkinûn, sâkinât, ‘dwelling’,

‘inhabiting’, is a deverbal, e.g.:
 Nahnu sâkinûna madînata al-’iskandariyya =

‘We live in Alexandria’.
• sâkin, plur. sukk
�
n (broken plural form), ‘inhabi-

tant’, is a full noun (appearing in the first line of
Table 2), e.g.:

 Nahnu sukkânu madînati l-’iskandariyya = ‘We
are the inhabitants of Alexandria’.

(4)
The number of roots in DIINAR.1 is 6,546, it

being understood that a great many nouns cannot
be analysed in ROOT and PATTERN. (On the other
hand, all the verbs and deverbals of the language
can – Dichy, 1984/89.)

3.3 The DIINAR.1 lexica of inflected word-
forms

The number of combined proclitics (which are
effectively in use in Modern Standard Arabic),
suffixes, prefixes and enclitics is shown in the ta-
bles below:

Proclitics (combined) 64
Prefixes 8
Suffixes (combined) 67
Enclitics 13

Table 3: Total number of extension forma-
tives (EF-s)

 Associa-
ted with
nouns

Associa-
ted with
verbs

Common
to both
types

Proclitics 44 13 7
Prefixes 0 8 0
Suffixes 11 42 0
Enclitics 1 1 11

Table 4: EF-s associated with nominal and/or
verbal stems

It is easy to imagine, on the basis of the above
table, that one could generate huge figures through
multiplying the number of extension formatives
among themselves, then multiplying the result by
the number of nouns and/or verbs. In order to
avoid ‘over-powerful’ inflation of data, a consis-
tent database needs to be filtered through (a) a
word-formatives grammar and (b) morphosyntactic
specifiers associated to stems.

19

The overall figures for inflected forms lexica
generated by the DIINAR.1 can be broken down as
shown in Table 5:

 a

Number
of nuclei
or stems

b
Number of
inflected

forms

b/a
ratio

Verbs

19,457 3,060,716 157.3

Deverbals

70,702 2,909,772 41.15

Nouns and
adjectives
(+broken
plurals)

39,099 1,781,316 45.55

Gramma-
tical words

445 --- ---

Proper
names

1,384 11,403 8.23

Total figure
and ratio

131,087 7,774,938
59.31

Table 5: Inflected word-forms, i.e., ‘minimal
word-forms’ (see Table 1)

3.4 The fundamental ratio between lemma-
entries and inflected word-forms

High as they may seem, the above figures are not
over-powerful, and result from stem-by-stem fil-
tering of information through morphosyntactic
specifiers and the associated word-formatives
grammar.

One can also compare the ratio between the total
number of stems and that of inflected forms to
what can be found in another language, which is
equally known to be a highly inflected one. The
Xerox Spanish Lexical Transducer contained, in
1996 over 46,000 base-forms, and generated over
3,400,000 inflected word-forms (Beesley &
Karttunen, 2003, p. xvii). The ratio between
inflected forms and base-forms in the Xerox
Spanish database was then of around 74 to one. In
the DIINAR.1 dB, the same ratio is of just under
60 to one, which can be considered as reasonable.

The question of how many ‘maximal word’
forms can be correctly generated remains to be
introduced and discussed in a further paper.

4 The rationale beyond ratios: towards a first
set of validation criteria for Arabic lexica

The ratios considered in the present paper are di-
vided in two general categories:

• The category encountered in § 3.2 involves
NF � NF linking combinations (§ 2.3):
(a) The ratio between the number of noun lem-

mas (in general vocabulary) and that of ‘bro-
ken plurals’ is of 1 ‘broken plural’ for every
4 nouns.

(b) The overall ratio between verbs and
deverbals gives an average of 3.6 deverbals
for one verb.

• The ratios given in § 3.3 and 3.4 consider the
number of basic entries, such as nouns, verbs,
deverbals, etc., and the inflected forms generated
through the rules of the WFG and the grammar-
lexis relations specifiers included in the dB. In
nouns, the relatively high ratio of 45.55 is due to
the combination of case-endings with other suf-
fixes. In proper names, case-endings are limited,
because they do not vary according to definite-
ness or indefiniteness, and also because some
categories of proper names are in addition not
liable to be followed by the relative suffix –iyy).

In this contribution, the numbers of lemma-en-

tries reflect the state of the DIINAR.1 database,
which is likely to be modified, in the course of
time, through eliminating lemmas corresponding to
words that have fallen out of use or through adding
new entries. Ratios, on the other hand, reflect the
word-formatives grammar as well as the overall
structure of the sets of morpho-syntactic specifiers
associated to lexical entries. They are, on he
whole, to remain stable. It is therefore reasonable
to consider that they should be added to the
language-specific parts of a check-list devised for
the evaluation and validation of Arabic lexical
resources, or of multilingual lexica including
Arabic.

5 Acknowledgements

The present work is presented with the support
of the NEMLAR Euro-Mediterranean project (see
note 3).

The generated lexica of DIINAR.1 are to be
made available through the European Language
Resources Association (ELRA), and The
Evaluation and Language resources Distribution
Agency (ELDA), Paris, http://www.elda.fr.

References

Wijdan Abbas Mekki. 1998. Définition et
description des unités linguistiques intervenant
dans l’indexation automatique des textes en

20

arabe, Doct. Dissert., ENSSIB/Université
Lyon 2.

Ramzi Abbès. 1999. Conception d’un prototype de
concordancier de la langue arabe, Mémoire de
DEA en Sciences de l’information et de la
communication, ENSSIB.

Najim Abu Al-Chay. 1988. Un Système expert
pour l'analyse et la production des verbes arabes
dans une perspective d'Enseignement Assisté par
Ordinateur. Doct. Dissert., Université Lyon 1.

S. Ammar. & J. Dichy. 1999a. Les verbes arabes,
Paris, Hatier (collection Bescherelle - Original
introduction in French).

— 1999b. Al-’Af‘âl al-‘arabiyya, Paris, Hatier
(collection Bescherelle - Original Arabic
introduction).

Kenneth Beesley. 1989/91. “Computer Analysis of
Arabic Morphology: A two-level approach with
detours.” In Bernard Comrie and Mushira Eid,
eds., 1991. Perspectives on Arabic Linguistics
III: Papers from the Third Annual Symposium on
Arabic Linguistics, Amsterdam, John
Benjamins: 155-172.

— 2001. Finite-State Morphological Analysis and
Generation of Arabic at Xerox Research: Status
and Plans in 2001. In ACL 39th Annual Meeting.
Workshop on Arabic Language Processing;
Status and Prospect, Toulouse: 1-8.

Kenneth Beesley & Lauri Karttunen. 2003. Finite
State Morphology. CSLI Publications, Stanford,
California.

Abdelfattah Braham & Salem Ghazali. 1998.
Qâ‘idatu l-bayânât al-mu‘jamiyya al-‘arabiyya,
’aw masrû‘ Mu‘jam al-‘Arabiyya l-’âliyy,
‘Ma‘âlî-DIINAR’, hasîla wa-’âfâq. Al-Majalla l-
’Arabiyya li-l-’ulûm, 32: 14-23.

Tim Buckwalter. 2002. Buckwalter Arabic
Morphological Analyzer Version 1.0. Linguistic
Data Consortium, catalog number LDC2002L49
and ISBN 1-58563-257-0. <http://www.ldc.
upenn.edu/Catalog/CatalogEntry.jsp?catalogId=
LDC2002L49 >

David Cohen. 1961/70. “Essai d'une analyse
automatique de l'arabe”. T.A. informations, 1961.
Reprod. in D. Cohen. 1970. Études de
linguistique sémitique et arabe. Paris, Mouton:
49-78.

Jean-Pierre Desclés, ed. 1983. (H. Abaab, J.-P.
Desclés, J. Dichy, D.E. Kouloughli, M.S.
Ziadah). Conception d'un synthétiseur et d'un
analyseur morphologiques de l'arabe, en vue
d'une utilisation en Enseignement assisté par
Ordinateur, Rapport rédigé sous la direction de
J.-P. Desclés, à la demande du Ministère français

des Affaires étrangères (sous-direction de la
Politique linguistique).

Joseph Dichy. 1984/89. “Vers un modèle d’analyse
automatique du mot graphique non-vocalisé en
arabe”, in Dichy & Hassoun, 1989: 92-158.

— 1987. “The SAMIA Research Program, Year
Four, Progress and Prospects”. Processing
Arabic Report 2, T.C.M.O., Nijmegen
University: 1-26.

— 1990. L’Écriture dans la représentation de la
langue : la lettre et le mot en arabe. State Doct.
Dissert. thèse d’État (en linguistique), Université
Lumière-Lyon 2.

— 1993. “Knowledge-system simulation and the
computer-aided learning of Arabic verb-form
synthesis and analysis”. Processing Arabic
Report 6/7, T.C.M.O., Nijmegen University: 67-
84, 92-95.

— 1997. “Pour une lexicomatique de l’arabe :
l’unité lexicale simple et l’inventaire fini des
spécificateurs du domaine du mot”. Meta 42,
spring 1997, Québec, Presses de l’Université de
Montréal: 291-306.

— 1998. “Mémoire des racines et mémoire des
mots : le lexique stratifié de l’arabe”. T.
Baccouche, A. Clas et S. Mejri, eds., La
Mémoire des mots. Special issue of: Revue
Tunisienne de Sciences Sociales, 117: 93-107.

— 2000. “Morphosyntactic Specifiers to be
associated to Arabic Lexical Entries -
Methodological and Theoretical Aspects”.
Proceedings of the ACIDA’ 2000 conference,
Monastir (Tunisia), 22-24 March 2000, Corpora
and Natural Language Processing vol.: 55-60.

— 2001a. “Une première classification des verbes
arabes en fonction de leur structure
d’arguments”. A. Fassi Fehri, ed., Actes du
colloque international Génération Systématique
de la langue et Traduction automatique, (Rabat,
15-17 novembre 1999). Special issue of:
Recherches Linguistiques, IERA, May 2001,
vol. 2 : 39-70.

— 2001b. “On lemmatization in Arabic. A formal
definition of the Arabic entries of multilingual
lexical databases”. ACL 39th Annual Meeting.
Workshop on Arabic Language Processing;
Status and Prospect, Toulouse: 23-30.

J. Dichy, A. Braham, S. Ghazali, M. Hassoun.
2002. La base de connaissances linguistiques
DIINAR.1 (DIctionnaire INformatisé de l’Arabe,
version 1), Proceedings of the International
Symposium on The Processing of Arabic, Tunis
(La Manouba University), 18-20 April 2002.

21

J. Dichy & Ali Fargaly. 2003. Roots & Patterns vs.
Stems plus Grammar-Lexis Specifications: on
what basis should a multilingual lexical database
centred on Arabic be built? IXth Machine
Translation Summit (New-Orleans, Sept. 23-27,
2003), Proceedings of the Workshop on Machine
Translation for Semitic Languages: Issues and
Approaches: 1-8

J. Dichy & M.O. Hassoun, eds. 1989. Simulation
de modèles linguistiques et Enseignement Assisté
par Ordinateur de l'arabe - Travaux SAMIA I.
Paris, Conseil International de la Langue
Française.

J. Dichy & M.O. Hassoun. 1998. Some aspects of
the DIINAR-MBC research programme”. In A.
Ubaydly, ed., 1998: 2.8.1-6.

Everhard Ditters, ed. 1986-1995. Processing
Arabic Report 1 (1986), 2 (1987), 3 (1988), 4
(1989), 5 (1990), 6/7 (1993), 9 (1995), Institute
for the Languages and Cultures of the Middle-
East., Nijmegen University.

Samia Ezzahid. 1996. Méthodologie d’élaboration
d’une base de données lexicale de l’arabe
(vocabulaire général) d’après la théorie Sens-
Texte d’Igor Mel’cuk. Doct. diss. Université
Lyon 2.

Bernard Fradin. 1994. L'approche à deux niveaux
en morphologie computationnelle et les
développements récents de la morphologie”, in
B. Fradin, ed., Morphologie computationnelle,
T.A.L., 35, 1994-2, Paris, ATALA: 9-48.

Nabil Gader. 1992. Conception et réalisation d’un
prototype de correcteur orthographique de
l’arabe. Mémoire de DEA en Sciences de
l’information et de la communication, ENSSIB.

Salem Ghazali & Abdelfattah Braham. 2001.
“Dictionary Definitions and Corpus-Based
Evidence in Modern Standard Arabic”. In ACL
39th Annual Meeting. Workshop on Arabic
Language Processing; Status and Prospect,
Toulouse: 51-57.

Malek Ghenima. 1998. Analyse morpho-syntaxique
en vue de la voyellation assistée par ordinateur
des textes écrits en arabe. Doct. dissert.,
ENSSIB/Université Lyon 2.

Mohamed Hassoun. 1987. Conception d'un
dictionnaire pour le traitement automatique de
l'arabe dans différents contextes d'application.
State doct. dissert., Université Lyon 1.

Pablo Kirtchuk. 1997. Renouvellement
grammatical, renouvellement lexical et
renouvellement conceptuel en sémitique, in C.
Boisson & Ph. Thoiron, eds, 1997, Autour de la
dénomination, Presses Universitaires de Lyon:
41-69.

Lamia Labed & Xavier Lelubre. 1997. “DIINAR-
TOPT: conception d’une base de données
terminologique Arabe/français dans le domaine
de l’optique”. In JST’97: 1ères JST FRANCIL
1997: L’ingénierie de la langue : de la recherche
au produit, Avignon, 15-16 avril 1997, Aupelf-
Uref/Francil: 523-8.

Xavier Lelubre. 1993. “Courseware for the theory
and practice of Arabic conjugation”. Processing
Arabic Report, 6/7, TCMO, Nijmegen
University: 85-89 and 92-95.

— 2001. “A Scientific Arabic Terms Data Base:
Linguistic Approach for a Representation of
Lexical and Terminological Features”. In ACL
39th Annual Meeting. Workshop on Arabic
Language Processing; Status and Prospect,
Toulouse: 66-72.

Igor Mel�uk. 1982. Towards a Language of
Linguistics, A System of Formal Notions for
Theoretical Morphology, München : Wilhem
Fink Verlag.

Riadh Ouersighni. 2002. La conception et la
réalisation d’un système d’analyse morpho-
syntaxique robuste pour l’arabe : utilisation
pour la détection et le diagnostic des fautes
d’accord. Doct. dissert., ENSSIB/Université
Lyon 2.

SAMIA [Research Group]. 1984. “Enseignement
Assisté par Ordinateur de l'arabe. Simulation à
l'aide d'un modèle linguistique, la morphologie”.
Actes du Colloque “E.A.O. 84”, (Lyon, 4-5
septembre 1984), Paris, Agence de
l'informatique: 81-96.

Ahmad Ubaydly, ed. 1998. Proceedings of the 6th
International Conference and Exhibition on
Multilingual Computing (ICEMCO 98), Centre
of Middle Eastern Studies, University of
Cambridge.

Riadh Zaafrani. 2002. Développement d’un
environnement interactif d’apprentissage avec
ordinateur de l’arabe langue étrangère. Doct.
dissert., ENSSIB/Université Lyon 2.

22

Systematic Verb Stem Generation for Arabic ∗

Jim Yaghi
DocRec Ltd.,

34 Strathaven Place, Atawhai,
Nelson, New Zealand.
jim@docrec.com

Sane M Yagi
Department of English,
University of Sharjah,
Sharjah, U.A.E.

saneyagi@yahoo.com

Abstract

Performing root-based searching, concordancing,

and grammar checking in Arabic requires an

efficient method for matching stems with roots and

vice versa. Such mapping is complicated by the

hundreds of manifestations of the same root. An

algorithm based on the generation method used by

native speakers is proposed here to provide a map-

ping from roots to stems. Verb roots are classified

by the types of their radicals and the stems they

generate. Roots are moulded with morphosemantic

and morphosyntactic patterns to generate stems

modified for tense, voice, and mode, and affixed

for different subject number, gender, and person.

The surface forms of applicable morphophonemic

transformations are then derived using finite state

machines. This paper defines what is meant by

‘stem’, describes a stem generation engine that the

authors developed, and outlines how a generated

stem database is compiled for all Arabic verbs.

1 Introduction

Morphological parsers and analysers for Arabic are

required to dissect an input word and analyse its

components in order to perform even the simplest

of language processing tasks. The letters of the

majority of Arabic words undergo transformations

rendering their roots unrecognisable. Without the

root, it is difficult to identify a word’s morphose-

mantic template, which is necessary for pinpointing

its meaning, or its morphosyntactic pattern, which

is essential for realising properties of the verb,

such as its tense, voice, and mode, and its subject’s

number, gender, and person. It is fundamental that

an analyser be able to reverse the transformations

a word undergoes in order to match the separated

root and template with the untransformed ones in its

database. Unfortunately, defining rules to reverse

transformations is not simple.

∗ The authors wish to thank the anonymous reviewers of this

article as their suggestions have improved it significantly.

Research in Arabic morphology has primarily fo-

cused on morphological analysis rather than stem

generation.

Sliding window algorithms (El-Affendi, 1999)

use an approximate string matching approach of

input words against lists of roots, morpholog-

ical patterns, prefixes, and suffixes. Algebraic

algorithms (El-Affendi, 1991), on the other hand,

assign binary values to morphological patterns and

input words, then perform some simple algebraic

operations to decompose a word into a stem and

affixes. Permutation algorithms (Al-Shalabi and

Evens, 1998) use the input word’s letters to generate

all possible trilateral or quadrilateral sequences

without violation of the original order of the letters

which is then compared with items in a dictionary of

roots until a match is found. Linguistic algorithms

(Thalouth and Al-Dannan, 1990; Yagi and Harous,

2003) remove letters from an input word that belong

to prefixes and suffixes and place the remainder

of the word into a list. The members of this list

are then tested for a match with a dictionary of

morphological patterns.

The primary drawback of many of these tech-

niques is that they attempt to analyse using the infor-

mation found in the letters of the input word. When

roots form words, root letters are often transformed

by replacement, fusion, inversion, or deletion, and

their positions are lost between stem and affix let-

ters. Most attempts use various closest match algo-

rithms, which introduce a high level of uncertainty.

In this paper, we define Arabic verb stems such that

root radicals, morphological patterns, and transfor-

mations are formally specified. When stems are

defined this way, input words can be mapped to cor-

rect stem definitions, ensuring that transformations

match root radicals rather than estimate them.

Morphological transformation in our definition

is largely built around finite state morphology

(Beesley, 2001) which assumes that these trans-

formations can be represented in terms of regular

relations between regular language forms. Beesley

(2001) uses finite state transducers to encode the

23

intersection between roots, morphological patterns,

and the transformation rules that account for mor-

phophonemic phenomena such as assimilation,

deletion, epenthesis, metathesis, etc.

In this paper, a description of the database re-

quired for stem generation is presented, followed by

a definition of stem generation. Then the database

together with the definition are used to implement a

stem generation engine. This is followed by a sug-

gestion for optimising stem generation. Finally, a

database of generated stems is compiled in a format

useful to various applications that the conclusion al-

ludes to.

In the course of this paper, roots are represented

in terms of their ordered sequence of three or four

radicals in a set notation, i.e., {F,M,L,Q}. When

the capitalised Roman characters F, M, L, and Q

are used, they represent a radical variable or place

holder. They stand for First Radical (F), Medial

Radical (M), Last Radical in a trilateral root (L), and

Last Radical in a quadrilateral root (Q).

For readability, all Arabic script used here is fol-

lowed by an orthographic transliteration between

parentheses, using the Buckwalter standard1. Buck-

walter’s orthographic transliteration provides a one-

to-one character mapping from Arabic to US-ASCII

characters. With the exception of a few charac-

ters, this transliteration scheme attempts to match

the sounds of the Roman letters to the Arabic ones.

The following list is a subset of the less obvious

transliterations used here: � (@), Ù (Y), َ (a), ِ (i),
ُ (u), ْ (o), and ّ (~).

2 Stem Generation Database

Template

entry_id

TemplatesList->string_id
RootType
Pattern
Variant
Voice
Tense
Transform->transform_id
Affixes->affix_id

MainDictionary

stem_id

RootsList->root_id
entry->entry_id

RootsList

root_id

F
M
L
R

TemplateList

string_id

string

Figure 1: The stem generation database tables and

their relations.

1The complete table of orthographic transliteration may be

found at http://www.qamus.org/transliteration.htm

Arabic stems can be generated if lists of all roots

and all morphological patterns are provided. It is

necessary that this data be coupled with a database

that links the roots with their morphological patterns

(or templates) so that only valid stems are gener-

ated for each root. The roots in this database may

be moulded with morphosemantic and morphosyn-

tactic patterns to generate intermediate form stems.

The stemsmay then be transformed into final surface

forms with a number of specific morphophonemic

rules using a finite state transducer compiling lan-

guage.

Figure 1 shows a summary of the stem generation

tables and their relations. The RootsList table con-

tains all verb roots from the popular Arabic dictio-

nary, Al-Waseet, (Mustapha et al., 1972), with F,M,

L, and Q representing the table fields for up to four

radicals per root. A root identifier is used to link

this table to the Template table. The Template table

lists all morphosemantic and morphosyntactic pat-

terns used to generate stems from roots of a certain

type. This table also specifies the syntactic proper-

ties of stems (voice and tense) generated by using the

template entry. The MainDictionary table links the

RootsList and Template tables together and specifies

which entries apply to which roots.

Stems generated with these tables are unaffixed

stems. The affix id field links each entry to a subject

pronominal affix table that uses transformation rules

generating affixed stems. Although object pronom-

inal affixes are not dealt with in this paper, they are

generally agglutinating in nature and therefore cause

no morphophonemic alterations to a stem. They

can be added for generation or removed for analysis

without affecting the stem at all.

Affixation and transformation rules are both

specified using PERL regular expressions (Friedl,

2002). Regular expressions (Regexp) is an alge-

braic language that is used for building finite state

transducers (FSTs) that accept regular languages. In

the next section, Regexp is used to perform morpho-

phonemic transformations and to generate affixed

forms of stems. If generated stems are to be useful

for root extraction and morphological analysis, it is

essential at every stage of generation to be able to

track exactly which letters are members of the root

radical set, which belong to the template, and what

transformations occur on the untransformed stem

producing the final surface form.

3 Definition of Stem Generation

In order to be useful in analysis applications, Arabic

stems need to be in a surface form which will only

undergo agglutinating changes for any further mor-

24

phological modification. Stems should be defined in

terms of the root radicals,morphosemantic and mor-

phosyntactic template letters, and morphophonemic

alterations. By doing so, inversing stem transforma-

tions becomes trivial. We require the automatic stem

generator to always be aware of the origin of each of

the letters in stems it generates and to be able to dis-

tinguish between letters in the original radical set or

in the template string. The stem generator may then

be used to compile a complete list of all affixed stems

from database roots while retaining all transforma-

tion information. The resulting list of stems may

then be turned into a searchable index that holds the

complete morphological analysis and classification

for each entry.

Since originally Arabic words can have a maxi-

mum of four root radicals, a root radical set R is

defined in terms of the ordered letters of the root as

follows:

R = {rF, rM, rL, rQ} (1)

In the database, pattern, root, variant, and voice-

tense ids identify a particular morphological pattern

s. Templates are used to generate a stem from a root.

The text of s is defined in terms of the letters and di-

acritics of the template in sequence (x1...xl) and the

radical position markers or place holders (hF, hM,

hL, and hQ), that indicate the positions that letters

of the root should be slotted into:

s = x1x2...hF...hM...hL...hQ...xn (2)

Stem Generator (SG) uses regular expressions as

the language for compiling FSTs for morphophone-

mic transformations. Transformation rules take into

account the context of root radicals in terms of their

positions in the template and the nature of the tem-

plate letters that surround them. Transformations

are performed using combinations of regular expres-

sion rules applied in sequence, in amanner similar to

how humans are subconsciously trained to process

the individual transformations. The resulting tem-

plate between one morphophonemic transformation

and the next is an intermediate template. However,

in order to aid the next transformation, the trans-

formed radicals are marked by inserting their place

holders before them. For example, hF �َ hM�َ hL Êَ
(FraMsaLma) is an intermediate template formed

by the root radical set R ={�, �, Ê} ({r, s, m})

and the morphological pattern s = hF َ hM َ hL َ
(FaMaLa).

To create the initial intermediate template i0 from

the radical set R and morphological pattern s, a

function Regexp(String, SrchPat, ReplStr) is

defined to compile FSTs from regular expressions.

The function accepts in its first argument a string

that is tested for a match with the search pattern

(SrchPat) in its second argument. If SrchPat

is found, the matching characters in String are

replaced with the replace string (ReplStr). This

function is assumed to accept the standard PERL

regular expression syntax.

A function, CompileIntermediate(R, s), ac-

cepts the radical set R and morphological pattern

s to compile the first intermediate template i0. A

regular expression is built to make this transforma-

tion. It searches the morphological pattern text for

radical place holders and inserts their respective

radical values after them. Since Regexp performs
substitutions instead of insertions, replacing each

marker with itself followed by its radical value is

effectively equivalent to inserting its radical value

after it. Let p be a search pattern that matches all

occurrences of place holders hF, hM, hL, or hQ

in the morphological pattern, then an initial inter-

mediate form i0 may be compiled in the following

manner:

i0 = CompileIntermediate(R, s)

= Regexp(s, p, pRp)

= {x1...hFrF...hMrM...hLrL...hQrQ...xn}

(3)

Let T = {t1...tm} be the transformation rules ap-
plied on each intermediate template to create subse-

quent intermediate templates. Transformation rules

are defined as:

tj = (SrchPatj , ReplStrj) (4)

A second function Transform(i, t) is required to
perform transformations. A subsequent intermedi-

ate template ij+1 is the recursive result of transform-

ing the current intermediate template ij with the next

rule tj+1. Each transformation is defined as:

ij+1 = Transform(ij , tj+1) for 0 ≤ j < m

= Regexp(ij , SrchPatj+1, ReplStrj+1)

(5)

At any point in the transformation process, the

current transformed state of radicals (R′) and tem-

plate string (s′)may be decomposed from the current

intermediate template as follows:

25

CompileIntermediate−1(ij) = (R′, s′) (6)

To turn final intermediate template im into a

proper stem, a regular expression is built that

deletes the place holders from the intermediate

template. To do this with a regular expression, the

place holders matched are replaced with the null

string during the matching process as follows:

Regexp(im, p, null) (7)

Basic stems are only modified for tense and voice.

Additional morphosyntactic templates or affixation

rules further modify proper stems for person, gen-

der, number, and mode. Affixation rules are regu-

lar expressions like transformation rules. However,

these rules modify final intermediate templates by

adding prefixes, infixes, or suffixes, or modifying or

deleting stem letters. They require knowledge of

the radical positions and occasionally their morpho-

phonemic origins. Adding affixes to a stem operates

on the intermediate template which retains the nec-

essary information.

Let a be the affixation rule that is being applied to

a certain intermediate template:

a = (SrchPat, ReplStr) (8)

Now using the function Transform that was

defined earlier, affixes are added to im to produce

the intermediate affixed template im+1:

im+1 = Transform(im, a)

= Regexp(im, SrchPat, ReplStr)

(9)

To convert for output im+1 to an affixed stem, one

may remove place holders using the following:

Regexp(im+1, p, null) (10)

With this definition, generated stems are de-

scribed by intermediate templates. Intermediate

templates retain knowledge of the current state of

template and radical letters without losing the abil-

ity to recall their origins. This algorithm, therefore,

would avoid guesswork in the identification of root

radicals. Automatic rule-based stem generation

and analysis are both facilitated by this feature of

intermediate templates.

4 Stem Generation Engine

A stem generation engine may be built on the ba-

sis of the definition just advanced. The three com-

ponents, Stem Transformer, Affixer, and Slotter, ap-

plied in sequence, make up SG. Stem Transformer

applies the appropriate transformation rules to the

morphological pattern, Affixer adds specific affixes

to the transformed template; and Slotter applies the

radicals to the transformed affixed template to pro-

duce the final affixed stem.

SG begins with a stem ID from the MainDic-

tionary table as input to Stem Transformer (See Fig-

ure 1). The root and entry associated with the stem

ID are used to identify the radicals of the root, the

morphological pattern string, a list of transformation

rules, and an affix table ID.

i transform_ruletemplate_string

F M L R

Stem Transformer

Transformed
Intermediate StemDecompose

Intermediate Stem Transform

Compose

th

template_string F M L R

i=0...n

final when i=n

when i<n

final when i=n

search_patternreplace_string

Figure 2: Stem Transformer

Stem Transformer applies transformation rules

that are localised to the root radicals and letters

of the template in the contexts of one another. To

prepare the template and root for transformation, the

engine begins by marking radicals in the template.

Stem Transformer is applied incrementally using

the current radical set, the template string, and one

transformation rule per pass, as in Figure 2. The out-

put of each pass is fed back into StemTransformer in

the form of the jth-rule-transformed template string

and radicals, along with the (j+1)th transformation

rule. When all rules associated with the template are

exhausted, the resultant template string and radicals

are output to the next phase.

To illustrate, assume the morphological pattern

s =mِ hF ْ uَ hM َ hL َ (AiFotaMaLa), the radical set
R ={�, º, �} ({@,k,r}), and the transformation rule
set T = {1, 12}.

26

Stem Transformer generates a proper stem using

the following steps:

Equation 3 above creates the initial intermediate

template when passed the radical set and morpho-

logical template, thus producing:

i0 = CompileIntermediate(R, s)

= mِ hF �ْ uَ hM ºَ hL �َ
(AiF@taMkaLra)

The first transformation rule t1 = 1, t1 ∈ T is a

regular expression that searches for au (t) following

hF and replaces u (t) with a copy of rF. To trans-

form i0 into i1 with rule t1, Equation 5 is used, thus

producing:

i1 = Transform(i0, t1)

= mِ hF �ْ �َ hM ºَ hL �َ
(AiF@o@aMkaLra)

Next, a gemination rule t2 = 12, t2 ∈ T is applied

to i1. The gemination regular expression searches

for an unvowelled letter followed by a vowelled du-

plicate and replaces it with the geminated vowelled

letter. Once more, Equation 5 is used to make the

transformation:

i2 = Transform(i1, t2)

= mِ hF �H hM ºَ hL �َ
(AiF@~aMkaLra)

To obtain the proper stem from the intermediate

template, the final intermediate template i2 may be

substituted into Equation 7:

Stem = Regexp(i2, p, null)

= mِ�H»َ�َ
(Ai@~akara)

To summarise, the final output of Stem Trans-

former is a root moulded into a template and a

template-transformed radical set. These outputs

are used as input to the affixation phase which

succeeds stem transformation. Affixer, applied

iteratively to the product of Stem Transformer,

outputs 14 different subject-pronominally affixed

replace_string (affix)

F M L R

Affixer

Transformed
Intermediate StemDecompose

Intermediate Word Transform

Compose
Generic Intermediate

Stem Match

template_string F M L R

final final

from Stem Transformer

template_string

Figure 3: The Affixer Phase

morphosyntactic forms for every input except

the imperative which only produces 5. There are

9 different tense-voice-mode combinations per

subject pronominal affix, so most roots produce 117

affixed stems per dictionary entry. Affixer is run

with different replace strings that are specific to the

type of affix being produced. It modifies copies of

the transformed stem from the previous phase, as in

Figure 3. Using the example cited shortly before,

Affixer is passed the last intermediate template im
and the affix regular expression a. In this example,

a is a regular expression that searches for hLrL and

replaces it with hLrLَ uْ (LrLato); this corresponds

to the past active third person feminine singular

affix.

Now applying Equation 9 produces:

i3 = Transform(i2, a)

= mِ hF �H hM ºَ hL �َ uْ
(AiF@~aMkaLrato)

In the last stage of stem generation, Slotter re-

places the place holders in the transformed template

with the transformed radical set, producing the final

form of the affixed stem. For the example, the result

of applying Equation 10 is:

Regexp(i3, p, null) = mِ�H»َ�َuْ
(Ai@~akarato)

27

Transform

F M L R

Slotter

from Affixer

template_string

Transform

Transform

template_string

replace R literal with R value

replace L literal with L value

template_string

replace M literal with M value

Transform

template_string

replace F literal with F value

Affixed Word

final

Figure 4: The Slotter Phase

5 Optimisation

Data produced for the use of SG was designed

initially with no knowledge of the actual patterns

and repetitions that occur with morphophonemic

and affix transformation rules. In fact, SG is made

to create stems this way: A root is added to a

morphosemantic template, then morphosyntactic

templates are applied to it, inducing in some pat-

terns morphophonemic transformation. However,

while this may be useful in many language teaching

tools, it is extremely inefficient. The original data

was used to discover patterns that would allow

stems to be created in an optimal manner.

Following the classification in Yaghi (2004), there

are 70 verb root types associated with 44 theoreti-

cally possible morphological patterns. There is an

element of repetition present in the classification. In

addition, the Template table lists sequences of rules

that operate on morphological patterns in a manner

similar to how native speakers alter patterns phone-

mically. These rules could be composed into a sin-

gle FST that yields the surface form.

For example, in the previous section, the mor-

phophonemic transformation rule set T = {1, 12}
could have been written into one rule. In its non-

optimised form the rule duplicates rF in place of

u (t) creating intermediate form mِ hF �ْ �َ hM ºَ hL �َ
(AiF@o@aMkaLra) and then deletes the first of the

duplicate letters and replaces it with a gemination di-

acritic that is placed on the second repeat letter. The

resulting surface form is mِ�H»َ�َ (Ai@~akara). Instead,

one rule could achieve the surface form by replac-

ing the letteru (t) in the template with a geminated

� (@) yielding the same result.

Compiling separate regular expressions for each

transformation rule is costly in terms of processing

time especially when used with back-references, as

SG does. Back-references group a sub-pattern and

refer to it either in the search pattern or substitute

string. Such patterns are not constant and are re-

quired to be recompiled for every string they are

used with. It is desirable, therefore, to minimise the

number of times patterns are compiled. To optimise

further, the transformation may be made on the mor-

phological pattern itself, thus producing a sound sur-

face form template. This procedure would eliminate

the need to perform morphophonemic transforma-

tions on stems.

Each template entry in the Template table (see

Figure 1) is given a new field containing the surface

form template. This is a copy of the morphological

pattern with morphophonemic transformations ap-

plied. A coding scheme is adopted that continues

to retain letter origins and radical positions in the

template so that this will not affect affixation. Any

transformations that affect the morphological pat-

tern alone are applied without further consideration.

The coding scheme uses the Roman charactersF,M,

L, andQ to represent place holders in the templates.

Each place holder is followed by a single digit in-

dicating the type of transformation that occurs to

the radical slotted in that position. The codes have

the following meanings: 0=no alteration, 1=dele-

tion, 2=substitution, 3=gemination. If the code used

is 2, then the very next letter is used to replace the

radical to which the code belongs.

Take for example, the Template table entry for the

root type 17 (all roots with F=× (w) and L=Ý (y)), its
morphological pattern mِ hFْuَ hM َ hL َ (AiFotaMaLa),
and its variant (ID 0). The morphophonemic

transformation rules applied to the template are

T={20,12,31,34,112}. These rules correspond to

the following:

• 20=change rF to a duplicate of the next letter

u (t)

• 12=geminate duplicate letters

• 31=delete diacritic after theÝ (y) in positionhL

• 34=convert Ý (y) to m (A)

• 112=convert m to Ù (Y)

28

Surface Form mِ rF2uH rM0َ rL2Ù (Ai F2t~a M0a L2Y)

Affix rLÝْ uُ Êَ m (L2yotumaA)

Combined Result mِ rF2uH rM0َ rL2Ýْ uُ Êَ m (Ai F2t~a M0a L2yotumaA)

Table 1: Surface form template aligned with an affix entry rule.

The surface form template can be rewritten as

mِ hF2uH hM َ hL2Ù (AiF2t~aM0aL2Y). This can be

used to form stems such as mِvH�َÙ (Ait~adaY) by slot-

ting the root {×, �, Ý} ({w,d,y}).
The affix tables use a similar notation for coding

their rules. Every affix rule indicates a change to be

made to the surface form template and begins with a

place holder followed by a code 0 or 2 unless the rule

redefines the entire template in which case the entry

begins with a 0. Radical place holders in affix rules

define changes to the surface form template. These

changes affect the template from the given radical

position to the very next radical position or the end

of the template, whichever is first.

Affix rules with code 0 following radical place

holders signify that no change should be made to

that section of the surface form template. However,

a code 2 after a place holder modifies the surface

form template in that position by replacing the letter

that follows the code with the rest of that segment of

the rule. Affix rules using code 2 after place holders

override any other code for that position in the sur-

face form template because affixation modifies mor-

phophonemically transformed stems.

Creating affixed stems from templates and

affixes formatted in this way becomes far more

optimal. If a surface form template was specified

as mِ rF2uH rM0َ rL2Ù (AiF2t~aM0aL2Y) and it

was to be combined with the affix rule rL2Ýْ uُ Êَ m
(L2yotumaA) then SG simply needs to align the

affix rule with the surface form template using the

place holder symbol in the affix rule and replace

appropriately as in Table 1.

With the resulting affixed surface form template

SGmay retain the radicals of the original root where

they are unchanged, delete radicals marked with

code 1 and 3, and substitute letters following code

2 in place of their position holders. If the example

above is used with the root {×, �, Ý} ({w, d, y}),

the final stem is: mِvH�ÚْwُÌَn (Ait~adayotumaA, mean-

ing "the two of you have accepted compensation for

damage").

To use the original regular expression transfor-

mations would take an average of 18000 seconds

to produce a total of 2.2 million valid stems in the

database. With the optimised coding scheme, the

time taken is reduced to a mere 720 seconds; that is

4% of the original time taken.

6 Generated Stem Database Compiler

Figure 5: Output from the Stem Generation CGI

Once the dictionary database has been completed

and debugged, an implementation of SG generates

for every root, template, and affix the entire list of

stems derived from a single root and all the pos-

sible template and affix combinations that may ap-

ply to that root entry. The average number of dic-

tionary entries that a root can generate is approxi-

mately 2.5. Considering that each entry generates

117 different affixed stems, this yields an average of

approximately 300 affixed stems per root. However,

some roots (e.g., {º,u,o} ({k,t,b})) produce 13

different entries, which makes approximately 1,500

affixed stems for each of such roots.

The generated list is later loaded into a B-Tree

structured database file that allows fast stem search

and entry retrieval.

A web CGI was built that uses the Stem Genera-

tion Engine to produce all affixed stems of any given

root. A section of the results of this appears in Fig-

ure 5.

29

7 Conclusions

In this paper, we have discussed our attempt at imi-

tating the process used by Arabic speakers in gener-

ating stems from roots. We formulated a definition

of the process, facilitating an encoding of Arabic

stems. The encoding represents stems in terms of

their components while still allowing a simple map-

ping to their final surface forms. A stem’s compo-

nents are a root, morphosemantic and morphosyn-

tactic templates, and any morphophonemic alter-

ations that the stem may have underwent. In do-

ing so, the problem has been reduced to the much

smaller task of obtaining stems for the words sub-

ject to analysis, and then matching these against the

surface forms of the pre-analysed stems. The encod-

ing retains most of the information essential to stem

generation and analysis, allowing us to trace the var-

ious transformations that root radicals undergowhen

inflected. Root extractors and morphological anal-

ysers can match an input word with a defined verb

stem, then use the information in the definition to de-

termine with certainty the stem’s root and morpho-

logical pattern’s meaning. The authors intend to use

a similar strategy to define stems for Arabic nouns.

Mapping from words to defined stems is now

much easier. The stem generation algorithm here

attempts to produce a comprehensive list of all

inflected stems. Any verb may be found in this

list if some simple conjoin removal rules are first

applied. Conjoins are defined here as single letter

conjunctions, future or question particles, emphasis

affixes, or object pronominal suffixes that aggluti-

nate to a verb stem. Because conjoins may attach

to a verb stem in sequence and without causing

any morphological alteration, extracting stems

from Arabic words becomes similar to extracting

stems from English words. In fact, many of the

Arabic word analysis approaches reviewed in the

introduction to this paper would yield more accurate

results if applied to stem extraction instead of root

extraction. It would become possible to use for this

purpose conventional linguistic, pattern matching,

or algebraic algorithms.

The dictionary database described here can be

used to form the core of a morphological analyser

that derives the root of an input word, identifies its

stem, and classifies its morphosemantic and mor-

phosyntactic templates. An analyser based on these

principles may be used in many useful applications,

some of which are detailed in Yaghi (2004). Exam-

ple applications include root, lemma based, and ex-

act word analysis, searching, incremental searching,

and concordancing.

References

S. S. Al-Fedaghi and F. S. Al-Anzi. 1989. A

New Algorithm to Generate Arabic Root-Pattern

Forms. In Proceedings of the 11th National Com-

puter Conference and Exhibition, pages 391–400,

Dhahran, Saudi Arabia,March.

Riyad Al-Shalabi and Martha Evens. 1998. A

Computational Morphology System for Arabic.

In Proceedings of the COLING/ACL98, pages

66–72,Montrɴeal, Quɴebec, Canada, August.

Kenneth R Beesley. 2001. Finite-State Morpho-

logical Analysis and Generation of Arabic at Xe-

rox Research: Status and Plans in 2001. In ARA-

BIC Language Processing: Status and Prospects,

Toulouse, France, July. Arabic NLP Workshop at

ACL/EACL 2001.

Mohammed A. El-Affendi. 1991. An Algebraic Al-

gorithm for Arabic Morphological Analysis. The

Arabian Journal for Science and Engineering,

16(4B).

Mohammed A. El-Affendi. 1999. Performing Ara-

bicMorphological Search on the Internet: ASlid-

ing Window Approximate Matching Algorithm

and its Performance. Technical report, CCIS Re-

port King Saud University.

Jeffery E. F. Friedl. 2002. Mastering Regular Ex-

pressions. O’Reilly, 2nd edition, July.

Lama Hamandi, Rached Zantout, and Ahmed Gues-

soum. 2002. Design and Implementation of an

Arabic Morphological Analysis System. In Pro-

ceedings of the International Conference on Re-

search Trends in Science and Technology 2002,

pages 325–331, Beirut, Lebanon.

IbrahimMustapha,Ahmed H.Al-Zayat,Hamid Ab-

delQadir, and Mohammed Ali Al-Najjar, editors.

1972. Al-Moajam Al-Waseet. Cairo Arab Lan-

guage Academy, Cairo, Egypt.

B. Thalouth and A. Al-Dannan. 1990. A Compre-

hensive Arabic Morphological Analyzer Genera-

tor. In Pierre Mackay, editor, Computers and the

Arabic Language. Hemisphere Publishing, New

York.

Jim Yaghi. 2004. Computational Arabic Verb Mor-

phology: Analysis and Generation. Master’s the-

sis, University of Auckland.

Sane M. Yagi and Saad Harous. 2003. Arabic Mor-

phology: An Algorithm and Statistics. In Pro-

ceedings of the 2003 International Conference on

Artificial Intelligence (IC-AI 2003), Las Vegas,

Nevada.

30

Issues in Arabic Orthography and Morphology Analysis

Tim BUCKWALTER
Linguistic Data Consortium
University of Pennsylvania

Philadelphia, PA 19104 USA
timbuck2@ldc.upenn.edu

Abstract

This paper discusses several issues in Arabic
orthography that were encountered in the
process of performing morphology analysis
and POS tagging of 542,543 Arabic words in
three newswire corpora at the LDC during
2002-2004, by means of the Buckwalter
Arabic Morphological Analyzer. The most
important issues involved variation in the
orthography of Modern Standard Arabic that
called for specific changes to the Analyzer
algorithm, and also a more rigorous definition
of typographic errors. Some orthographic
anomalies had a direct impact on word
tokenization, which in turn affected the
morphology analysis and assignment of POS
tags.

1 Introduction

In 2002 the LDC began using output from the
Buckwalter Arabic Morphological Analyzer
(Buckwalter, 2002), in order to perform
morphological annotation and POS tagging of
Arabic newswire text. From 2002 to 2004 three
corpora were analyzed and over half a million
Arabic word tokens were annotated and tagged
(see Table 1).1

Corpus Arabic Word Tokens
AFP 123,810

Ummah 125,698
Annahar 293,035

Total 542,543

Table 1: Arabic newswire corpora

1 The tagged AFP, Ummah, and Annahar corpora

were published as “Arabic Treebank: Part 1 v 2.0”
(Maamouri 2003), “Arabic Treebank: Part 2 v 2.0”
(Maamouri 2004), and “Arabic Treebank: Part 3 v 1.0”
(Maamouri 2004), respectively, and are available from
the LDC website <http://www.ldc.upenn.edu >

The author was responsible for developing and
maintaining the Analyzer, which primarily
involved filling in the gaps in the lexicon and
modifying the POS tag set in order to meet the
requirements of treebanking efforts that were
performed subsequently at the LDC with the same
annotated and POS-tagged newswire data.

2 Lessons from the AFP corpus

During the tagging of the AFP data, the first
corpus in the series, the Buckwalter Analyzer was
equipped to handle basic orthographic variation
that often goes unnoticed because it is a common
feature of written Arabic (Buckwalter, 1992). This
orthographic variation involves the writing (or
omission) of hamza above or below alif in stem-
initial position, and to a lesser extent, the writing
(or omission) of madda on alif, also in stem-initial
position. In both cases use of the bare alif without
hamza or madda is quite common and goes by
unnoticed by most readers. What took the LDC
morphology annotation team by surprise was to
find that in the AFP data the common omission of
hamza in this environment had been extended to
stem-medial and stem-final positions as well, as
seen in the following words from that corpus: تادب
ناشب ديآاتل تار فناتست سيسات رخاتم دييات .

This type of orthographic variation was not
attested to the same extent in the two subsequent
corpora, Ummah and Annahar, which leads us to
conclude that some orthographic practices might
be restricted to specific news agencies. It is
important to note that most of the native Arabic
speakers who annotated the AFP data using the
output from the Analyzer did not regard these
omissions of hamza on alif in stem-medial and
stem-final positions as orthographic errors, and
fully expected the Analyzer to provide a solution.

3 Lessons from the Ummah corpus

During the tagging of the Ummah data, a
different set of orthographic issues arose. Although
the Buckwalter Analyzer was equipped to handle
so-called “Egyptian” spelling (where word-final
ya’ is spelled without the two dots, making it

31

identical to alif maqsura), the Ummah corpus
presented the LDC annotation team with just the
opposite phenomenon: dozens of word-final alif
maqsura’s spelled with two dots.2 Whereas some
of the affected words were automatically rejected
as typographical errors (e.g., يتم يسوم يلعلأا يرقلا

يرخأ), others where gladly analyzed at face value
(e.g., يلع يلإ يدل). Unfortunately, this led to
numerous false positive analyses: for example يلع
was analyzed as ‘ali and ‘alayya, but not as ‘ala.
Initially, these words were tagged as typographical
errors, but their pervasiveness led the LDC team to
reconsider this position, upon which the author was
asked to modify the Analyzer algorithm in order to
accommodate this typographic anomaly. As a
result, all words ending in ya’ were now re-
interpreted as ending in either ya’ or alif maqsura,
and both forms were analyzed, as seen in the
following (abridged) output:3

<token_Arabic> يلع

<variant>Ely
<solution>

<lemmaID>EalaY_1</lemmaID>
<pos>Ealay/PREP+ya/PRON_1S</pos>
<gloss>on/above + me</gloss>

</solution>
<solution>

<lemmaID>Ealiy~_1</lemmaID>
<voc>Ealiy~N</voc>
<pos>Ealiy~/ADJ+N/CASE_INDEF_NOM</pos>
<gloss>supreme/high + [indef.nom.]</gloss>

</solution>
<solution>

<lemmaID>Ealiy~_2</lemmaID>
<voc>Ealiy~N</voc>
<pos>Ealiy~/NOUN_PROP+N/CASE_INDEF_NOM</pos>
<gloss>Ali + [indef.nom.]</gloss>

</solution>
</variant>
<variant>ElY

<solution>
<lemmaID>EalaY_1</lemmaID>
<voc>EalaY</voc>
<pos>EalaY/PREP</pos>
<gloss>on/above</gloss>

</solution>
</variant>

</token_Arabic>

4 Lessons from all three corpora

The Annahar corpus presented no orthographic
surprises, or at least nothing that the LDC
annotation team had not seen before. The Annahar
data did contain some additional orthographic

2 It is not entirely clear whether these “dotted” alif

maqsura’s were produced by human typists or by an
encoding conversion process gone awry. It is possible
that the original keyboarding was done on a platform
where word-final ya’ and alif maqsura are displayed via
visually identical “un-dotted” glyphs, so it makes no
difference which of the two keys the typist presses on
the keyboard: both produce the same visual display, but
are stored electronically as two different characters.

3 A key to the transliteration scheme used by the
Analyzer can be found at <http://www.ldc.upenn.edu/
myl/morph/buckwalter.html>

features that we now identify as being common to
all three corpora, as well as corpora outside the set
we have annotated at the LDC.

The first orthographic feature relates to the
somewhat free interchange of stem-initial hamza
above alif and hamza below alif. With some lexical
items the orthographic variation simply reflects
variation in pronunciation: for example, both
‘isbaniya (with hamza under alif) and ‘asbaniya
(with hamza above alif) are well attested. But in
cases involving other orthographic pairs, more
interpretations are possible. Take, for instance,
what we called the “qala ‘anna” problem. This
problem was identified after numerous encounters
with constructions in which qala was followed by
‘anna rather than ‘inna, and for no apparent
linguistic reason. Initially this was treated as a
typographical error, but again, its pervasiveness
forced us to take a different approach.

One solution we considered was to modify the
Analyzer algorithm so that instances of stem-initial
hamza on alif would also be treated as possible
instances of hamza under alif, very much in the
spirit of the approach we used for dealing with the
alif maqsura / ya’ free variation cited earlier.
However, there is compelling evidence that the
orthography of hamza in stem-initial position is a
fairly reliable indication of the perceived value of
subsequent short vowel: a or u for hamza above
alif, and i for hamza below alif. In other words,
there is no free variation. The decision was taken
to regard “qala ‘anna” constructions as gram-
matically acceptable in MSA.4

5 Concatenation in Arabic orthography

The second, and more serious, orthographic
anomaly we encountered in all three corpora is
what we call the problem of Arabic “run-on”
words, or free concatenation of words when the
word immediately preceding ends with a non-
connector letter, such as alif, dal, dhal, ra, za,
waw, ta marbuta, etc.

The most frequent “run-on” words in Arabic are
combinations of the high-frequency function words
la and ma (which end in alif) with following
perfect or imperfect verbs, such as la-yazal, ma-
yuram, and ma-zala (لازيلا ماريام لازام). The la of
“absolute negation” concatenates freely with
nouns, as in la-budda, la-shakka (دبلا كشلا). It can
be argued that these are lexicalized collocations,
but their spelling with intervening space (لازي – لا

4 Badawi, Carter and Gully regard “qala ‘anna”

constructions as grammatical but restricted to contexts
“where the exact words of the speaker are not used or
reported” (Badawi, Carter and Gully 2004, p. 713). This
assertion could be investigated in the LDC corpora.

32

لاز ام دب – is just as frequent as their spelling in (لا
concatenated form.

Proper name phrases, especially those involving
the word ‘abd (هللادبع نمحرلادبع) are also written
either separately or in concatenated form. Part of
the data annotation process at the LDC involves
assigning case endings to tokenized words, but
there is currently no mechanism in the Analyzer to
assign two case endings (or several pairs of POS
tags) to what is being processed as a single word
token. As a result of this, the phrase ‘abd allah is
assigned a single POS tag and case ending when it
is written in concatenated form, but two POS tags
and two case endings when written with
intervening space.

The problem of assigning more than one case
ending and POS tag to concatenations is more
obvious in fully lexicalized concatenations such as
khamsumi’atin, sittumi’atin, sab’umi’atin, etc
(ةئامسمخ ةئامتس – ةئامعبس –). When these numbers are
written with intervening space (ةئام سمخ ةئام – تس –
ةئام عبس), two case endings and two POS tags are

assigned by the Analyzer. But when they are
written in concatenated form only one case ending
and POS tag is assigned, and the “infixed” case
ending of the first token is left undefined:
khamsmi’atin, sittmi’atin, sab’mi’atin, etc. 5

So far we have discussed relatively controlled
concatenation, involving mostly high-frequency
function words and lexicalized phrases. But
concatenation extends beyond that to random
combinations of words—the only requirement
being that the word immediately preceding end
with a non-connector letter. These concatenations
are fairly frequent, as attested by their Google
scores (see Table 2).

It is important to note that these concatenations
are not immediately obvious to readers due to the
characteristics of proportionally spaced Arabic
fonts. Most of the native readers of Arabic at the
LDC did not consider concatenations such as these
to be typographical errors. Their logic was best
expressed in the statement: “I can read the text just
fine. Why can’t the Morphological Analyzer?”

5 We regard these as “fully lexicalized”

concatenations because the first of the two constituent
tokens ends in a connector letter. In other word, their
concatenation is deliberate and not an accident of
orthography.

Concatenation Google
Frequency

ماعريدم 846
ةيجراخلاريزو 719
رلاودرايلم 162
دمحمروتآدلا 158
سلجموضع 138

متدقو 130
ىلاراشاو 99
متامآ 77
ريبآددع 54

Table 2: Arabic Concatenations and their Google
Frequencies (sample taken March 25,2004)

6 Conclusion

There are several levels of orthographic variation
in Arabic, and each level calls for a specific
response to resolve the orthographic anomaly. It is
important that the output analysis record which
method was used to resolve the anomaly. The
methods used for resolving orthographic anomaly
range from exact matching of the surface
orthography to various strategies of orthography
manipulation. Each manipulation strategy carries
with it certain assumptions about the text, and
these assumptions should be part of the output
analysis. For example, an analysis of يلع obtained
by exact matching in a text known to contain
suspicious word-final ya’s (that may be alif
maqsura’s) does not have the same value as an
analysis of the same word, using the same exact
matching, but in a text where word-final ya’s and
alif maqsura’s display normal character
distribution frequencies.

The problem of run-on words in Arabic calls for
a reassessment of current tokenization strategies,
including the definition of “word token” itself. 6 It
should be assumed that each input string represents
one or more potential word tokens, each of which
needs to be submitted individually for morphology
analysis. For example, the input string متدقف can be
segmented as a single word token, yielding two
morphological analyses (faqad-tum and fa-qud-
tum) or it can be segmented as two word tokens
(fqd tm), yielding several possible analysis pairs
(faqada / fuqida / faqd / fa-qad + tamma).

6 By “tokenization” we mean the identification of

orthographically valid character string units that can be
submitted to the Analyzer for analysis. The Analyzer
itself performs a different kind of “tokenization” by
identifying prefixes and suffixes that are bound
morphemes but which may be treated as “word tokens”
in syntactic analysis.

33

Syntactic analysis would be needed for
determining which morphology analysis is most
likely the correct one for each tokenization (fqdtm
and fqd tm).

7 Acknowledgements

Our thanks go to the Arabic annotation team at
the LDC, especially the team of native speaker
informants that provided the author with daily
feedback on the performance of the Morphological
Analyzer, especially in areas which led to a
reassessment and better understanding of
orthographic variation, as well as tokenization and
functional definitions of typographical errors.

References

Elsaid Badawi, M.G. Carter, and Adrian Wallace.
2004. Modern Written Arabic: A Comprehensive
Grammar. Routledge, London.

Tim Buckwalter. 1992. “Orthographic Variation in
Arabic and its Relevance to Automatic Spell-
Checking,” in Proceedings of the Third
International Conference on Multilingual
Computing (Arabic and Roman Script),
University of Durham, U.K., December 10-12,
1992.

Tim Buckwalter. 2002. Buckwalter Arabic
Morphological Analyzer Version 1.0. Linguistic
Data Consortium, catalog number LDC2002L49
and ISBN 1-58563-257-0. < http://www.ldc.
upenn.edu/Catalog/CatalogEntry.jsp?catalogId=
LDC2002L49 >

Mohamed Maamouri, et al. 2003. Arabic
Treebank: Part 1 v 2.0. Linguistic Data
Consortium, catalog number LDC2003T06 and
ISBN: 1-58563-261-9. < http://www.ldc.upenn.-
edu/Catalog/CatalogEntry.jsp?catalogId=
LDC2003T06 >

Mohamed Maamouri, et al. 2004. Arabic
Treebank: Part 2 v 2.0. Linguistic Data
Consortium, catalog number LDC2004T02 and
ISBN: 1-58563-282-1. < http://www.ldc.upenn.-
edu/Catalog/CatalogEntry.jsp?catalogId=
LDC2004T02 >

Mohamed Maamouri, et al. 2004. Arabic
Treebank: Part 3 v 1.0. Linguistic Data
Consortium, catalog number LDC2004T11 and
ISBN: 1-58563-298-8. < http://www.ldc.upenn.-
edu/Catalog/CatalogEntry.jsp?catalogId=
LDC2004T11 >

34

Finite-State Morphological Analysis of Persian

Karine Megerdoomian
Inxight Software, Inc.
500 Macara Avenue

Sunnyvale, CA 94085, USA
karinem@inxight.com

University of California, San Diego
Linguistics Department

9500 Gilman Drive, #0108
La Jolla, CA 92093, USA
karinem@ling.ucsd.edu

Abstract

This paper describes a two-level
morphological analyzer for Persian using a
system based on the Xerox finite state tools.
Persian language presents certain challenges to
computational analysis: There is a complex
verbal conjugation paradigm which includes
long-distance morphological dependencies;
phonological alternations apply at morpheme
boundaries; word and noun phrase boundaries
are difficult to define since morphemes may
be detached from their stems and distinct
words can appear without an intervening
space. In this work, we develop these
problems and provide solutions in a finite-
state morphology system.

1 Introduction

This paper describes the design of a two-level
morphological analyzer for Persian developed at
Inxight Software, based on Xerox finite-state
technology (Beesley and Karttunen, 2001), by
focusing on some of the issues that arise in a
computational analysis of the language.

Persian morphology raises some interesting
issues for a computational analysis. One of the
main challenges of Persian resides in the
tokenization of the input text, since word
boundaries are not always respected in written text.
Hence, morphemes may appear detached from
their stems while distinct tokens may be written
without an intervening space. Furthermore, the use
of the Arabic script and the fact that short vowels
are not written and capitalization is not used create
ambiguities that impede computational analysis of
text. Persian includes complex tokens whereby two
distinct part of speech items may be joined; these
attaching elements (e.g., prepositions, pronominal
clitics or verbs) should be treated as inflectional
morphemes in the morphological analyzer. Persian
does not have the problems that have been
observed in Semitic languages such as the
template-based morphology of Arabic, and is in
general more concatenative. However, the verbal

conjugation consists of a complex paradigm, which
includes long-distance dependencies that may be
problematic for a linear approach depending solely
on surface forms. Finally, the phonetic
representation of Persian nominals directly affects
the phonological alternations applying at
morpheme boundaries; however, the orthographic
realization of certain words may not reflect their
phonetics and require special manipulations to
eliminate the ambiguities.

Although there have been some significant
studies in the area of parsing and syntactic analysis
for Persian, very little work has been done on
computational morphology in this language. In this
paper, we elaborate on some of the challenges
presented by a morphological analysis of Persian
and discuss the solutions provided with a two-level
finite-state formalism.

2 System Description

The Persian system is developed using Xerox
Finite-State Technology. The lexicons and
morphological rules are written in the format of
lexc, which is the lexicon compiler (Karttunen and
Beesley, 1992). The lexicon and grammar are
compiled into a finite-state transducer (fst) where
the lower side consists of the input string and the
upper side provides the baseform of the word with
associated morphosyntactic features. In this
system, the fsts for each part of speech category
are created separately and then composed.
Similarly, phonological rules are composed on the
relevant fst, thus performing the required phonetic
and phonological alternations on the word forms.
The composition of all the part of speech
transducers with the rules results in the final lexical
transducer used for morphological analysis. Since
all intermediate levels disappear during a
composition, the final transducer consists of a
single two-level fst with surface strings in the
bottom and the morphological output on the top.

Consider the simple lexc example below. This
lexc consists of three small LEXICONs, beginning
with the one named Root, which marks the start of
the network. The lexicon class named Root

35

includes three entries and each entry consists of a
form and a continuation class.

LEXICON Root
dog Noun ;
cat Noun ;
laugh Verb ;

LEXICON Noun
+Plural:s # ;
+Singular:0 # ;

LEXICON Verb
+Present:s # ;
+Past:ed # ;
+Gerund:ing # ;
 # ; !empty string

The forms, such as ‘dog’, are interpreted by the

lexc as a regular expression as in {d o g}.
Continuation classes are used to account for word-
formation by capturing morphotactic rules. In the
example under consideration, the string ‘dog’ is
followed by the continuation class Noun. As the
Noun lexicon shows, the rule allows ‘dog’ to be
followed either by the morpheme ‘s’ or by a null
morpheme represented as ‘0’. The Noun
continuation class maps the lower string ‘s’ to the
+Plural tag on the upper side of the two-level
transducer. Similarly, the Verb continuation class
allows the concatenation of the verbal stem ‘laugh’
with the various inflectional morphemes.

The Persian morphological analyzer at Inxight
currently consists of about 55,000 stem forms,
including multiword tokens, and a system of rules
that identify the baseform of each token. Examples
of the output of the morphological analyzer are
shown below where the left hand side represents
the lower input string and the right hand side is the
upper side output1:

 ’travelers‘ مسافرين
 msâfryn msâfr+Noun+Pl
 ’he/she left‘ رفت
 rft rftn+Verb+Ind+Pret+3P+Sg
 ’he/she is a lawyer‘ وکيلست
 vkylst vkyl+Noun>bvdn+Verb+Ind+Pres+3P+Sg

The rules are written as regular expressions and

are represented as continuation paths within the
lexc grammar. The morphological analyzer covers

1 Unless otherwise specified, the Persian examples

are direct transliterations of the Persian script and do not
include short vowels, since that would require
disambiguation of word senses and is beyond the scope
of the current application. For issues in automatic
diacritization of Arabic script-based tests see (Vergyri
and Kirchhoff, 2004) in this volume.

all main features of the Persian language with full
verbal conjugation and nonverbal inflection,
including irregular morphology. In addition, about
twenty phonological rules are used to capture the
various surface word forms and alternations that
occur in the language. Common Proper Nouns are
also recognized and tagged.

3 Challenges of the Persian System

This section outlines some of the main issues
that arise in a computational analysis of Persian
text and presents the approach adopted in the
current finite-state system. Comparisons are made
with past work on Persian morphological analyzers
when relevant.

Persian is an affixal system consisting mainly of
suffixes and a number of prefixes appearing in
strict morphotactic order. The nonverbal paradigm
consists of a relatively small number of affixes
marking number, indefiniteness or comparatives,
but the language has a complete verbal inflectional
system, which can be obtained by the various
combinations of prefixes, stems, person and
number inflections and auxiliaries.

3.1 Nonverbal Morphology

The Arabic script used in Persian distinguishes
between the attached and unattached (or final)
forms of the characters. Thus, letters in a word are
often connected to each other, whereas all but six
characters have a final form if they appear at the
end of a word or token. Thus, most characters have
a different form depending on their position within
the word and the final forms can therefore be used
to mark word boundaries. But as we will see in this
section, these boundaries are not without
ambiguity.

Detached inflectional morphemes. The

Persian writing system allows certain morphemes
to appear either as bound to the host or as free
affixes – free affixes could be separated by a final
form character or with an intervening space. The
three possible cases are illustrated for the plural
suffix hâ (ها) in flsTyny hâ (فلسطينی ها)
‘Palestinians’ and the imperfective prefix my
 they are going’. In these‘ (می روند) in my rvnd (می)
examples, the tilde (~) is used to indicate the final
form marker which is represented as the control
character \u200C in Unicode (also known as the
zero-width non-joiner). As shown, the affixes may
be attached to the stem, they may be separated with
the final form control marker, or they can be
detached and appear with the intervening control
marker as well as a whitespace. All of these
surface forms are attested in various Persian
corpora.

36

Attached Final Form Intervening Space
flsTynyhâ flsTyny~hâ flsTyny~ hâ
myrvnd my~rvnd my~ rvnd

In his two-level morphological analyzer,

(Riazati, 1997) is unable to analyze the detached
affixes and decides to treat these elements in
syntax. Thus, the two surface realizations of
morphemes such as the plural hâ are analyzed in
different levels of the system (the attached version
in the morphological analyzer and the detached
form in the syntactic parser). In the unification-
based system developed at CRL (Megerdoomian,
2000), a post-tokenization component is used to
join the detached morpheme to the stem, separated
by the control character. The morphological
grammar is then designed to recognize both
surface forms.

The advantage of the finite-state system
described here is the ability to process multiword
tokens in the analyzer. Thus, by treating the final
form character (the zero-width non-joiner) as a
space in the tokenization rules, we are able to
analyze the detached morphemes in Persian as part
of multiword tokens within the lexc grammar
module. This allows us to treat both forms
uniformly in the morphological analyzer and there
is no need for a preprocessing module or for
delaying the analysis of the detached morphemes
to the syntactic level.

Complex tokens. “Complex tokens” refer to

multi-element forms, which consist of affixes that
represent a separate lexical category or part of
speech than the one they attach to. As in languages
such as Arabic and Hebrew, Persian also allows
attached word-like morphemes such as the
preposition bh (به) (b- in attached form), the
determiner ayn (اين), the postposition râ (را), or the
relativizer kh (که), that form such complex tokens
and need to be analyzed within the morphological
analyzer. Similarly, a number of pronominal or
verbal clitic elements may appear on various parts
of speech categories, giving rise to complex
tokens. The examples below illustrate some of
these complex constructions where two distinct
part of speech items appear attached. The word-
like affixes are shown in bold in the examples
below.

(i) beqydh Smâ بعقيده شما
 to+opinion you

’in your opinion’
(ii) aynkâr اينکار
 this+work
 ’this work’
(iii) anqlaby-tryn-ha-ySan-nd انقلابيترينهايشانند

 revolutionary+Sup+Plur+Pron.3pl+Cop.3pl
 ‘they are the most revolutionary ones’

To account for these cases in the Persian system,

the different part of speech items are analyzed
within the morphological analyzer and they are
separated with an angle bracket as shown below
for ktabhayman our books’ and‘)کتابهايمان (
beqydh .’to+opinion‘)بعقيده(

ktabhayman

ktab+Noun+Pl>av+Pron+Pers+Poss+1P+Pl+Clit
beqydh

 bh+Prep< eqydh +Noun+Sg

The angle brackets are used to distinguish these
elements from regular inflectional morphemes
since the distinct part of speech information may
be needed at a later stage of processing, e.g., for
parsing or machine translation. Each word-like
prefix is presented by its stem form: av)او(
‘he/she’ for the pronominal clitic and bh ’to‘)به(
for the baseform of the preposition. This stem form
is then followed by the relevant morphosyntactic
tags. If the information is not required, as in the
case of certain information retrieval applications,
the elements separated by the angle brackets can
easily be stripped off without losing the
information of the content carrying category,
namely the noun in these examples.

In certain cases, two distinct syntactic categories
may appear without an intervening space even
though they are not attached. For instance, the
preposition dr ’in’ ends in the character ‘r‘)در(
which does not distinguish between a final form
and an attached form. Sometimes dr appears
without a space separating it from the following
word and the tokenizer is not able to segment the
two words since there is no final form to mark the
word boundary. Similarly, in many online corpora
sources, the coordination marker v ’and‘)و(
appears juxtaposed with the following word
without an intervening space; and since the letter
‘v’ does not distinguish between a final and
attached form, the tokenizer cannot determine the
word boundary. These common words that often
appear written without an intervening space,
though not actually inflectional morphemes, are
treated as prefixes in the system as illustrated
below:

vgft v+Coord< gftn+Verb+Pret+3P+Sg وگفت
drdftr dr+Prep< dftr+Noun+Sg دردفتر

Phonetics & Phonological Rules. In Persian,
the form of morphological affixes varies based on
the ending character of the stem. Hence, if an

37

animate noun ends in a consonant, it receives the
plural morpheme –ân as in znân women’. If‘)زنان(
the animate noun ends in a vowel, the glide ‘y’ is
inserted between the stem and the plural
morpheme as in gdâyân .’the poor‘)گدايان(
Similarly, for animate nouns that end in a silent ‘h’
(i.e., the letter ‘h’ which is pronounced as é), they
take the morpheme –gân as in frSth)فرشته(
frStgân .’angels‘)فرشتگان(

A problem arises in Persian with characters that
may be either vowels or consonants and cannot be
analyzed correctly simply based on the
orthography. For instance, the character ‘v’ is a
consonant in gâv)گاو(‘cow’ (pronounced ‘gaav’)
but a vowel in dânSJv ’university student‘)دانشجو(
(pronounced ‘daneshjoo’). The character ‘h’ is
pronounced as a consonant in mâh moon’ but‘)ماه(
as a vowel in bynndh viewer’ (pronounced‘)بيننده(
‘binandé’). Similarly, ‘y’ is a glide in r’ay ‘vote’
but a vowel in mâhy fish’ (pronounced‘)ماهی(
‘maahee’). Hence, it is clear that in Persian, the
orthographic realization of a character does not
necessarily correspond to the phonetic
pronunciation, yet phonological alternations of
morphemes are sensitive to the phonetics of stems.

In the finite-state lexicon, the nonverbal and
closed class lexical items are separated based on
their final character, i.e., whether they end in a
consonant or a vowel, and word boundary tags are
used to determine the relevant phonological
alternations. In particular, the words ending in a
vowel sound are marked with a word boundary tag
^WB. Hence, the words dânSJv, bynndh and mâhy
will be marked with a ^WB tag but not those
ending in the consonant pronunciation of the same
characters, namely gâv, mâh and r’ay. This allows
us to convert the nominal endings of these words
to their phonetic pronunciation rather than
maintaining their orthographic realization, helping
us disambiguate phonological rules for nominal
affixes.

The words tagged with the boundary marker
^WB undergo phonetic alternations which convert
the ending characters ‘v’, ‘h’ and ‘y’ to ‘u’, ‘e’ and
‘i’, respectively, in order to distinguish vowels and
consonants when the phonological rules apply.
Thus, after the phonetic alternations have applied,
the word mâh ending in the consonant ‘h’ is
transliterated as [mah] while the word bynndh
ending in the vowel or silent ‘h’ is represented as
[bynnde].

Once the ending vowel and consonant characters
have been differentiated orthographically, the
phonological alternation rules can apply correctly.
We mark morpheme boundaries in the lexc with
the tag ^NB. This permits the analysis routine to
easily locate the area of application of the

phonological alternations when the rules are
composed with the lexicon transducer. One such
phonological rule for the animate plural marker -ân
is exemplified below:

define plural [e %^NB g || _ a n];

This regular expression rule indicates that the

word ending in the vowel ‘e’ and followed by a
morpheme boundary marker is to be replaced by
‘g’, in the context of the plural morpheme ‘an’.
This rule captures the phonological alternation for
bynndh viewer’ bynndgân‘)بيننده()بينندگان(
‘viewers’.

Thus, since the phonetic representation of
Persian nouns and adjectives plays a crucial role in
the type of phonological rule that should apply to
morpheme boundaries, we manipulate the
orthographic realization of certain words in order
to eliminate the ambiguities that may arise
otherwise.

Past morphological analysis systems have either
not captured the pronunciation-orthography
discrepancy in Persian thus not constraining the
analyses allowed, or they have preclassified the
form of the morpheme that can appear on each
token. The advantage of the current system is that,
by using phonological rules that apply across the
board at all morpheme boundaries, we can capture
important linguistic generalizations. For instance,
there is no need to write three distinct plural rules
to represent the various surface forms of the plural
suffix –ân (namely, -ân, -gân, and –yân). Instead,
we can write one single rule adding the –ân
morpheme and apply phonological rules that can
also apply to the boundaries for the pronoun clitic,
indefinite, ‘ezafe’ and relativizing enclitic
morphemes, providing a very effective linguistic
generalization.

3.2 Verbal Paradigm

The inflectional system for Persian verbs is quite
complex and consists of simple forms and
compound forms; the latter are forms that require
an auxiliary verb. There are two stems used in the
formation of the verbal conjugation, which may
combine with prefixes marking the imperfective,
negation or subjunctive, person and number
inflections, suffixes for marking participle forms,
and the causative infix. Certain tenses also use
auxiliaries to form the perfect forms, the future
tense or the passive constructions.

Two stems. One of the intricacies of the
Persian verbal system (and of Indo-Aryan verbal
systems in general) is the existence of two distinct
stem types used in the formation of different
tenses: The present stem is used in the creation of

38

the p
imper
know
the
comp
tenses
causa
presen
stems
often
derive
below
actual

Infi
kar
gor

Sin
is bu
transd
upper
infini
is the
my g
instan
form
captu
past s
verba
to the
transd
class
listed
the pa
and u
forme

2 N

are n
transli

39
Form Tense Prefix Stem Inflection Auxiliary
mygryzd

 می گريزد
Present Imperfective

my
Present
gryz

Present.3sg
d

mygryxt
 می گريخت

Imperfect Imperfective
my

Past
gryxt

Past.3sg
‘ ‘

mygryxth ast
 می گريخته است

Compound
Imperfect

Imperfective
my

Past
gryxt

Participle
h

Present be.3sg)
and

bgryz
 بگريز

Imperative Subjunctive
b

Present
gryz

Imperative.2sg
‘ ‘

Table 1: Long-distance dependency between prefix and personal inflection
resent tense, the simple subjunctive, the
ative and the present participle. On what is
n as the past stem are formed the preterite,
imperfect, the past participle and past
ounds. Furthermore, all infinitives and future
 are built on the past stem while all
tives, regardless of tense, are created on the
t stem. For computational purposes, the two

 are treated as distinct entities because they
have different surface forms and cannot be
d from each other. Two examples are given
 for krdn (کردن) and gryxtn (گريختن) in the
 pronunciation2:

nitival Present Stem Past Stem
dan kon kard ‘to do/make’
ixtan goriz gorixt ‘to flee’

ce the infinitival or citation form of the verbs
ilt on the past stem, the verbal finite-state
ucer has to produce the past stem on the
 side, allowing the derivation of the
tive. A problem arises when the input string
 present stem form as in the present tense
ryznd) می گريزند(‘they are fleeing’. In this
ce, we would need to output the past stem
of the verb, namely gryxt) گريخت(. In order to
re the association between the present and
tems in Persian, we link these forms in the
l lexicon by allowing all present stems to map
 past stem form in the upper side of the
ucer, as illustrated in the first continuation
below. In addition, the same verbs have to be
 in a different lexical continuation class with
st stems alone (i.e., past stem on both lower
pper sides) in order to analyze the tenses
d on the past stem of the verb such as the

 ote that in Persian, the short vowels such as o,a,e

ot generally transcribed, hence the direct
teration of the examples would be
krdn kn krd ‘to do, to make’
gryxtn gryz gryxt ‘to flee’

imperfect my gryxtnd) می گريختند(‘they were
fleeing’.

LEXICON PresentStem
gryxt:gryz VerbReg ; ! to flee
nvSt:nvys VerbReg ; ! to write
aftad:aft VerbReg ; ! to fall

LEXICON PastStem
gryxt InfBoundary ; ! to flee
nvSt InfBoundary ; ! to write
aftad InfBoundary ; ! to fall

In both cases the upper side past stem string is

marked with a delimiter tag ^INF which is later
mapped to ‘n’, forming the surface form of the
infinitive. The resulting stem form for the finite
verb my gryznd) می گريزند(‘they are fleeing’ is
thus the infinitival gryxtn)گريختن (‘to flee’.

Long-distance dependencies3. As can be

seen in the examples given above for the verb
gryxtn)گريختن (‘to flee’, the prefix my-)می(cannot
be used to distinguish the tense of the verbal entry
since it is used in the formation of the present, the
imperfect or the compound imperfect. In order to
decide whether my is forming e.g., the present
tense or the past imperfect, the stem and final
inflection need to be taken into account. Thus, if
my is attached to the present stem, it forms the
regular present tense forms but if it is attached to
the past stem, then it gives rise to either the simple
imperfect or the compound imperfect, depending
on the final inflection forms (see Table 1).
Similarly, the imperative inflection can only
appear on a present stem with the subjunctive
prefix ‘b’, as shown in bgryz) بگريز(in Table 1,
whereas only the present inflection can be used if

3 See for instance (Sproat, 1992; pages 91-92) for a

description of the issue raised by “morphological long-
distance dependencies” in finite-state models of
morphology.

the imperfective prefix ‘my’ is used, as shown with
my gryzd) می گريزد(.

Accounting for the long-distance dependency
between the prefix and the personal inflection in
Persian in a finite-state two-level morphological
analyzer leads to very complex paths and
continuation class structures in the lexical
grammar. Also, using filters to capture long-
distance dependencies can sometimes largely
increase the size of the transducer. Since there
exist several cases of interdependencies between
non-adjacent morphemes in Persian verb
formation, we have opted to keep a simpler
continuation class structure in the lexc grammars
and to instead take advantage of flag diacritics
and their unification process.

Flag diacritics are multicharacter symbols and
can be used within the lexc grammar to permit the
analysis routines to use the information provided in
terms of feature-value settings to constrain
subsequent paths. Hence, whether a transition to
the following path would apply depends on the
success of the operation defined by the flag
diacritic. In essence, the flag diacritic allows the
system to perform a unification of the features set
in the analysis process. Xerox finite state
technology includes a number of different flag
diacritic operators but the only one used in this
Persian system is the U-type or the Unification flag
diacritic. The template for the format of these flags
is as follows: @U.feature.value@. Flag diacritics
are used to keep the fst small and yet be able to
apply certain constraints, in particular when
dealing with interdependencies between non-
adjacent morphemes within a word.

For example, to capture the choice of the
imperative vs. the present tense inflection based on
the prefix that appears on the present stem of the
verb, we use a flag diacritic with the attribute
PFXTYP (PrefixType) which is then set to IMP
(for imperfective) or SUB (for subjunctive). This
flag diacritic is set when the prefixes are read and
they are unified with the PFXTYP flags at the
lexical class defining the personal inflectional
paradigm. If the values of the PFXTYP flag
diacritic match at this point, unification takes place
allowing the concatenation of the prefix and
present stem combination with the personal
inflection.

Similarly, the agentive, infinitive and participial
forms can be formed only if there is no prefix at all
on the verbal stem. This is captured by the flag
diacritic attribute PFX, which has the two possible
values PRESENT and ABSENT. Thus, the lexc
rule for the Infinitive, for instance, requires that the
PFX flag’s value be set to ABSENT. This, in
effect, captures the fact that mygryxtn (my

‘imperfective’ + gryxt ‘past stem’ + n ‘infinitive
marker’) is not a valid form since the infinitive
marker –n can only appear on a past stem that
lacks an overt prefix.

4 Evaluation

The lexicon used in the Inxight system currently
consists of 43,154 lemmas, which include nouns,
adjectives, verbs, adverbs and closed class items.
In addition, there are about 12,000 comomon
proper noun entities listed in the lexicon. The
system also recognizes date, number and internet
expressions.

The current Persian morphological analyzer has
a coverage of 97.5% on a 7MB corpus collected
mostly from online news sources. The accuracy of
the system is about 95%. The unanalyzed tokens
are often proper nouns or words missing from the
lexicon. In addition, colloquial forms of speech are
not covered in the current system.

The finite state transducer consists of 178,452
states and 928,982 arcs before optimization. And
the speed of the analyzer is 20.84 CPU time in
seconds for processing a 10MB file executed on a
modern Sun SparcStation.

5 Conclusion

This paper describes some of the challenges
encountered in a computational morphological
analysis of Persian and discusses the solutions
proposed within the finite state system developed
at Inxight Software based on the Xerox Finite State
Technology. The approaches adopted are
compared with past systems of Persian whenever
relevant. The paper presents the problems arising
from detached inflectional morphemes, as well as
attached word-like elements forming complex
tokens, the discrepancy between orthography and
phonetics in application of phonological rules, and
the interdependency between non-adjacent
morphemes in a word. In each case, it was argued
that methods adopted from the finite-state calculus
can capture linguistic generalizations and reduce
the transducer to a manageable and commercially
viable size.

6 Acknowledgements

We gratefully acknowledge the help and support
provided by the development team at Inxight
Software and the insightful suggestions of the
members of the Lingware group. I would also like
to thank the anonymous reviewers for their
detailed comments.

40

References

Mohammad-Reza Bateni. 1995. Towsif-e
Sakhteman-e Dastury-e Zaban-e Farsi
[Description of the Linguistic Structure of
Persian Language]. Amir Kabir Publishers,
Tehran, Iran.

Kenneth R. Beesley and Lauri Karttunen. 2003.
Finite-State Morphology: Xerox Tools and
Techniques. CSLI Publications, Palo Alto.

Lauri Karttunen and Kenneth R. Beesley. 1992.
Two-Level Rule Compiler. Technical Report.
ISTL-1992-2. Xerox Palo Alto Research Center.
Palo Alto, California.

Gilbert Lazard. 1992. A Grammar of
Contemporary Persian. Mazda Publishers.

Shahrzad Mahootian. 1997. Persian.Routledge.
Karine Megerdoomian. 2000. Unification-Based

Persian Morphology. In Proceedings of CICLing
2000. Alexander Gelbukh, ed. Centro de
Investigación en Computación-IPN, Mexico.

Dariush Riazati.1997. Computational Analysis of
Persian Morphology. MSc thesis, Department of
Computer Science, RMIT.

Richard Sproat. 1992. Morphology and
Computation.MIT Press, Cambridge,
Massachusetts.

41

Arabic Script-based Languages deserve to be studied linguistically

Martin Kay
Stanford University

Arabic script-based languages are attracting increased attention for reasons that are
regrettably far from their intrinsic linguistic interest. At the same time, statistical and
corpus-based approaches to language processing are acquiring such dominance that it is
becoming difficult for the advocates of other methods even to receive a hearing. I will
argue that this is an alarming trend against which computational linguists, and especially
those studying these languages, should resist with great determination. My argument for
this position rests on the following observations:

1. Unless the role of quantum mechanics and chaos in the workings of ordinary
language has been grossly underestimated, nothing about the subject is
probabilistic in any fundamental sense.

2. The statistics are a surrogate for knowledge of the world and artificial intelligence
and the performance of any system based on an approach that reduces this to
numerical annotations on linguistic structures can only hope to reach a very low
asymptote.

3. Thanks to Zipf’s law, corpus annotation is subject to a severe law of diminishing
returns to which the linguist’s search for significant generalizations is not subject.

4. To the various levels of linguistic analysis and to the indefinite range of subjects
and propositions that texts may treat, there correspond different notions of
locality, each requiring its own statistical models.

5. Most importantly, most of the linguistic properties that must be considered for
text processing are not emergent properties of the texts at all but crucially depend
on l’arbitraire du signe, the arbitrary relation between a symbol and what it
symbolizes.

42

An Unsupervised Approach for Bootstrapping Arabic Sense Tagging

Mona T. Diab
Stanford University

Stanford, CA 94305, USA
mdiab@stanford.edu

Abstract

To date, there are no WSD systems for Arabic. In
this paper we present and evaluate a novel unsuper-
vised approach, SALAAM, which exploits transla-
tional correspondences between words in a parallel
Arabic English corpus to annotate Arabic text using
an English WordNet taxonomy. We illustrate that
our approach is highly accurate in

���������
	
of the

evaluated data items based on Arabic native judge-
ment ratings and annotations. Moreover, the ob-
tained results are competitive with state-of-the-art
unsupervised English WSD systems when evaluated
on English data.

1 Introduction

Word Sense Disambiguation (WSD) is the process
of resolving the meaning of a word unambiguously
in a given natural language context. Within the
scope of this paper, it is the process of marking text
with an explicit set of sense tags or labels from some
predefined tag set. It is well established that in or-
der to obtain best quality sense annotations of words
in running text, one needs a wide coverage lexicon
and a trained lexicographer to annotate the words
manually with their appropriate senses. Such a task
is very tedious, expensive, and, by many standards,
daunting to the people involved, even when all the
required resources are available (Fellbaum et al.,
2001). The problem becomes ever more challeng-
ing when dealing with a language with virtually no
automated knowledge resources or tools. Like the
majority of natural languages, the Arabic language
happens to fall in this category of languages with
minimal automated resources.

The focus of this paper is the sense disambigua-
tion of Modern Standard Arabic which is the lan-
guage used in formal speech and writing in the Arab
world; Moreover, the script is shared with Urdu,
Farsi, Dari and Pashtu. To our knowledge, there are
no Arabic WSD systems reported in the literature.

Arabic is a Semitic language with rich templatic
morphology. An Arabic word in text or speech

may be composed of a stem, plus affixes and clitics.
The affixes include inflectional markers for tense,
gender, and/or number. The clitics include some
(but not all) prepositions, conjunctions, determin-
ers, possessive pronouns and pronouns. The stems
consist of an underlying consonantal root and a tem-
plate. The root could be anywhere from two to four
consonants devoid of vocalization. Typically text in
Modern Standard Arabic is written in the stem sur-
face form with the various affixes. However, most
Arabic dictionaries list the entries in terms of roots
rather than surface forms.

In this paper, we present an approach, SALAAM
(Sense Annotations Leveraging Alignments And
Multilinguality), to bootstrap WSD for Arabic
text presented in surface form. The approach of
SALAAM is based on work by (Diab and Resnik,
2002) but it goes beyond it in the sense of extending
the approach to the tagging of Arabic as a target lan-
guage.(Diab, 2003) SALAAM uses cross-linguistic
correspondences for characterizing word meanings
in natural language. This idea is explored by several
researchers, (Resnik and Yarowsky, 1998; Chugur
et al., 2002; Ide, 2000; Dyvik, 1998). Basically,
a word meaning or a word sense is quantifiable
as much as it is uniquely translated in some lan-
guage or set of languages. SALAAM is an em-
pirical validation of this very notion of characteriz-
ing word meaning using cross-linguistic correspon-
dences. Since automated lexical resources are vir-
tually non-existent for Arabic, SALAAM leverages
sense ambiguity resolution for Arabic off of exist-
ing English lexical resources and an Arabic English
parallel corpus, thereby providing a bilingual solu-
tion to the WSD problem.

The paper is organized as follows: Section 2 de-
scribes the SALAAM system; Section 3 presents an
evaluation of the approach followed by Section 4
which discusses the chosen sense inventory in rela-
tion to the Arabic data; We conclude with a sum-
mary and some final remarks in Section 6.

43

2 Approach

SALAAM exploits parallel corpora for sense anno-
tation. The key intuition behind SALAAM is that
when words in one language, L1, are translated into
the same word in a second language, L2, then the
L1 words are semantically similar. For example,
when the English — L1 — words bank, broker-
age, mortgage-lender translate into the Arabic —
L2 — word bnk (�����) in a parallel corpus,1 where
the bank is polysemous, SALAAM discovers that
the intended sense for the English word bank is the
financial institution sense, not the geological forma-
tion sense, based on the fact that it is grouped with
brokerage and mortgage-lender. Two fundamental
observations are at the core of SALAAM:

� Translation Distinction Observation (TDO)

Senses of ambiguous words in one language
are often translated into distinct words in a
second language.

To exemplify TDO, we consider a sentence
such as I walked by the bank, where the word
bank is ambiguous with � senses. A trans-
lator may translate bank into Dfp (�	��
) corre-
sponding to the GEOLOGICAL FORMATION
sense or to bnk (�����) corresponding to the FI-
NANCIAL INSTITUTION sense depending on
the surrounding context of the given sentence.
Essentially, translation has distinctly differen-
tiated two of the possible senses of bank.

� Foregrounding Observation (FGO)

If two or more words are translated into the
same word in a second language, then they
often share some element of meaning.

FGO may be expressed in quantifiable terms
as follows: if several words ��
�����
���� � � � ��
����
in L1 are translated into the same word form
in L2, then ��
�����
���� � � � ��
���� share some ele-
ment of meaning which brings the correspond-
ing relevant senses for each of these words to
the foreground. For example, if the word Dfp
(�	��
), in Arabic, translates in some instances in
a corpus to shore and other instances to bank,
then shore and bank share some meaning com-
ponent that is highlighted by the fact that the
translator chooses the same Arabic word for

1We use the Buckwalter transliteration scheme for the Ara-
bic words in this paper. http://www.ldc.org/aramorph

their translation. The word Dfp (�	��
), in this
case, is referring to the concept of LAND BY
WATER SIDE, thereby making the correspond-
ing senses in the English words more salient.
It is important to note that the foregrounded
senses of bank and shore are not necessarily
identical, but they are quantifiably the closest
senses to one another among the various senses
of both words.

Given observations TDO and FGO, the crux
of the SALAAM approach aims to quantifiably
exploit the translator’s implicit knowledge of
sense representation cross-linguistically, in effect,
reverse engineering a relevant part of the translation
process.

SALAAM’s algorithm is as follows:

� SALAAM expects a word aligned parallel cor-
pus as input;

� L1 words that translate into the same L2 word
are grouped into clusters;

� SALAAM identifies the appropriate senses for
the words in those clusters based on the words
senses’ proximity in WordNet. The word sense
proximity is measured in information theo-
retic terms based on an algorithm by Resnik
(Resnik, 1999);

� A sense selection criterion is applied to choose
the appropriate sense label or set of sense la-
bels for each word in the cluster;

� The chosen sense tags for the words in the
cluster are propagated back to their respec-
tive contexts in the parallel text. Simultane-
ously, SALAAM projects the propagated sense
tags for L1 words onto their L2 corresponding
translations.

The focus of this paper is on the last point in the
SALAAM algorithm, namely, the sense projection
phase onto the L2 words in context. In this case, the
L2 words are Arabic and the sense inventory is the
English WordNet taxonomy. Using SALAAM we
annotate Arabic words with their meaning defini-
tions from the English WordNet taxonomy. We jus-
tify the usage of an English inventory on both em-
pirical and theoretical grounds. Empirically, there
are no automated sense inventories for Arabic; Fur-
thermore, to our knowledge the existing MRDs for
Arabic are mostly root based which introduces an-
other layer of ambiguity into Arabic processing

44

since Modern Standard Arabic text is rendered in
a surface form relatively removed from the under-
lying root form. Theoretically, we subscribe to the
premise that people share basic conceptual notions
which are a consequence of shared human experi-
ence and perception regardless of their respective
languages. This premise is supported by the fact
that we have translations in the first place. Accord-
ingly, basing the sense tagging of L2 words with
corresponding L1 sense tags captures this very idea
of shared meaning across languages and exploits it
as a bridge to explicitly define and bootstrap sense
tagging in L2, Arabic.

3 Evaluation
In order to formally evaluate SALAAM for Ara-
bic WSD, there are several intermediary steps.
SALAAM requires a token aligned parallel corpus
as input and a sense inventory for one of the lan-
guages of the parallel corpus. For evaluation pur-
poses, we need a manually annotated gold standard
set.

3.1 Gold Standard Set
As mentioned above, there are no systems that per-
form Arabic WSD, therefore there exist no Ara-
bic gold standard sets as such. Consequently, one
needs to create a gold standard. Since SALAAM
depends on parallel corpora, an English gold stan-
dard with projected sense tags onto corresponding
Arabic words would serve as a good start. A desir-
able gold standard would be generic covering sev-
eral domains, and would exist in translation to Ara-
bic. Finding an appropriate English gold standard
that satisfies both attributes is a challenge. One op-
tion is to create a gold standard based on an exist-
ing parallel corpus such as the Quran, the Bible or
the UN proceedings. Such corpora are single do-
main corpora and/or their language is stylistic and
distant from everyday Arabic; Moreover, the cost of
creating a manual gold standard is daunting. Alter-
natively, the second option is to find an existing En-
glish gold standard that is diverse in its domain cov-
erage and is clearly documented. Fortunately, the
SENSEVAL2 exercises afford such sets.2 SENSE-
VAL is a series of community-wide exercises that
create a platform for researchers to evaluate their
WSD systems on a myriad of languages using dif-
ferent techiques by constantly defining consistent
standards and robust measures for WSD.

Accordingly, the gold standard set used here is
the set of 671 Arabic words corresponding to the
correctly sense annotated English nouns from the

2http://www.senseval.org

SENSEVAL2 English All Words Task. SALAAM
achieved a precision of 64.5% and recall of 53% on
the English test set for that task. SALAAM ranks
as the best unsupervised system when compared to
state-of-the-art WSD systems on the same English
task. The English All Words task requires the WSD
system to sense tag every content word in an English
language text.

3.2 Token Aligned Parallel Corpora

The gold standard set corresponds to the test set
in an unsupervised setting. Therefore the test set
corpus is the SENSEVAL2 English All Words test
corpus which comprises three articles from the
Wall Street Journal discussing religious practice,
medicine and education. The test corpus does not
exist in Arabic. Due to the high expense of man-
ually creating a parallel corpus, i.e. using human
translators, we opt for automatic translation sys-
tems in a fashion similar to (Diab, 2000). To our
knowledge there exist two off the shelf English Ara-
bic Machine Translation (MT) systems: Tarjim and
Almisbar.3 We use both MT systems to translate
the test corpus into Arabic. We merge the outputs
of both in an attempt to achieve more variability
in translation as an approximation to human qual-
ity translation. The merging process is based on the
assumption that the MT systems rely on different
sources of knowledge, different dictionaries in the
least, in their translation process.

Fortunately, the MT systems produce sentence
aligned parallel corpora.4 However, SALAAM ex-
pects token aligned parallel corpora. There are sev-
eral token alignment programs available. We use the
GIZA++ package which is based on the IBM Statis-
tical MT models.5 Like most stochastic NLP appli-
cations, GIZA++ requires large amounts of data to
produce reliable quality alignments. The test corpus
is small comprising 242 lines only; Consequently,
we augment the test corpus with several other cor-
pora. The augmented corpora need to have similar
attributes to the test corpus in genre and style. The
chosen corpora and their relative sizes are listed in
Table 1.

BC-SV1 is the Brown Corpus and SENSEVAL1
trial, training and test data. SV2-LS is the SEN-
SEVAL2 English Lexical Sample trial, training and
test data. WSJ is the Wall Street Journal. Finally
SV2AW is SENSEVAL2 English All Words test
corpus.

3http://www.Tarjim.com, http://www.almisbar.com
4This is not a trivial problem with naturally occurring par-

allel corpora.
5http://www.isi.edu/och/GIZA++.html

45

Corpora Lines Tokens
BC-SV1 101841 2498405
SV2-LS 74552 1760522
WSJ 49679 1290297
SV2AW 242 5815
Total 226314 5555039

Table 1: Relative sizes of corpora used for evaluat-
ing SALAAM

The three augmenting corpora, BC-SV1, SV2LS
and WSJ are translated into Arabic using both MT
systems, AlMisbar and Tarjim. All the Arabic cor-
pora are transliterated using the Buckwalter translit-
eration scheme and then tokenized. The corpora are
finally token aligned using GIZA++. Figure 1 illus-
trates the first sentence of the SV2AW English test
corpus with its translation into Arabic using AlMis-
bar MT system followed by its transliteration and
tokenization, respectively.6

The art of change-ringing is peculiar to the English,
and, like most English peculiarities, unintelligible to
the rest of the world.

��� �������
	���
������������ ��������� �"! � ��! #%$�! &(')���*	�����+�,.-0/2143
5 �6! 7����98:��; �=< �63?>
 � �@	A��BC� 8:DE�A�������6�F�

G
n fn tgyyr AldqAq xAS bAl

G
njlyz, wmvl Akvr

AlxwAS Al
G
njlyzyp, gyr wADH Ila bqyp AlEAlm.

G
n fn tgyyr Al dqAq xAS b Al

G
njlyz , w mvl Akvr

Al xwAS Al
G
njlyzyp , gyr wADH Ila bqyp Al EAlm

.

Figure 1: First sentence in test corpus SV2AW and
its Arabic translation, transliteration and tokeniza-
tion

3.3 Sense Inventory
The gold standard set is annotated using the Word-
Net taxonomy, WN1.7pre, for English. Like previ-
ous WordNet editions (Fellbaum, 1998), WN17pre
is a computational semantic lexicon for English. It
is rapidly becoming the community standard lexical
resource for English since it is freely available for
academic research. It is an enumerative lexicon in
a Quillian style semantic network that combines the
knowledge found in traditional dictionaries (Quil-
lian, 1968). Words are represented as concepts, re-
ferred to as synsets, that are connected via different

6All the Arabic sentences in this paper are output from one
of the MT systems used.

types of relations such as hyponymy, hypernymy,
synonymy, meronymy, antonymy, etc. Words are
represented as their synsets in the lexicon. For ex-
ample, the word bank has 10 synsets in WN17pre
corresponding to 10 different senses. The concepts
are organized taxonomically in a hierarchical struc-
ture with the more abstract or broader concepts at
the top of the tree and the specific concepts toward
the bottom of the tree. For instance, the concept
FOOD is the hypernym of the concept FRUIT, for
instance.

Similar to previous WordNet taxonomies,
WN17pre comprises four databases for the four
major parts of speech in the English language:
nouns, verbs, adjectives, and adverbs. The nouns
database consists of 69K concepts and has a depth
of 15 nodes. The nouns database is the richest of
the 4 databases. Majority of concepts are connected
via the IS-A identity relation. The focus of this
paper is exclusively on nouns.7

3.4 Experiment and Metrics

We conducted two experiments.

3.4.1 Experiment 1
In the first experiment a native speaker of Arabic
with near native proficiency in English is asked to
pick the appropriate meaning definition of an Ara-
bic word — given in its Arabic context sentence
in which it appears in the corpus — from the list
of WN1.7pre definitions. They are allowed to pick
more than one definition for each item. Or alterna-
tively, the annotator has the option to choose NONE
where none of the definitions is appropriate for the
Arabic word given the Arabic context sentence; Or
MISALIGNMENT where the Arabic word is not a
translation of the English word whose meaning def-
initions appear in the list that follows, or it is simply
a misalignment. The results from this experiment
are illustrated in Table 2.

Category Num. of items %
Agreement 605 90.1

Disagreement 21 3.1
None 1 0.14

Misalignment 44 6.55

Table 2: Human Annotator agreement scores with
SALAAM automatic annotations.

It is worth noting the high agreement rate be-
tween the annotator and the SALAAM annotations

7SALAAM, however, has no inherent restriction on part of
speech.

46

which exceed
��� 	

. The only case that is consid-
ered a ”NONE” category is for the word bit which
is translated as the past tense of to bite as ��� .
It should have been translated as 8:7���& meaning a
morsel/piece.

3.4.2 Experiment 2
In this experiment, the Arabic words annotated with
English WN1.7pre tags are judged on a five point
scale metric by three native speakers of Arabic with
near native proficiency in English. The experiment
is run in a form format on the web. The raters
are asked to judge the accurateness of the chosen
sense definition from a list of definitions associated
with the translation of the Arabic word. The Ara-
bic words are given to the raters in their respective
context sentences. Therefore the task of the rater is
to judge the appropriateness of the chosen English
sense definition for the Arabic word given its con-
text. S/he is required to pick a rating from a drop
down menu for each of the data items. The five
point scale is as follows:

� Accurate: This choice indicates that the cho-
sen sense definition is an appropriate meaning
definition of the Arabic word.

� Approximate: This choice indicates that the
chosen sense definition is a good meaning def-
inition for the Arabic word given the context
yet there exists on the list of possible defini-
tions a more appropriate sense definition.

� Misalignment: This choice indicates that the
Arabic word is not a translation of the English
word due to a misalignment or the word being
rendered in English in the Arabic sentence, i.e.
the English word was not translated by either
of the Arabic MT systems.

� None: This choice indicates that none of the
sense definitions listed is an appropriate sense
definition for the Arabic word.

� Wrong: This choice indicates that the chosen
sense definition is the incorrect meaning defi-
nition for the Arabic word given its context.

3.5 Results
Table 3 illustrates the obtained results from the three
raters.

The inter-rater agreement is at a high 96%. They
all deemed on average more than 90% of the data
items to be accurately tagged by SALAAM. The
most variation seemed to be in assessing the AP-
PROXIMATE category with Rater 1, R1, rating 19
items as APPROXIMATE and R2 rating 10 items

Type R1 R2 R3
Accurate 90.3 90.4 91.4

Approximate 2.8 2 1.5
Misalignment 5.6 5.9 5.9

None 0 0 0
Wrong 1.2 1.3 1.2

Table 3: Rater judgments on the Arabic WSD using
meaning definitions from the English WN1.7pre

as APPROXIMATE and R3 rating 14 data items as
APPROXIMATE.

An example of a data item that is deemed
APPROXIMATE by the three raters is for the word
AltjmE (��� �	�����) in the following sentence:

� 8 � ��
 7���� 1 �������
� � , < /�� ��D ��
 ! ����
���' DE'��%8:& 	A/ $
' ,
��� �	��������! � � �*-0����' �

transliterated as

tdq frqp jdydp klyA kl ywm fy twrnjtwn AlEZymp,
edp mn AED’ AltjmE

which means

In Great Torington, a brand new band plays
everyday comprising members of the congregation

The word AltjmE (��� �	�����) is a translation of congre-
gation which has the following sense definitions in
WN1.7pre:

� congregation: an assemblage
of people or animals or
things collected together;
"a congregation of children
pleaded for his autograph";
"a great congregation of birds
flew over"

� congregation, fold, faithful:
a group of people who adhere to
a common faith and habitually
attend a given church

� congregation, congregating:
the act of congregating

SALAAM favors the last meaning definition for
congregation.

An example of a MISALIGNMENT is illustrated
in the following sentence:

47

� 	 � ��� � ��,E! ;����������4�F�*	���
=���.' �����?1 ! 	 	�
 � �
� 	A��� � 1 ������;����

transliterated as

Alqwlwn wAlr’p wsrTAn Alvdy Akvr AlA$kAl
AlqAtlp llmrD...

which is a translation of

Cancer of the Colon, Breast and Lungs are the
most deadly forms of the disease...

The words srTAn (14! 	 	�
), meaning cancer, and
lungs were aligned leading to tagging the Arabic
word with the sense tag for the English word lungs.
Finally, the following is an example of a WRONG
data item as deemed by the three raters. The def-
inition for the word Alywm (� �������) in the following
sentence:

	A#�� 14! � � < /��)�������
14� 	�#=�F��� ��7�D

transliterated as

yEy$ AlAxrwn Alywm fy mkAn Axr...

which means

The others live today in a different place...

where the word equivalent to today is the target
word with the following sense definitions:

� today: the day that includes
the present moment (as opposed
to yesterday or tomorrow);
"Today is beautiful"; "did you
see today’s newspaper?"

� today: the present time or
age; "the world of today";
"today we have computers"

SALAAM chooses the first meaning definition
while the raters seem to favor the second.

None of the raters seemed to find data items
that had no corresponding meaning definition in the
given list of English meaning definitions. It is in-
teresting to note that the single item considered a
”NONE” category in experiment 1 was considered
a misalignment by the three raters.

If we calculate the average precision of the eval-
uated sense tagged Arabic words based on the total
tagged English nouns of 1071 nouns in this test set,
we obtain an absolute precision of 56.9% for Arabic

sense tagging. It is worth noting that the average
precision on the SENSEVAL2 English All Words
Task for any of the unsupervised systems is in the
lower 50% range.

4 General Discussion
It is worth noting the high agreement level between
the rating judgments of the three raters in experi-
ment 2 and the human manual annotations of ex-
periment 1. The obtained results are very encour-
aging indeed but it makes the implicit assumption
that the English WordNet taxonomy is sufficient for
meaning representation of the Arabic words used in
this text. In this section, we discuss the quality of
WN1.7pre as an appropriate sense inventory for the
Arabic task.

With that intent in mind, we evaluate the 600
word instances of Arabic that are deemed correctly
tagged using the English WN17pre.8 We investigate
three different aspects of the Arabic English corre-
spondence: Arabic and English words are equiva-
lent; Arabic words correspond to specific English
senses; And English words do not sufficiently cor-
respond to all possible senses for the Arabic word.
The three aspects are discussed in detail below.

� Arabic and English words are equivalent
We observe that a majority of the ambiguous
words in Arabic are also ambiguous in English
in this test set; they preserve ambiguity in the
same manner. In Arabic, 422 word tokens cor-
responding to 190 word types, are at the closest
granularity level with their English correspon-
dent;9 For instance, all the senses of care ap-
ply to its Arabic translation EnAyA (� D�! �
�); the
sense definitions are listed as follows:

– care, attention, aid,
tending: the work of
caring for or attending
to someone or something;
"no medical care was
required"; "the old car
needed constant attention"

– caution, precaution, care,
forethought: judiciousness
in avoiding harm or danger;
"he exercised caution in
opening the door"; "he
handled the vase with care"

8The overlapping number of Arabic words rated ACCU-
RATE by the three annotators of experiment 1 and those ac-
curate items from experiment 1.

9This means that all the English senses listed for WN17pre
are also senses for the Arabic word.

48

– concern, care, fear: an
anxious feeling; "care had
aged him"; "they hushed it
up out of fear of public
reaction"

– care: a cause for feeling
concern; "his major care
was the illness of his
wife"

– care, charge, tutelage,
guardianship: attention
and management implying
responsibility for safety;
"he is under the care of a
physician"

– care, maintenance, upkeep:
activity involved in
maintaining something in
good working order; "he
wrote the manual on car
care"

It is worth noting that the cases where am-
biguity is preserved in English and Arabic
are all cases where the polysemous word
exhibits regular polysemy and/or metonymy.
The instances where homonymy is preserved
are borrowings from English. Metonymy is
more pragmatic than regular polysemy (Cruse,
1986); for example, tea in English has the fol-
lowing metonymic sense from WN1.7pre:

– a reception or party at
which tea is served; "we
met at the Dean’s tea for
newcomers"

This sense of tea does not have a correspon-
dent in the Arabic $Ay (�.! �). Yet, the En-
glish lamb has the metonymic sense of MEAT
which exists in Arabic. Researchers building
EuroWordNet have been able to devise a num-
ber of consistent metonymic relations that hold
cross linguistically such as fabric/material, an-
imal/food, building/organization (Vossen et al.,
1999; Wim Peters and Wilks, 2001). In gen-
eral, in Arabic, these defined classes seem to
hold, however, the specific case of tea and
party does not exist. In Arabic, the English
sense would be expressed as a compound tea
party or Hflp $Ay (�.! � 8:� ���).

� Arabic word equivalent to specific English
sense(s)

In this evaluation set, there are 138 instances
where the Arabic word is equivalent to a sub-
sense(s) of the corresponding English word.
The 138 instances correspond to 87 word
types. An example is illustrated by the noun
ceiling in English.

– ceiling: the overhead
upper surface of a room;
"he hated painting the
ceiling"

– ceiling: (meteorology)
altitude of the lowest
layer of clouds

– ceiling, cap: an upper
limit on what is allowed:
"they established a cap for
prices"

– ceiling: maximum altitude
at which a plane can
fly (under specified
conditions)

The correct sense tag assigned by SALAAM
to ceiling in English is the first sense, which
is correct for the Arabic translation sqf (� ;
).
Yet, the other 3 senses are not correct transla-
tions for the Arabic word. For instance, the
second sense definition would be translated
as

�
rtfAE (� ! � ,
��3) and the last sense definition

would be rendered in Arabic as Elw (��� �). This
phenomenon of Arabic words corresponding
to specific English senses and not others is
particularly dominant where the English word
is homonymic. By definition, homonymy is
when two independent concepts share the same
orthographic form, in most cases, by histor-
ical accident. Homonymy is typically pre-
served between languages that share common
origins or in cases of cross-linguistic borrow-
ings. Owing to the family distance between
English and Arabic, polysemous words in Ara-
bic rarely preserve homonymy.

� English word equivalent to specific Arabic
sense

40 instances, corresponding to 20 type words
in Arabic, are manually classified as more
generic concepts than their English counter-
parts. For these cases, the Arabic word is more
polysemous than the English word. For ex-
ample, the English noun experience possesses
three senses in WN17pre as listed below.

49

– experience: the
accumulation of knowledge
or skill that results
from direct participation
in events or activities;
"a man of experience";
"experience is the best
teacher"

– experience: the content
of direct observation
or participation in an
event; "he had a religious
experience"; "he recalled
the experience vividly"

– experience: an event as
apprehended; "a surprising
experience"; "that painful
experience certainly got
our attention"

All three senses are appropriate meanings of
the equivalent Arabic word tjrbp (8 � 	A��,) but
they do not include the SCIENTIFIC EXPERI-
MENT sense covered by the Arabic word.

From the above points, we find that 63.9% of the
ambiguous Arabic word types evaluated are concep-
tually equivalent to their ambiguous English trans-
lations. This finding is consistent with the obser-
vation of EuroWordNet builders. Vossen, Peters,
and Gonzalo (1999) find that approximately 44-
55% of ambiguous words in Spanish, Dutch and
Italian have relatively high overlaps in concept and
the sense packaging of polysemous words (Vossen
et al., 1999). 29.3% of the ambiguous Arabic words
correspond to specific senses of their English trans-
lations and 6.7% of the Arabic words are more
generic than their English correspondents.

5 Acknowledgements
I would like to thank Philip Resnik and Daniel Ju-
rafsky for their insightful comments. I would like to
thank two annonymous reviewers for their detailed
comments. This work is supported, in part, by NSF
Award #IIS-0325646.

6 Conclusions
We presented, SALAAM, a method for bootstrap-
ping the sense disambiguation process for Ara-
bic texts using an existing English sense inven-
tory leveraging translational correspondence be-
tween Arabic and English. SALAAM achieves an
absolute precision of 56.9% on the task for Ara-
bic. Of the 673 correctly tagged English tokens

for the SENSEVAL2 English All Words Task, ap-
proximately 90% of the Arabic data is deemed cor-
rectly tagged by 3 native speakers of Arabic. There-
fore, SALAAM is validated as a very good first ap-
proach to Arabic WSD. Moreover, we perform a
preliminary investigation with very promising re-
sults into the quality of the English sense inventory,
WN1.7pre, as an approximation to an Arabic sense
inventory.

References
Irina Chugur, Julio Gonzalo, and Felisa Verdejo. 2002.

Polysemy and sense proximity in the senseval-2 test
suite. In Proceedings of Word Sense Diasmbiguation:
Recent Successes and Future Directions, University of
Pennsylvania, Pennsylvania, July.

D. Cruse. 1986. Lexical Semantics. Cambridge Univer-
sity Press.

Mona Diab and Philip Resnik. 2002. Word sense tag-
ging using parallel corpora. In Proceedings of 40th
ACL Conference, Pennsylvania, USA.

Mona Diab. 2000. An unsupervised method for mul-
tilingual word sense tagging using parallel corpora:
A preliminary investigation. In SIGLEX2000: Word
Senses and Multi-linguality, Hong Kong, October.

Mona Diab. 2003. Word sense disambiguation within a
multilingual framework. In PhD Thesis, University of
Maryland, College Park.

Helge Dyvik. 1998. Translations as semantic mirrors.
Christiane Fellbaum, Martha Palmer, Hoa Trang Dang,

Lauren Delfs, and Susanne Wolff. 2001. Manual and
Automatic Semantic Annotation with WordNet. In
Proceedings of the NAACL Workshop on WordNet and
Other Lexical Resources: Applications, Customiza-
tions, Carnegie Mellon University, Pittsburg, PA.

Christiane Fellbaum. 1998. WordNet: An
Electronic Lexical Database. MIT Press.
http://www.cogsci.princeton.edu/˜wn [2000, Septem-
ber 7].

Nancy Ide. 2000. Cross-lingual sense discrimination:
Can it work? Computers and the Humanities,
34:223–34.

M.R. Quillian. 1968. Semantic Memory. In M. Minsky,
editor, Semantic Information Processing. The MIT
Press, Cambridge, MA.

Philip Resnik and David Yarowsky. 1998. Distinguish-
ing Systems and Distinguishing Senses: New Evalua-
tion Methods for Word Sense Disambiguation. Natu-
ral Language Engineering, 1(1):1–25.

Philip Resnik. 1999. Disambiguating Noun Groupings
with Respect to WordNet Senses. In S. Armstrong,
K. Church, P. Isabelle, S. Manzi, E. Tzoukermann,
and D. Yarowsky, editors, Natural Language Process-
ing Using Very Large Corpora, pages 77–98. Kluwer
Academic, Dordrecht.

P. Vossen, W. Peters, and J. Gonzalo. 1999. Towards a
Universal Index of Meaning. pages 1–24.

Louise Guthrie Wim Peters and Yorick Wilks. 2001.
Cross-linguistic discovery of semantic regularity.

50

Automatic Arabic Document Categorization Based on the Naïve Bayes Algorithm

Mohamed EL KOURDI Amine BENSAID♠ Tajje-eddine RACHIDI

School of Science & Engineering
Alakhawayn University

P.O. Box 104, Ifrane 53000, Morocco
[M.Elkourdi, A.Bensaid, T.Rachidi]@alakhawayn.ma

♠Corresponding Author

Abstract

This paper deals with automatic classification of
Arabic web documents. Such a classification is very
useful for affording directory search functionality,
which has been used by many web portals and
search engines to cope with an ever-increasing
number of documents on the web. In this paper,
Naive Bayes (NB) which is a statistical machine
learning algorithm, is used to classify non-vocalized
Arabic web documents (after their words have been
transformed to the corresponding canonical form,
i.e., roots) to one of five pre-defined categories.
Cross validation experiments are used to evaluate
the NB categorizer. The data set used during these
experiments consists of 300 web documents per
category. The results of cross validation in the
leave-one-out experiment show that, using 2,000
terms/roots, the categorization accuracy varies from
one category to another with an average accuracy
over all categories of 68.78 %. Furthermore, the
best categorization performance by category during
cross validation experiments goes up to 92.8%.
Further tests carried out on a manually collected
evaluation set which consists of 10 documents from
each of the 5 categories, show that the overall
classification accuracy achieved over all categories
is 62%, and that the best result by category reaches
90%.

Keywords: Naïve Bayes, Arabic document
categorization, cross validation, TF-IDF.

1 Introduction

With the explosive growth of text documents on
the web, relevant information retrieval has become
a crucial task to satisfy the needs of different end
users. To this end, automatic text categorization has
emerged as a way to cope with such a problem.
Automatic text (or document) categorization
attempts to replace and save human effort required
in performing manual categorization. It consists of

assigning and labeling documents using a set of pre-
defined categories based on document contents. As
such, one of the primary objectives of automatic
text categorization has been the enhancement and
the support of information retrieval tasks to tackle
problems, such as information filtering and routing,
clustering of related documents, and the
classification of documents into pre-specified
subject themes. Automatic text categorization has
been used in search engines, digital library systems,
and document management systems (Yang, 1999).
Such applications have included electronic email
filtering, newsgroups classification, and survey data
grouping. Barq for instance uses automatic
categorization to provide similar documents feature
(Rachidi et al., 2003). In this paper, NB which is a
statistical machine learning algorithm is used to
learn to classify non-vocalized1 Arabic web text
documents.

This paper is organized as follows. Section 2,
briefly describe related works in the area of
automatic text categorization. Section 3 describes
the preprocessing undergone by documents for the
purpose of categorization; it describes in particular
the preprocessing specific to the Arabic language.
In section 4 Naïve Bayes (NB), the learning
algorithm used in this paper for document
categorization is presented. Section 5 outlines the
experimental setting, as well as the experiments
carried out to evaluate the performance of the NB
classifier. It also gives the numerical results with
their analysis and interpretation. Section 6
summarizes the work and suggests some ideas for
future works.

2 Related Works

Many machine learning algorithms have been
applied for many years to text categorization. They

1 Most modern Arabic writing (web, novels, articles) are

written without vowels.

51

include decision tree learning and Bayesian
learning, nearest neighbor learning, and artificial
neural networks, early such works may be found in
(Lewis and Ringnette, 1994), (Creecy and Masand,
1992) and (Wiene and Pedersen, 1995),
respectively.

 The bulk of the text categorization work has been
devoted to cope with automatic categorization of
English and Latin character documents. For
example, (Fang et al., 2001) discusses the
evaluation of two different text categorization
strategies with several variations of their feature
spaces. A good study comparing document
categorization algorithms can be found in (Yang
and Liu, 1999). More recently, (Sebastiani, 2002)
has performed a good survey of document
categorization; recent works can also be found in
(Joachims, 2002), (Crammer and Singer, 2003), and
(Lewis et al., 2004).

Concerning Arabic, one automatic categorizer has
been reported to have been put under operational
use to classify Arabic documents; it is referred to as
"Sakhr's categorizer" (Sakhr, 2004). Unfortunately,
there is no technical documentation or specification
concerning this Arabic categorizer. Sakhr's
marketing literature claims that this categorizer is
based on Arabic morphology and some research that
has been carried out on natural language processing.

The present work evaluates the performance on
Arabic documents of the Naïve Bayes algorithm
(NB) - one of the simplest algorithms applied to
English document categorization (Mitchell, 1997).
The aim of this work is to gain some insight as to
whether Arabic document categorization (using NB)
is sensitive to the root extraction algorithm used or
to different data sets. This work is a continuation of
that initiated in (Yahyaoui, 2001), which reports an
overall NB classification correctness of 75.6%, in
cross validation experiments, on a data set that
consists of 100 documents for each of 12 categories
(the data set is collected from different Arabic
portals). A 50% overall classification accuracy is
also reported when testing with a separately
collected evaluation set (3 documents for each of
the 12 categories). The present work expands the
work in (Yahyaoui, 2001) by experimenting with
the use of a better root extraction algorithm (El
Kourdi, 2004) for document preprocessing, and
using a different data set, collected from the largest
Arabic site on the web: aljazeera.net.

3 Preprocessing of document

Prior to applying document categorization
techniques to an Arabic document, the latter is
typically preprocessed: it is parsed, in order to
remove stopwords (these are conjunction and
disjunction words etc.). In addition, at this stage in
this work, vowels are stripped from the full text
representation when the document is (fully or
partially) voweled/vocalized. Then roots are
extracted for words in the document.

 In Arabic, however, the use of stems will not
yield satisfactory categorization. This is mainly due
to the fact that Arabic is a non-concatenative
language (Al-Shalabi and Evens, 1998), and that the
stem/infix obtained by suppression of infix and
prefix add-ons is not the same for words derived
from the same origin called the root. The infix form
(or stem) needs further to be processed in order to
obtain the root. This processing is not
straightforward: it necessitates expert knowledge in
Arabic language word morphology (Al-Shalabi and
Evens, 1998). As an example, two close roots (i.e.,
roots made of the same letters), but semantically
different, can yield the same infix form thus
creating ambiguity.

The root extraction process is concerned with the
transformation of all Arabic word derivatives to
their single common root or canonical form. This
process is very useful in terms of reducing and
compressing the indexing structure, and in taking
advantage of the semantic/conceptual relationships
between the different forms of the same root. In this
work, we use the Arabic root extraction technique in
(El Kourdi, 2004). It compares favorably to other
stemming or root extraction algorithms (Yates and
Neto, 1999; Al-Shalabi and Evens, 1998; and
Houmame, 1999), with a performance of over 97%
for extracting the correct root in web documents,
and it addresses the challenge of the Arabic broken
plural and hollow verbs. In the remainder of this
paper, we will use the term "root" and "term"
interchangeably to refer to canonical forms obtained
through this root extraction process.

4 NB for document categorization

4.1 The classifier module

The classifier module is considered to be the core
component of the document categorizer. It is
responsible for classifying given Arabic documents
to their target class. This is performed using the
Naive Bayes (NB) algorithm. The NB classifier

52

computes a posteriori probabilities of classes, using
estimates obtained from a training set of labeled
documents. When an unlabeled document is
presented, the a posteriori probability is computed
for each class using (1) in Figure 1; and the
unlabeled document is then assigned to the class
with the largest a posteriori probability.

A posteriori probability computation

Let D be a document represented as a set of finite
terms D={w1, w2,..., w3}.

Let C be the number of target classes.

Let docsi be the number of documents in category
C,i and |Examples| be the number of documents in
the training set of labeled documents.

Let n be the total number of distinct stems in Ci

Let Nk be the number of times wk occurs in Ci

Then the a posteriori probability as given by
Bayes theorem is:

P(Ci|D)=[P(Ci)*P(D| Ci)]/P(D). i=1,2,...C
 (1)

When comparing a posteriori probabilities for the
same document D, P(D) is the same for all
categories and will not affect the comparison.

The other quantities in (1) are estimated from the
training set using NB learning (see Figure 2).

The assigned class AC(D) to document D is the
class with largest a posteriori probability given by
(1):

AC(D)=argmaxCi { P(Ci|D). i=1,2,...C}

Figure 1. A posteriori probability reduction.

4.2 The learning module

The main task of the learning module is to learn
from a set of labeled documents with predefined
categories in order to allow the categorizer to
classify the newly encountered documents D and to
assign them to each of the predefined target
categories Ci. This module is based on the NB
learning algorithm given in Figure 2. The learning
module is one way of estimating the needed
quantities in (1) by learning from a training set of
documents.

NB learning algorithm

Let D be a document represented as a set of finite
terms/roots D={w1, w2,..., wn}.

Let docsi be the number of documents in category
Ci , and |Examples| be the number of documents in
the training set of labeled documents.

Step 1: collect the vocabulary, which is defined as
the set of distinct words in the whole training set

Step2: For each category Ci do the following

Compute P(Cj) = | docsj |/|Examples|
(2)

where docsj is the number of training documents
for the category is Cj.

For each root wk in Vocabulary

Compute P(wk/Cj)= (Nk,j +1)/(nj +| Textj |)
 (3)

where Nk,j is the number of times wk occurs in Cj,
nj is the total number of distinct terms in all training
documents labeled Cj, and Textj is a single
documents generated by concatenating all the
training documents for category Cj .

Equation (2) and (3) make use of the following
two assumptions:

1) Assuming that the order of the words in a
document does not affect the classification of the
document:

P(D|Cj)=P({w1, w2,..., wn}|Cj)
 (4)

2) Assuming that the occurrence of each word is
independent of the occurrence of other words in the
document then:

P(w1,...,wn|Cj)=P(w1|Cj)*P(w2|Cj)*...*P(wn|Cj) (5)

Figure 2. The Naïve Bayes (supervised) learning
algorithm for document categorization

The m-estimate method (with m equal to the size
of word vocabulary) (Cestink, 1990) is used to
compute the probability terms and handle zero
count probabilities (smoothing). Equation (3) gives
an estimate for P(wk/Cj).

Various assumptions are needed in order to
simplify Equation (1), whose computations are
otherwise expensive. These assumptions are
applied in Figure 2 to obtain the needed quantities

53

for the class-conditional probabilities (Equations (4)
and (5)). These assumptions are:

1. The probability of encountering a specific word
within a document is the same regardless the word
position. In other words, P(wi=w|Cj)= P(wm= w|Cj)
for every i, j, and m where i and m are different
possible positions of the same word within the
document. This assumption allows representing a
document as a bag of word (Equation (4) in Figure
2).

2. The probability of occurrence of a word is
independent of the occurrence of other words in the
same document. This is reflected in Equation (5):
P(w1,...,wn|Cj)=P(w1|Cj)*P(w2|Cj)*...*P(wn|Cj). It is
in fact a naïve assumption, but it significantly
reduces computation costs, since the number of
probabilities that should be computed is decreased.
Even though this assumption does not hold in
reality, NB performs surprisingly well for text
classification (Mitchell, 1997).

5 Experiments and results

For classification problems, it is customary to
measure a classifier’s performance in terms of
classification error rate. A data set of documents is
used with known category/class label L(Dk) for each
document Dk. The set is split into two subsets: a
training set and a testing set. The trained classifier is
used to assign a class AC(Dk) using Equation (3) to
each document (Dk) in the test set, as if its true class
label were not known. If AC(Dk) matches L(Dk), the
classification is considered correct; otherwise, it is
counted as an error:

Errorik=




 ≠= ii C)AC(D and ,C)L(D iff 1

otherwise 0
kk (6)

For a given class, the error rate is computed as the
ratio of the number of errors made on the whole test
set of unlabeled documents (Xu) to the cardinality
|Xu| of this set. For a given class Ci, the error rate is
computed as:

ClassErrori = ∑ =

 |X|

1k ik

u

Error / |Xu| (7)

In order to measure the performance of the NB
algorithm on Arabic document classification, we
conducted several experiments: we performed cross
validation using the original space (using all the
words in the documents), cross validation
experiments based on feature selection (using a
subset of terms/roots only), and experiments based
on an independently constructed evaluation set. The

following paragraphs describe the data set used, and
the experiments.

5.1 The data set

We have collected 300 web documents for each
of five categories from the website
www.aljazeera.net, which is the website of
Aljazeera (the Qatari television news channel in
Arabic). This site contains over seven million
(7,000,000) documents corresponding to the
programs broadcast on the television channel; it is
arguably the most visited Arabic web site.
Aljazeera.net presents documents in (manually
constructed) categories. The five (5) categories
used for this work are: sports, business, culture and
art, science, and health.

5.2 Cross validation

In cross validation, a fixed number of documents
is reserved for testing (as if they were unlabeled
documents) and the remainder are used for training
(as labeled documents). Several such partitions of
the data set are constructed, by making random
splits of the data set. NB's performance is evaluated
several times, using the different random partitions.
Then the error statistics are aggregated. The steps of
the cross validation experiments are delineated in
Figure 3 next:

Cross validation steps
Let X be the entire data seto f N=1500 documents
c =5 is the number of different categories
Er,i will store the error rate for category i during

trial r.
1) Fix the size s of the training set for (s=N/3, N/2,
2N/3, or N-1) to perform 1/3-2/3, 50/50, 2/3-1/3 or
leave-one-out cross validation.
2) Set the number of trials T. If s=N-1, fix the
number of trials T=N; else, T=40.
3) For trial r=1 to T

3.1 Select randomly s documents from X as
labeled documents into training set X l

r .
3.2 Store the remaining documents (X- X l

r) as

unlabeled documents into X u
r (as if they were

unlabeled).
3.3 Train NB using X l

r . (Compute Equation (2)
and Equation (4))
3.4 Use trained NB to compute the class of each

element in X u
r using Equation (4)

54

3.5 Compute error rate Er,i , on X u
r for each

category (i=1,2...,c) using Equation (7):

Er,i = ∑ =

 |X|

1k

u

ikError /|Xu| i=1,2,…,c

Next r (return to step 3).
4.1 Compute the average error rate for each class

over all trials:

AvgErrori,s.= ∑ =

 T

1r
ir, /TE i=1,2,…,c

4.2 Compute the maximum error rate for each
class over all trials:

MaxErrori,s = Max Tr ...,2,1= {Er,i} i=1,2,…,c

4.3 Get the minimum error rate for each class
over all trials:

MinErrori,s = Min Tr ...,2,1= {Er,i} i=1,2,…,c.

Next s (return to step 1)

Figure 3. Cross validation experiments.

5.2.1. Experiments without feature extraction

In these experiments, each document in data set X
is represented by all word roots in the document.
The cross validation experiments described in
Figure 3, is conducted. Table 1 reports the error
rates obtained over all categories during the cross
validation experiments. The smallest error rate is
obtained in the leave-one-out experiment (as
illustrated in Table 1). Table 2, Table 3, Table 4,
and Table 5 represent, respectively, the confusion
matrices of the cross validation experiments. The
percentages reported in an entry of a confusion
matrix correspond to the percentage of documents
that are known to actually belong to the category
given by the row header of the matrix, but that are
assigned by NB to the category given by the column
header.

Cross-validation Experiments

 1/3-2/3 1/2-1/2 2/3-1/3 Leave-one-out

Avg 67% 55% 46% 32.1%
Max 69.9% 56.5% 49% 100%

Error
Rate Min 62% 48.1% 42% 0%

Table 1. The error rates of NB over all categories in
cross validation experiments (with feature extraction)

Category Health Business Culture Science Sport
Health 22% 27% 3% 8% 40%
Business 7% 39% 10% 18% 26%
Culture 13% 18% 27% 7% 35%
Science 14% 15% 8% 30% 33%
Sport 16% 12% 17% 8% 47%

Table 2. Confusion Matrix results for cross
validation, with no feature extraction (1/3-2/3).

Categor
y

healt
h

Busines
s

Cultur
e

Scienc
e

Sport

Health 32% 22.5% 3.2% 8% 34.3
%

Busines
s

8.2% 50% 10.7% 13.3% 17.8
%

Culture 8% 20% 39% 3% 30%
Science 16% 9.8% 7.2% 46% 21%
Sport 12% 8% 16% 4% 60%

Table 3. Confusion Matrix results for cross
validation, with no feature extraction (1/2-1/2).

Categor
y

Healt
h

Busines
s

Cultur
e

Scienc
e

Spor
t

Health 46% 12% 6% 8% 28%
Business 4.8% 63% 7% 9.2% 16%
Culture 7.1% 16.8% 42% 6.1% 28%
Science 8.1% 10.8% 9.1% 46% 26%
Sport 7.2% 5% 6.8% 5% 76%

Table 4. Confusion Matrix results for cross
validation, with no feature extraction (2/3-1/3).

Category
name

Health Business Culture Science Sport

Health 58.0% 13% 4% 3.7% 21.3%

Business 4.6% 73.5% 5.3% 4.6% 12%

Culture 2.3% 10% 57.0% 0.7% 30%

Science 13.3% 5.3% 2.3% 59.1% 20%

Sport 2.0% 1.3% 3.6% 1.3% 91.8%

Table 5. Confusion Matrix results for cross validation,
with no feature extraction (Leave-one-out)

The diagonals in tables 2-5 indicate higher
classification performance for categories: Sport and
Business than for the categories: Culture, Science,
and health. Moreover, the leave-one-out experiment
yields the best result by category as illustrated in
Table 5 compared to the error rates reported in
tables 2-4. Tables 2-5 revealed that error rates by

55

category decrease from experiment to experiment.
In other words, the error rates recorded in 1/3-2/3
experiment are higher than those in 1/2-1/2
experiment, those in 1/2-1/2 experiment are higher
than those in 2/3-1/3 experiment, and those obtained
in the 2/3-1/3 experiment are higher than those in
the leave-one-out experiment. Thus, larger training
sets yield higher accuracy when all the data set
terms are used.

When investigating some of the
misclassifications/confusions made by NB, we have
noticed that misclassified documents, in fact,
contain large number of words that are
representative of other categories. In other words,
documents that are known to belong to a category
contain numerous words that have higher frequency
in other categories. Therefore, these words have
higher influence on the prediction that will be made
by the classifier. For instance, the confusion matrix
in Table 5 shows that 30% of Culture documents
have been misclassified in the Sports category. The
misclassified documents contain words that are
more frequent in the Sports category such as جائزة
(Arabic for prize and for trophy), بطل (Arabic for
champion and for lead character), and تسجيل (Arabic
for scoring and for recording).

5.2.2. Cross-validation, using feature selection

Feature selection techniques have been widely
used in information retrieval as a means for coping
with the large number of words in a document; a
selection is made to keep only the more relevant
words. Various feature selection techniques have
been used in automatic text categorization; they
include document frequency (DF), information gain
(IG) (Tzeras and Hartman, 1993), minimum
description length principal (Lang, 1995), and the χ2
statistic. (Yang and Pedersen, 1997) has found
strong correlations between DF, IG and the χ2
statistic for a term. On the other hand, (Rogati and
Yang, 2002) reports the χ2 to produce best
performance. In this paper, we use TF-IDF (a kind
of augmented DF) as a feature selection criterion, in
order to ensure results are comparable with those in
(Yahyaoui, 2001).

TF-IDF (term frequency-inverse document
frequency) is one of the widely used feature
selection techniques in information retrieval (Yates
and Neto, 1999). Specifically, it is used as a metric
for measuring the importance of a word in a
document within a collection, so as to improve the
recall and the precision of the retrieved documents.

While the TF measurement concerns the importance
of a term in a given document, IDF seeks to
measure the relative importance of a term in a
collection of documents. The importance of each
term is assumed to be inversely proportional to the
number of documents that contain that term. TF is
given by TFD,t, and it denotes frequency of term t in
document D. IDF is given by IDFt = log(N/dft),
where N is the number of documents in the
collection, and dft is the number of documents
containing the term t. (Salton and Yang, 1973)
proposed the combination of TF and IDF as
weighting schemes, and it has been shown that their
product gave better performance. Thus, the weight
of each term/root in a document is given by wD,t =
TFD,t * IDFt.

We have conducted five cross validation
experiments based on TF-IDF. Experiments are
based on selecting, in turn, 50, 100, 500, 1000, and
2000 terms that best represent the predefined 5
categories. We have repeated the experiments in
Figure 3 for each number of terms. A summary of
the results is presented in Table 6. The performance
levels obtained are comparable to those obtained
without feature selection. Figure 4 plots average
categorization error rates versus the number of
terms used for different trials.

Experiments

#terms/roots

1/3-
2/3

1/2-
1/2

2/3-
1/3

Leave-
one-out

50 75.2(69.92,77.42) 64.88(60.32,68.4) 53.48(49.62,56.14) 36.9(0,100)
100 73.44(67.2,77) 62.58(59,66.7) 49.44(46.62,53.96) 33.7(0,100)
500 71.82(65.94,75.5) 60.32(55.9,64.24) 48.96(45.66,52.3) 33.16(0,100)
1000 69.54(64.06,72.12) 57.08(52.58,62.1) 46.96(42.84,50.76) 32.18(0,100)
2000 66.18(61.3,69) 53.96(46.9,66) 44.38(40.8,47.58) 31.22(0,100)
5000 67(62,69.9) 55(48.1,56.5) 46(42,49) 32.1(0,100)

Table 6. The overall error rate of NB in cross
validation experiments using feature selection, in

format: Avg(Min, Max)

Category NB accuracy
Health 50%
Business 70%
Culture 40%
Science 60%
Sport 90%

Table 7. Classification accuracy on the evaluation set
using Leave-one-out and TF-IDF with 2,000 roots/terms

56

Categorization error rates versus
number of roots in vocabulary

0

10

20

30

40

50

60

70

80

50 100 500 1000 2000 5000

Number of roots in vocabulary

C
at

eg
or

iz
at

io
n

er
ro

r r
at

es

1/3-2/3

1/2-1/2

2/3-1/3

Leave-
one-out

Figure 4. Categorization error rates versus

number of terms.

5.3 Experiments using an evaluation set

Cross validation has been used to determine the
average performance of NB for Arabic text
categorization, and to design training sets that
produce the best performance. This experiment,
based on a separately and independently constructed
evaluation set, is designed to evaluate the
performance of NB on a set of documents that have
never been submitted to the classifier. For this
purpose, we further carefully collected manually 10
documents from Aljazeera.net for each of the 5
predefined categories. For each category, we have
selected documents that best represent the
variability in the category. We refer to this
collection of documents as the evaluation set. This
set is presented to the classifier for categorization.

For testing on the evaluation set, trained NB
classifiers are used. For each category, we use the
NB classifier that has been trained using the training
set that produced the best category classification
accuracy in cross validation experiments. In our
case, we have used the whole set as a training set
(1,500) represented by 2,000 terms since the best
cross validation accuracy was obtained in leave-
one-out experiment with 2,000 terms. Table 7
summarizes NB’s performance results when tested
using the evaluation set. The results obtained have
shown higher performance for the Sports and the
Business categories with a classification accuracy
that is higher than 70%. The performance of other
categories ranges from 40% to 60%. The average
accuracy over all categories is 62%.

The results obtained in the evaluation set
experiment are very consistent with the

performance obtained in cross validation
experiments.

6 Conclusions

To sum up, this work has been carried out to
automatically classify Arabic documents using the
NB algorithm, with the use of a different data set, a
different number of categories, and a different root
extraction algorithm from those used in (Yahyaoui,
2001). In this work, the average accuracy over all
categories is: 68.78% in cross validation and 62% in
evaluation set experiments. The corresponding
performances in (Yahyaoui, 2001) are 75.6% and
50%, respectively. Thus, the overall performance
(including cross validation and evaluation set
experiments) in this work is comparable to that in
(Yahyaoui, 2001). This offers some indication that
the performance of NB algorithm in classifying
Arabic documents is not sensitive to the Arabic root
extraction algorithm. Future work will be directed at
experimenting with other root extraction algorithms.
Further improvement of NB’s performance may be
effected by using unlabeled documents; e.g., EM
has been used successfully for this purpose in
(Nigam et al., 200), where EM has increased the
classification accuracy by 30% for classifying
English documents. Two (English) document
categorization algorithms have been reported to
produce best results: Support Vector Machines
(SVM) and AdaBoost. If the similarity between
NB’s performance for English and Arabic is any
indication, SVM and AdaBoost should be the next
candidates for application to Arabic Document
categorization.

57

References

R. Al-Shalabi, and M. Evens, "A computational
morphology system for Arabic,” In Workshop on
Computational Approaches to Semitic Languages,
COLING-ACL98, 1998.

B. Cestink, "Estimating probabilities: A crucial task
in machine learning," Proceedings of the Ninth
European Conference on Artificial Intelligence, pp.
147--149, London, 1990.

K. Crammer and Y. Singer, “A Family of Additive
Online Algorithms for Category Ranking,” JMLR,
v. 3, pp. 1025-1058, Feb. 2003.

R. H. Creecy, B. M. Masand, S. J. Smith, and D. L.
Waltz, “Trading mips and memory for knowledge
engineering,” Communication of the ACM, Vol. 35,
No. 8, pp. 48--64, August 1992.

M. El Kourdi, T. Rachidi, and A. Bensaid, "A
concatenative approach to Arabic word root
extraction," in progress, 2004.

Y.C. Fang, S. Parthasarathy and F. Schwartz,
"Using clustering to boost text classification,"
ICDM Workshop on Text Mining (TextDM'01),
2001.

Y. Houmame, Towards an Arabic Information
Retrieval System, MS thesis, AlAkhawayn
University, Morocco, 1999.

T. Joachims, Learning to classify text using SVM,
Kluwer Academic Publishers, 2002.

K. Lang, "Newsweeder: Learning to filter netnews,"
Proceedings of the Twelfth International
Conference on Machine Learning, 1995.

D. Lewis, M. Ringnette, "Comparison of two
learning algorithms for text categorization,"
Proceedings of the Third Annual Symposium on
Document Analysis and Information Retrieval
(SDAIR'94), 1994.

D. Lewis, Yiming Yang, Tony G. Rose, Fan Li, “A
New Benchmark Collection for Text Categorization
Research,” JMLR, v. 5, pp. 361-397, Apr. 2004.

T. Mitchell. Machine learning. McGraw Hill, 1997.

K. Nigam, A. K. McCallum, S. Thrun, and
T.Mitchell, "Text classification from labeled and
unlabeled documents using EM," Machine
Learning, vol. 39, pp. 103--134, 2000.

T. Rachidi, O. Iraqi, M. Bouzoubaa, A. Ben Al
Khattab, M. El Kourdi, A. Zahi, and A. Bensaid,

“Barq: distributed multilingual Internet search
engine with focus on Arabic language,”
Proceedings of IEEE Conf. on Sys., Man and
Cyber., Washington DC, October 5-8, pp. , 2003.

M. Rogati and Y. Yang. “High-performing feature
selection for text classification,” ACM CIKM 2002.

Sakhr software company's website:
www.sakhrsoft.com, 2004.

G. Salton and C. S. Yang, "On the specification of
term values in automatic indexing", Journal of
Documentation, Vol. 29, No. 4, pp. 351--372, 1973.

F. Sebastiani, “Machine learning in automated text
categorization,” ACM Computing Surveys, v.34 n.1,
p.1-47, March 2002.

K. Tzeras and S. Hartman, "Automatic indexing
based on Bayesian inference networks," Proc 16th
Ann Int ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR'93),
pp. 22--34, 1993.

(Wiene and Pedersen, 1995) E. Wiener, J. O.
Pedersen, and A. S. Zeigend, "A neural network
approach to topic spotting," Proceedings of the
Fourth Symposium on Document Analysis and
Information Retrieval (SDAIR'95), 1995.

M. Yahyaoui, "Toward an Arabic web page
classifier," Master project. AUI. 2001.

Y. Yang, “An evaluation of statistical approaches to
text categorization,” Journal of Information
Retrieval, Vol. 1, Number 1-2, pp. 69--90, 1999.

Y. Yang and X. Liu, “A re-examination of text
categorization methods,” Proceedings of ACM
SIGIR Conference on Research and Development in
Information Retrieval (SIGIR'99), pp 42--49, 1999.

R. B. Yates, and B. R. Neto, Modern information
retrieval. Addison-Wesley ISBN 0-201-39829-X,
1999.

Yang, Y., Pedersen J.P. A Comparative Study on
Feature Selection in Text Categorization
Proceedings of the 14th International Conference
on Machine Learning, pp. 412-420, 1997.

58

A Transcription Scheme for Languages Employing the Arabic Script
Motivated by Speech Processing Application

Shadi GANJAVI
*Department of Linguistics

University of Southern California
ganajvi@usc.edu

Panayiotis G. GEORGIOU,
Shrikanth NARAYANAN*

Department of Electrical Engineering
Speech Analysis & Interpretation

Laboratory (sail.usc.edu)
[georgiou, shri]@sipi.usc.edu

Abstract

This paper offers a transcription system for
Persian, the target language in the Transonics
project, a speech-to-speech translation system
developed as a part of the DARPA Babylon
program (The DARPA Babylon Program;
Narayanan, 2003). In this paper, we discuss
transcription systems needed for automated
spoken language processing applications in
Persian that uses the Arabic script for writing.
This system can easily be modified for Arabic,
Dari, Urdu and any other language that uses
the Arabic script. The proposed system has
two components. One is a phonemic based
transcription of sounds for acoustic modelling
in Automatic Speech Recognizers and for Text
to Speech synthesizer, using ASCII based
symbols, rather than International Phonetic
Alphabet symbols. The other is a hybrid
system that provides a minimally-ambiguous
lexical representation that explicitly includes
vocalic information; such a representation is
needed for language modelling, text to speech
synthesis and machine translation.

1 Introduction

Speech-to-speech (S2S) translation systems
present many challenges, not only due to the
complex nature of the individual technologies
involved, but also due to the intricate interaction
that these technologies have to achieve. A great
challenge for the specific S2S translation system
involving Persian and English would arise from
not only the linguistics differences between the
two languages but also from the limited amount of
data available for Persian. The other major hurdle
in achieving a S2S system involving these
languages is the Persian writing system, which is
based on the Arabic script, and hence lacks the
explicit inclusion of vowel sounds, resulting in a
very large amount of one-to-many mappings from
transcription to acoustic and semantic
representations.

In order to achieve our goal, the system that was
designed comprised of the following components:

 Fig 1. Block diagram of the system. Note that the communication server allows interaction between all
subsystems and the broadcast of messages. Our vision is that only the doctor will have access to the GUI and

the patient will only be given a phone handset.

59

(1) a visual and control Graphical User Interface
(GUI); (2) an Automatic Speech Recognition
(ASR) subsystem, which works both using Fixed
State Grammars (FSG) and Language Models
(LM), producing n-best lists/lattices along with the
decoding confidence scores; (3) a Dialog Manager
(DM), which receives the output of the speech
recognition and machine translation units and
subsequently “re-scores'' the data according to the
history of the conversation; (4) a Machine
Translation (MT) unit, which works in two modes:
Classifier based MT and a fully Stochastic MT;
and finally (5) a unit selection based Text To
Speech synthesizer (TTS), which provides the
spoken output. A functional block diagram is
shown in Figure 1.

1.1 The Language Under Investigation:
Persian

Persian is an Indo-European language with a
writing system based on the Arabic script.
Languages that use this script have posed a
problem for automated language processing such
as speech recognition and translation systems. For
instance, the CSLU Labeling Guide (Lander,
http://cslu.cse.ogi.edu/corpora/corpPublications.ht
ml) offers orthographic and phonetic transcription
systems for a wide variety of languages, from
German to Spanish with a Latin-based writing
system to languages like Mandarin and Cantonese,
which use Chinese characters for writing.
However, there seems to be no standard
transcription system for languages like Arabic,
Persian, Dari, Urdu and many others, which use
the Arabic script (ibid; Kaye, 1876; Kachru, 1987,
among others).

Because Persian and Arabic are different,
Persian has modified the writing system and
augmented it in order to accommodate the
differences. For instance, four letters were added
to the original system in order to capture the
sounds available in Persian that Arabic does not
have. Also, there are a number of homophonic
letters in the Persian writing system, i.e., the same
sound corresponding to different orthographic
representations. This problem is unique to Persian,
since in Arabic different orthographic
representations represent different sounds. The
other problem that is common in all languages
using the Arabic script is the existance of a large
number of homographic words, i.e., orthographic
representations that have a similar form but
different pronunciation. This problem arises due
to limited vowel presentation in this writing
system.

Examples of the homophones and homographs
are represented in Table 1. The words “six” and
“lung” are examples of homographs, where the
identical (transliterated Arabic) orthographic
representations (Column 3) correspond to different
pronunciations [SeS] and [SoS] respectively
(Column 4). The words “hundred” and “dam” are
examples of homophones, where the two words
have similar pronunciation [sad] (Column 4),
despite their different spellings (Column 3).

 Persian USCPers USCPron USCPers+

‘six’ ���
 SS SeS SeS

‘lung’ ���
 SS SoS SoS

‘100’ ��� $d sad $ad

‘dam’ ��� sd sad sad

Table 1 Examples of the transcription methods
and their limitation. Purely orthographic

transcription schemes (such as USCPers) fail to
distinctly represent homographs while purely

phonetic ones (such as USCPron) fail to distinctly
represent the homophones.

The former is the sample of the cases in which
there is a many-to-one mapping between
orthography and pronunciation, a direct result of
the basic characteristic of the Arabic script, viz.,
little to no representation of the vowels.

As is evident by the data presented in this table,
there are two major sources of problems for any
speech-to-speech machine translation. In other
words, to employ a system with a direct 1-1
mapping between Arabic orthography and a Latin
based transcription system (what we refer to as
USCPers in our paper) would be highly ambiguous
and insufficient to capture distinct words as
required by our speech-to-speech translation
system, thus resulting in ambiguity at the text-to-
speech output level, and internal confusion in the
language modelling and machine translation units.
The latter, on the other hand, is a representative of
the cases in which the same sequence of sounds
would correspond to more than one orthographic
representation. Therefore, using a pure phonetic
transcription, e.g., USCPron, would be acceptable
for the Automatic Speech Recognizer (ASR), but
not for the Dialog Manager (DM) or the Machine
Translator (MT). The goal of this paper is twofold
(i) to provide an ASCII based phonemic
transcription system similar to the one used in the
International Phonetic Alphabet (IPA), in line of
Worldbet (Hieronymus,
http://cslu.cse.ogi.edu/corpora/corpPublications.ht
ml) and (ii) to argue for an ASCII based hybrid

60

transcription scheme, which provides an easy way
to transcribe data in languages that use the Arabic
script.

We will proceed in Section 2 to provide the
USCPron ASCII based phonemic transcription
system that is similar to the one used by the
International Phonetic Alphabet (IPA), in line of
Worldbet (ibid). In Section 3, we will present the
USCPers orthographic scheme, which has a one-
to-one mapping to the Arabic script. In Section 4
we will present and analyze USCPers+, a hybrid
system that keeps the orthographic information,
while providing the vowels. Section 5 discusses
some further issues regarding the lack of data.

2 Phonetic Labels (USCPron)

One of the requirements of an ASR system is a
phonetic transcription scheme to represent the
pronunciation patterns for the acoustic models.
Persian has a total of 29 sounds in its inventory, six
vowels (Section 2.1) and 23 consonants (Section
2.2). The system that we created to capture these
sounds is a modified version of the International
Phonetic Alphabet (IPA), called
USCPron(unciation). In USCPron, just like the
IPA, there is a one-to-one correspondence between
the sounds and the symbols representing them.
However, this system, unlike IPA does not require
special fonts and makes use of ASCII characters.
The advantage that our system has over other
systems that use two characters to represent a
single sound is that following IPA, our system
avoids all ambiguities.

2.1 Vowels

Persian has a six-vowel system, high to low and
front and back. These vowels are: [i, e, a, u, o, A],
as are exemplified by the italicized vowels in the
following English examples: ‘beat’, ‘bet’, ‘bat’,
‘pull’, ‘poll’ and ‘pot’. The high and mid vowels
are represented by the IPA symbols. The low front
vowel is represented as [a], while the low back
vowel is represented as [A]. There are no
diphthongs in Persian, nor is there a tense/lax
distinction among the vowels (Windfuhr, Gernot
L.1987).

 Front Back

High i u

Mid e o

Low a A

Table 2: Vowels

2.2 Consonants

In addition to the six vowels, there are 23
distinct consonantal sounds in Persian. Voicing is
phonemic in Persian, giving rise to a quite
symmetric system. These consonants are
represented in Table 3 based on the place (bilabial
(BL), lab-dental (LD), dental (DE), alveopalatal
(AP), velar (VL), uvular (UV) and glottal (GT))
and manner of articulation (stops (ST), fricatives
(FR), affricates (AF), liquids (LQ), nasals (NS)
and glides (GL)) and their voicing ([-v(oice)] and
[+v(oice)].

 BL LD DE AP VL UV GT

ST [-v] p t k ?

 [+v] b d g q

FR [-v] f s S x h

 [+v] v z Z

AF [-v] C

 [+v] J

LQ l, r

NS m n

GL y

Table 3: Consonants

Many of these sounds are similar to English
sounds. For instance, the stops, [p, b, t, d, k, g] are
similar to the italicized letters in the following
English words: ‘potato’, ‘ball’, ‘tree’, ‘doll’, ‘key’
and ‘dog’ respectively. The glottal stop [?] can be
found in some pronunciations of ‘button’, and the
sound in between the two syllables of ‘uh oh’. The
uvular stop [q] does not have a correspondent in
English. Nor does the velar fricative [x]. But the
rest of the fricatives [f, v, s, z, S, Z, h] have a
corresponding sound in English, as demonstrated
by the following examples ‘fine’, ‘value’, ‘sand’,
‘zero’, ‘shore’, ‘pleasure’ and ‘hello’. The
affricates [C] and [J] are like their English
counterparts in the following examples: ‘church’
and ‘judge’. The same is true of the nasals [m, n]
as in ‘make’ and ‘no’; liquids [r, l], as in ‘rain’ and
‘long’ and the glide [y], as in ‘yesterday’. (The
only distinction between Persian and English is
that in Persian [t, d, s, z, l, r, n] are dental sounds,
while in English they are alveolar.) As is evident,
whenever possible, the symbols used are those of
the International Phonetic Alphabet (IPA).

However, as mentioned before because IPA
requires special fonts, which are not readily
available for a few of the sounds, we have used an
ASCII symbol that resembled the relevant IPA

61

symbol. The only difference between our symbols
and the ones used by IPA are in voiceless and
voiced alveopalatal fricatives [S] and [Z], the
voiceless and voiced affricates [C] and [J], and the
palatal glide [y]. In the case of the latter, we did
not want to use the lower case ‘j’, in order to
decrease confusion.

3 Orthographic Labels (USCPers)

We proceed in this section to present an
alternative orthographic system for Persian, as a
first step in the creation of the USCPers+ system
that will be presented later. The Persian writing
system is a consonantal system with 32 letters in
its alphabet (Windfuhr, 1987). All but four of
these letters are direct borrowing from the Arabic
writing system. It is important to note that this
borrowing was not a total borrowing, i.e., many
letters were borrowed without their corresponding
sound. This has resulted in having many letters
with the same sound (homophones). However,
before discussing these cases, let us consider the
cases in which there is no homophony, i.e., the
cases in which a single letter of the alphabet is
represented by a single sound.

In order to assign a symbol to each letter of the
alphabet, the corresponding letter representing the
sound of that letter was chosen. So, for instance
for the letter ‘ � ’, which is represented as [p] in
USCPron, the letter ‘p’ was used in USCPers(ian).

These letters are:

ST FR AF LQ NS � p � f � C � r � m � b � S � J 	 l
 n �
 d � Z

 k � x �
 g �
 ?

Table 4: USCPers(ian) Symbols:
Non-Homophonic Consonants

As mentioned above, this partial borrowing of the
Arabic writing system has given rise to many
homophonic letters. In fact, thirteen letters of the
alphabet are represented by only five sounds.
These sounds and the corresponding letters are
presented below:

• [t] for ‘ � ’ and ‘� ’;
• [q] for ‘ � ’ and ‘ � ’;
• [h] for ‘ � ’ and ‘ � ’;
• [s] for ‘ � ’, ‘ � ’ and ‘ � ’ and
• [z] for ‘ � ’, ‘ � ’, ‘ � ’, and ‘� ’.

In these cases, several strategies were used. If
there were two letters with the same sound, the
lower case and the upper case letters were used, as
in table 5. In all these cases, the lower case letter
is assigned to the most widely used letter and the
upper case, for the other.

[t] � t � T

[q] q ! Q

[h] " h # H

Table 5 USCPers(ian) Symbols:
Homophonic Consonants 1

In the case of the letters represented as [s] and
[z] in USCPron, because the corresponding upper
case letters were already assigned, other symbols
were chosen. For the letters sounding [s], ‘s’, ‘$’
and ‘&’ and for the letters sounding [z], ‘z’, ‘2’,
‘7’ and ‘#’.

[s] $ s % $ & &

[z] ' z (2) 7 * #

Table 6 USCPers(ian) Symbols:
Homophonic Consonants 2

These letters are not the only ambiguous letters
in Persian. The letters ‘ + ’ and ‘ , ’ can be used as a
consonant as well as a vowel, [y] and [i] in the
case of the former and [v], [o] and [u] in the case
of the latter. However, in USCPers, the symbols
‘y’ and ‘v’ were assigned to them, leaving the
pronunciation differences for USCPron to capture.
For instance, the word for ‘you’ is written as ‘tv’ in
USCPers, but pronounced as [to], and the word
‘but’ is written as ‘vly’ and pronounced as [vali].

As is the characteristics of languages employing
the Arabic script, for the most part the vowels are
not represented and Persian is no exception. The
only letter in the alphabet that represents a vowel is
the letter ‘alef’. This letter has different
appearances depending on where it appears in a
word. In the word initial position, it appears as ‘ - ’,
elsewhere it is represented as ‘ . ’. Because the
dominant sound that this letter represents is the
sound [A], the letter ‘A’ was assigned to represent
‘ . ’, which has a wider distribution; ‘V’ was
assigned for the more restricted version ‘ - ’. In
Persian, like in Arabic, diacritics mark the vowels,
although they are not used in writing, unless to
avoid ambiguities. Therefore, in our system, we
ignored the diacritics.

62

Borrowed
Letters

USCPers
Symbol

USC-
Pron

�
@ an

�
 * a

� Y e

� ^ no sound
�
 W o

Table 7 Non-Persian Letters

Finally in creating the one-to-one mapping
between the Persian alphabet and USCPers, we
need to deal with the issue of “pure Arabic” letters
that appear in a handful of words. We see the
same situation in the borrowed words in English,
for instance the italicized letters in cañon or naïve,
are not among the letters of the English alphabet,
but they appear in some words used in English. In
order to ensure a one-to-one representation
between the orthography and USCPers, these
letters were each assigned a symbol, as presented
on Table7.

USCPers, therefore, provides us with a way to
capture each letter of the alphabet with one and
only one ASCII symbol, creating a comparable
system to USCPron for the orthography.

4 USCPers/USCPron: Two Way Ambiguity

As was noted in the previous section, vowels are
not usually represented in orthography and there
are many homophonic letters. These two
properties can give rise to two sources of
ambiguity in Persian which can pose a problem for
speech-to-speech machine translation: (i) in which
two distinct words have the same pronunciation
(homophones), like ‘pair’ and ‘pear’ in English
and the Persian words like ‘sd’ and ‘$d’, which are
both pronounced as [sad] and (ii) in which one
orthographic representation can have more than
one pronunciation (homographs) similar to the
distinction between the two English words convict
(n) and convict (v), which are both spelled c-o-n-v-
i-c-t, but different stress assignments create
different pronunciations. It is important to note
that English has a handful of such homographic
pairs, while in Persian homographs are very
common, contributing to much ambiguity. In this
section, we will discuss the transcription system
we have adopted in order to eliminate these
ambiguities.

4.1 Homophones

The examples in Table 8 illustrate the case in (i)
(the letters with the same sounds are underlined).
As is evident by the last column in Table 8, in each
case, the two words have similar pronunciation,
but different spellings.

Gloss USCPers USCPron
‘hundred’ $d [sad]
‘dam’ sd [sad]

‘life’ HyAt [hayAt]
‘backyard’ HyAT [hayAt]

‘Eve’ HvA [havA]
‘air’ hvA [havA]

Table 8: Same Pronunciation, Different
Spellings

The word for ‘life’ ends in ‘t’, while the word
for ‘backyard’ ends in ‘T’. In the other examples,
because there is no difference in the pronunciation
of ‘h’/‘H’ and ‘s’/‘$’, we get ambiguity between
‘Eve’/‘air’ and ‘hundred’/‘dam’. Therefore, this
type of ambiguity appears only in speech.

4.2 Homographs

The second case of ambiguity is illustrated by
the examples in the following table:

Gloss USCPers USCPron
‘lung’ SS [SoS]
‘six’ SS [SeS]

‘thick’ klft [koloft]
‘maid’ klft [kolfat]

‘Cut!’ bbr [bebor]
‘tiger’ bbr [babr]

Table 9: Same Spelling, Different
Pronunciations

Here, we see that in the middle column two
words that have the same orthographic
representation correspond to different
pronunciations (Column 3), marking different
meanings, as is indicated by the gloss. This type
of ambiguity arises only in writing and not speech.

4.3 Solution: USCPers+

Because of the ambiguity presented by the lack
of vowels the data transcribed in USCPers cannot
be used either by MT or for language modeling in
ASRs, without significant loss of information. In
order to circumvent this problem, we adopted a

63

modified version of USCPers. In this new version,
we have added the missing vowels, which would
help to disambiguate. (Because this new version is
USCPers + vowels, it is called USCPers+.) In
other words, USCPers+ provides both the
orthographic information as well as some
phonological information, giving rise to unique
words. Let us reconsider the examples we saw
above using this new transcription system. A
modified version of Table 8 is presented in Table
10.

Gloss USCPers USCPers+ USCPron

‘hundred’ $d $ad [sad]

‘dam’ sd sad [sad]

‘life’ HyAt HayAt [hayAt]

‘backyard’ HyAT HayAT [hayAt]

‘Eve’ HvA HavA [havA]

‘air’ hvA havA [havA]

Table 10: USPers+ Disambiguates Cases with
Same Pronunciation & Different Spellings

Table 11 is the modified version of Table 9:

Gloss

USCPers USCPers+ USCPron

‘lung’ SS SoS [SoS]
‘six’ SS SeS [SeS]

‘thick’ klft koloft [koloft]
‘maid’ klft kolfat [kolfat]

‘Cut!’ bbr bebor [bebor]
‘tiger’ bbr babr [babr]

Table 11: USCPers+ Disambiguates Cases with
Same Spelling & Different Pronunciations

Data in Column 4 and Column 2 of Tables 10
and 11, respectively, show that USCPron and
USCPers can give rise to ambiguity, while no
ambiguity exists in USCPers+, Column 3.

The following sentence also illustrates this point,

where the words ‘thick’ and ‘maid’ from Table 11
are used. Assume that ASR receives the audio
input in (1) represented in USCPron:

(1) USCPron: [in koloft ast]

 Gloss: this thick is
 Translation: ‘This is thick’

If ASR outputs USCPers, as in (2),

 (2) USCPers: Ayn klft Ast

the MT output in the English language can choose
either:

 (3) a. This is thick

 b. This is a maid

as a possible translation. However, using
USCPers+ instead of USCPers would avoid this
ambiguity:

 (4) USCPers+: Ayn koloft Ast (cf. (2))
As evident, there is a significant benefit by using
USCPers+.

The discussion of the conventions that have been

adopted in the use of USCPers+ and USCPron,
e.g., not including punctuations or spelling out
numbers, is beyond the scope of this paper.
However, it is important to note that by adopting a
reasonable number of conventions in our
transcription of USCPers+ and USCPron, we have
been able to provide a complete transcription
convention for acoustic models and language
models for the ASRs, TTSs and MTs for our
English to Persian translation system.

5 Further Issue: Dealing with the Lack of
Data

Despite the significant advantages of employing
the USCPers+ transcription scheme, a drawback is
the lack of data in this format. To address this
shortcoming, semi-automated techniques of data
conversion have been developed that take into
consideration the statistical structure of the
language. Fig. 2 depicts a network that can be
inferred from a relatively small amount of humanly
transliterated data. By employing statistical
decoding techniques through such a model, the
most likely USCPers+ sequence can be generated
using minimal human intervention.

Consider for example the sentence ‘SS mn drd

myknd’ and the network structure shown above. It
is likely that the combination ‘man dard’ and ‘dard
mykonad’ have been seen in the manually
generated data, and thus the decoder is likely to
chose the path ‘man dard mykonad’ as the correct
transliteration.

Manual decision can be made in the cases that

the system reaches a statistical ambiguity (usually
in cases such as ‘Ayn klft Ast’) or that insufficient
training data exist for the specific region of
decoding.

64

Fig 2. The possible transitions between words are

probabilistically denoted in a language model, which
can be employed for decoding of the most likely path,

given several possibilities. Shown above are the
possibilities for the decoding of the utterance “SS mn

drd myknd”.

The first ambiguity is rare, and usually involves
short segments of text. Thus as the models
improve, and we move to higher orders of
decoding, the statistical ambiguity becomes less
significant. Similarly, the unknown words keep
decreasing as new converted data feeds back into
the training corpus.

In our experiments, as the amount of training
data grew from about 16k to 22k words, the
precision in transliteration increased from 98.85%
to 99.2%, while at the same time the amount of
manual intervention was reduced from 39.6% to
22%. It should be noted that by changing the
decision thresholds the intervention can fall
significantly lower, to 9.4% with a training corpus
of 22k words, but this has the effect of a lower
precision in the order of 98.8%.
An indepth discussion of the techniques employed
for the transliteration process is presented in
Georgiou, et.al (2004).

6 Conclusion

This paper argues that the best way to represent
data at phonological/lexical level for language
modeling and MT in languages that employ the
Arabic script, is by using a hybrid system, which
combines information provided by orthography
and includes the vowels that are not represented in
orthography. The schemes proposed can
significantly aid in speech-to-speech applications
in a multitude of different ways: (1) the internal
pronunciations of the ASR and the TTS
components can employ the USCPron scheme, (2)
the internal transcription of the Persian language—
for purposes of language modeling and statistical
machine translation among others—can employ

the USCPers+ scheme and (3) in the case of a
stand-alone TTS, in which case the input is pure
Persian text, automated transliteration to the
USCPers+ scheme, and hence to the pronunciation,
can be generated with statistical language
augmentation techniques, which are based on prior
model training, as we describe further in Georgiou,
2004.

This would ensure a uniqueness that otherwise
is not available. It has also been suggested in this
paper that a modification of IPA, which would
allow the use of ASCII characters, is a more
convenient way to capture data for acoustic
modeling and TTS. Persian data resources
developed under the DARPA Babylon program
have adopted the conventions described in this
paper.

7 Acknowledgements

This work was supported by the DARPA Babylon
program, contract N66001-02-C-6023. We would
like to thank the following individuals for their
comments and suggestion: Naveen
Srinivasamurthy and HS, MK and SS for working
with the first versions of this system and making
insightful suggestions.

8 References

The DARPA Babylon program,” http://darpa-
babylon.mitre.org.

P. Georgiou, H. Shiranimehr and S. Narayanan
(2004). Context Dependent Statistical
Augmentation of Persian Transcripts for use in
Speech to Speech Translation Applications.
INTERSPEECH 2004-International Conference
on Spoken Language Processing.

J.L. Hieronymus, ASCII Phonetic Symbols for the
World’s Languages: Worldbet, AT&T Bell Labs,
http://cslu.cse.ogi.edu/corpora/corpPublications.
html

Y. Kachru. 1987. “Hindi-Urdu,” The World’s
Major Languages, ed. Bernard Comrie, Oxford
University Press.

A.S. Kaye. 1987. “Arabic,” The World’s Major
Languages, ed. Bernard Comrie, Oxford
University Press.

T. Lander, The CSLU Labeling Guide, OGI,
http://cslu.cse.ogi.edu/corpora/corpPublications.
html

S. Naraynan, et. al. 2003. Transonics: A speech to
speech system for English-Persian interactions.

G.L. Windfuhr. (1987). “Persian,” The World’s
Major Languages, ed. Bernard Comrie, Oxford
University Press.

65

Automatic diacritization of Arabic for Acoustic Modeling in
Speech Recognition

Dimitra Vergyri
Speech Technology and Research Lab.,

SRI International,
Menlo Park, CA 94025, USA

dverg@speech.sri.com

Katrin Kirchhoff
Department of Electrical Engineering,

University of Washington,
Seattle, WA 98195, USA
katrin@ee.washington.edu

Abstract

Automatic recognition of Arabic dialectal speech is
a challenging task because Arabic dialects are es-
sentially spoken varieties. Only few dialectal re-
sources are available to date; moreover, most avail-
able acoustic data collections are transcribed with-
out diacritics. Such a transcription omits essen-
tial pronunciation information about a word, such
as short vowels. In this paper we investigate var-
ious procedures that enable us to use such train-
ing data by automatically inserting the missing dia-
critics into the transcription. These procedures use
acoustic information in combination with different
levels of morphological and contextual constraints.
We evaluate their performance against manually dia-
critized transcriptions. In addition, we demonstrate
the effect of their accuracy on the recognition perfor-
mance of acoustic models trained on automatically
diacritized training data.

1 Introduction

Large-vocabulary automatic speech recognition
(ASR) for conversational Arabic poses several
challenges for the speech research community.
The most difficult problems in developing highly
accurate speech recognition systems for Arabic
are the predominance of non-diacritized text
material, the enormous dialectal variety, and
the morphological complexity.

Most available acoustic training material for
Arabic ASR is transcribed in the Arabic script
form, which does not include short vowels and
other diacritics that reflect differences in pro-
nunciation, such as the shadda, tanween, etc. In
particular, almost all additional text data that
can easily be obtained (e.g. broadcast news cor-
pora) is represented in standard script form. To
our knowledge, the only available corpus that
does include detailed phonetic information is
the CallHome (CH) Egyptian Colloquial Ara-
bic (ECA) corpus distributed by the Linguis-
tic Data Consortium (LDC). This corpus has
been transcribed in both the script form and

a so-called romanized form, which is an ASCII
representation that includes short vowels and
other diacritic information and thus has com-
plete pronunciation information. It is quite
challenging to create such a transcription: na-
tive speakers of Arabic are not used to writing
their language in a ”romanized” form, or even in
fully diacritized script form. Consequently, this
task is considered almost as difficult as phonetic
transcription. Transcribing a sufficiently large
amount of training data in this way is there-
fore labor-intensive and costly since it involves
(re)-training native speakers for this purpose.

The constraint of having mostly non-
diacritized texts as recognizer training material
leads to problems for both acoustic and lan-
guage modeling. First, it is difficult to train
accurate acoustic models for short vowels if
their identity and location in the signal is not
known. Second, the absence of diacritics leads
to a larger set of linguistic contexts for a given
word form; language models trained on non-
diacritized material may therefore be less pre-
dictive than those trained on diacritized texts.
Both of these factors may lead to a loss in
recognition accuracy. Previous work (Kirchhoff
et al., 2002; Lamel, 2003) has shown that ig-
noring available vowel information does indeed
lead to a significant increase in both language
model perplexity and word error rate. There-
fore, we are interested in automatically deriv-
ing a diacritized transcription from the Arabic
script representation when a manual diacritiza-
tion is not available. Some software companies
(Sakhr, Apptek, RDI) have developed commer-
cial products for the automatic diacritization of
Arabic. However, these products use only text-
based information, such as the syntactic context
and possible morphological analyses of words, to
predict diacritics. In the context of diacritiza-
tion for speech recognition, by contrast, acous-
tic data is available that can be used as an ad-
ditional knowledge source. Moreover, commer-

66

cial products concentrate exclusively on Modern
Standard Arabic (MSA), whereas a common ob-
jective of Arabic ASR is conversational speech
recognition, which is usually dialectal. For this
reason, a more flexible set of tools is required
in order to diacritize dialectal Arabic prior to
speech recognizer training.

In this work we investigate the relative ben-
efits of a variety of knowledge sources (acous-
tic, morphological, and contextual) to automat-
ically diacritize MSA transcriptions. We eval-
uate the different approaches in two different
ways: (a) by comparing the automatic output
against a manual reference diacritization and
computing the diacritization error rate, and (b)
by using automatically diacritized training data
in a cross-dialectal speech recognition applica-
tion.

The remainder of this paper is structured as
follows: Section 2 gives a detailed description of
the motivation as well as prior work. Section 3
describes the corpora used for the experiments
reported in this paper. The automatic diacriti-
zation procedures and results are explained in
Section 4. The speech recognition experiments
and results are reported in Section 5. Section 6
presents our conclusions.

2 Motivation and Prior Work

We first describe the Arabic writing system
and its inherent problems for speech recognizer
training, and then discuss previous attempts at
automatic diacritization.

2.1 The Arabic Writing System
The Arabic alphabet consists of twenty-eight
letters, twenty-five of which represent conso-
nants and three of which represent the long
vowels (/i:/,/a:/,/u:/). A distinguishing fea-
ture of Arabic-script based writing systems is
that short vowels are not represented by the
letters of the alphabet. Instead, they are
marked by so-called diacritics, short strokes
placed either above or below the preceding con-
sonant. Several other pronunciation phenom-
ena are marked by diacritics, such as consonant
doubling (phonemic in Arabic), which is indi-
cated by the “shadda” sign, and the “tanween”,
i.e. word-final adverbial markers that add /n/ to
the pronunciation of the word. These diacritics
are listed in Table 1. Arabic texts are almost
never fully diacritized; normally, diacritics are
used sparingly and only to prevent misunder-
standings. Exceptions are important religious
and/or political texts or beginners’ texts for

MSA Symbol Name Meaning�
@ fatHa /a/

@� kasra /i/
�
@ Damma /u/
�P shadda consonant doubling

� �PX sukuun vowel absence
�
@ tanween al-fatHa /an/

@� tanween al-kasr /in/
�
@ tanween aD-Damm /un/

Table 1: Arabic diacritics

students of Arabic. The lack of diacritics may
lead to considerable lexical ambiguity that must
be resolved by contextual information, which
in turn presupposes knowledge of the language.
It was observed in (Debili et al., 2002) that
a non-diacritized dictionary word form has 2.9
possible diacritized forms on average and that
an Arabic text containing 23,000 word forms
showed an average ratio of 1:11.6. The form
I.

�J», for instance, has 21 possible diacritiza-
tions. The correspondence between graphemes
and phonemes is relatively transparent com-
pared to other languages like English or French:
apart from certain special graphemes (e.g. laam
alif), the relationship is one to one. Finally,
it is worth noting that the writing system de-
scribed above is that of MSA. Arabic dialects
are primarily oral varieties in that they do not
have generally agreed-upon writing standards.
Whenever there is the need to write down di-
alectal speech, speakers will try to approximate
the standard system as far as possible and use a
phonetic spelling for non-MSA or foreign words.

The lack of diacritics in standard Arabic texts
makes it difficult to use non-diacritized text for
training since the location and identity of short
vowels and other phonetic segments are un-
known. One possible approach is to use acous-
tic models for long vowels and consonants only,
where the acoustic signal portions correspond-
ing to unwritten segments are implicitly incor-
porated into the acoustic models for consonants
(Billa et al, 2002). However, this leads to less
discriminative acoustic and language models.
Previous work (Kirchhoff et al., 2002; Lamel,
2003) has compared the word error rates of
two CH ECA recognizers: one trained on script
transcriptions and another trained on roman-
ized transcriptions. It was shown that the loss
in information due to training on script forms

67

results in significantly worse performance: a rel-
ative increase in word error rate of almost 10%
was observed.

It seems clear that diacritized data should be
used for training Arabic ASR systems whenever
possible. As explained above, however, it is very
expensive to obtain manually transcribed data
in a diacritized form. Therefore, the corpora
that do include detailed transcriptions are fairly
small and any dialectal data that might become
available in the future will also very likely be
of limited size. By contrast, it is much easier
to collect publicly available data (e.g. broadcast
news data) and to transcribe it in script form.
In order to be able to take advantage of such
resources, we need to restore short vowels and
other missing diacritics in the transcription.

2.2 Prior Work

Various software companies have developed
automatic diacritization products for Arabic.
However, all of these are targeted towards MSA;
to our knowledge, there are no products for di-
alectal Arabic. In a previous study (Kirchhoff
et al., 2002) one of these products was tested
on three different texts, two MSA texts and one
ECA text. It was found that the diacritization
error rate (percentage of missing and wrongly
identified or inserted diacritics) on MSA ranged
between 9% and 28%, depending on whether or
not case vowel endings were counted. However,
on the ECA text, the diacritization software ob-
tained an error rate of 48%.

A fully automatic approach to diacritization
was presented in (Gal, 2002), where an HMM-
based bigram model was used for decoding
diacritized sentences from non-diacritized sen-
tences. The technique was applied to the Quran
and achieved 14% word error (incorrectly dia-
critized words).

A first attempt at developing an automatic
diacritizer for dialectal speech was reported in
(Kirchhoff et al., 2002). The basic approach
was to use a small set of parallel script and dia-
critized data (obtained from the ECA CallHome
corpus) and to derive diacritization rules in an
example-based way. This entirely knowledge-
free approach achieved a 16.6% word error rate.

Other studies (El-Imam, 2003) have ad-
dressed problems of grapheme-to-phoneme con-
version in Arabic, e.g. for the purpose of speech
synthesis, but have assumed that a fully dia-
critized version of the text is already available.

Several knowledge sources are available for

determining the most appropriate diacritization
of a script form: analysis of the morphological
structure of the word (including segmentation
into stems, prefixes, roots and patterns), con-
sideration of the syntactic context in which the
word form appears, and, in the context of speech
recognition, the acoustic data that accompanies
the transcription. Specific dictionary informa-
tion could in principle be added (such as infor-
mation about proper names), but this knowl-
edge source is ignored for the purpose of this
study. All of the approaches described above
make use of text-based information only and do
not attempt to use acoustic information.

3 Data

For the present study we used two different cor-
pora, the FBIS corpus of MSA speech and the
LDC CallHome ECA corpus.

The FBIS corpus is a collection of radio news-
casts from various radio stations in the Ara-
bic speaking world (Cairo, Damascus, Bagh-
dad) totaling approximately 40 hours of speech
(roughly 240K words). The transcription of the
FBIS corpus was done in Arabic script only
and does not contain any diacritic information.
There were a total of 54K different script forms,
with an average of 2.5 different diacritizations
per word.

The CallHome corpus, made available by
LDC, consists of informal telephone conversa-
tions between native speakers (friends and fam-
ily members) of Egyptian Arabic, mostly from
the Cairene dialect region. The corpus con-
sists of about 20 hours of training data (roughly
160K words) and 6 hours of test data. It is tran-
scribed in two different ways: (a) using stan-
dard Arabic script, and (b) using a romaniza-
tion scheme developed at LDC and distributed
with the corpus. The romanized transcription
contains short vowels and phonetic segments
corresponding to other diacritics. It is not en-
tirely equivalent to a diacritized Arabic script
representation since it includes additional in-
formation. For instance, symbols particular to
Egyptian Arabic were used (e.g. ”g” for /g/,
the ECA pronunciation of the MSA letter `),
whereas the script transcriptions contain MSA
letters only. In general, the romanized tran-
scription provides more information about ac-
tual pronunciation and is thus closer to a broad
phonetic transcription.

68

4 Automatic Diacritization

We describe three techniques for the automatic
diacritization of Arabic text data. The first
combines acoustic, morphological and contex-
tual information to predict the correct form, the
second ignores contextual information, and the
third is fully acoustics based. The latter tech-
nique uses no morphological or syntactic con-
straints, and allows for all possible items to be
inserted at every possible position.

4.1 Combination of Acoustic,
Morphological and Contextual
Information

Most Arabic script forms can have a number
of possible morphological interpretations, which
often correspond to different diacritized forms.
Our goal is to combine morphological knowledge
with contextual information in order to identify
possible diacritizations and assign probabilities
to them. Our procedure is as follows:

1. Generate all possible diacritized variants
for each word, along with their morphological
analyses (tags).

2. Train an unsupervised tagger to assign
probabilities to sequences of these morpholog-
ical tags.

3. Use the trained tagger to assign proba-
bilities to all possible diacritizations for a given
utterance.

For the first step we used the Buckwalter
stemmer, which is an Arabic morphological
analysis tool available from the LDC. The stem-
mer produces all possible morphological anal-
yses of a given Arabic script form; as a by-
product it also outputs the concomitant dia-
critized word forms. An example of the output
is shown in Figure 1. The next step was to train
an unsupervised tagger on the output to obtain
tag n-gram probabilities. The number of differ-
ent morphological tags generated by applying
the stemmer to the FBIS text was 763. In or-
der to obtain a smaller tag set and to be able
to estimate probabilities for tag sequences more
robustly, this initial tag needed to be conflated
to a smaller set. We adopted the set used in
the LDC Arabic TreeBank project, which was
also developed based on the Buckwalter mor-
phological analysis scheme. The FBIS tags were
mapped to TreeBank tags using longest com-
mon substring matching; this resulted in 392
tags. Further possible reductions of the tag
set were investigated but it was found that too
much clustering (e.g. of verb subclasses into a

LOOK-UP WORD: ÉJ.
�̄ (qbl)

SOLUTION 1: (qabola) qabola/PREP
(GLOSS): + before +

SOLUTION 2: (qaboli) qaboli/PREP
(GLOSS): + before +

SOLUTION 3: (qabolu) qabolu/ADV
(GLOSS): + before/prior +

SOLUTION 4:(qibal) qibal/NOUN
(GLOSS): + (on the) part of +

SOLUTION 5:(qabila)
qabil/VERB PERFECT+a/PVSUFF SUBJ:3MS
(GLOSS): + accept/receive/approve + he/it <verb>

SOLUTION 6: (qab˜ala)
qab al/VERB PERFECT+a/PVSUFF SUBJ:3MS
(GLOSS): + kiss + he/it <verb>

Figure 1: Sample output of Buckwalter stem-
mer showing the possible diacritizations and
morphological analyses of the script form ÉJ.

�̄

(qbl). Lower-case o stands for sukuun (lack of
vowel).

single verb class) could result in the loss of im-
portant information. For instance, the tense
and voice features of verbs are strong predictors
of the short vowel patterns and should therefore
be preserved in the tagset.

We adopted a standard statistical trigram
tagging model:

P (t0, . . . , tn|w0, . . . , wn) =
n∏
i=0

P (wi|ti)P (ti|ti−1, ti−2) (1)

where t is a tag, w is a word, and n is the to-
tal number of words in the sentence. In this
model, words (i.e. non-diacritized script forms)
and morphological tags are treated as observed
random variables during training. Training is
done in an unsupervised way, i.e. the correct
morphological tag assignment for each word is
not known. Instead, all possible assignments
are initially considered and the Expectation-
Maximization (EM) training procedure itera-
tively trains the probability distributions in the
above model (the probability of word given
tag, P (wi|ti), and the tag sequence probabil-
ity, P (ti|ti−1, ti−2)) until convergence. During
testing, only the word sequence is known and
the best tag assignment is found by maximiz-
ing the probability in Equation 1. We used the
graphical modeling toolkit GMTK (Bilmes and
Zweig, 2002) to train the tagger. The trained
tagger was then used to assign probabilities to
all possible sequences of three successive mor-

69

phological tags and their associated diacritiza-
tions to all utterances in the FBIS corpus.

Using the resulting possible diacritizations
for each utterance we constructed a word-
pronunciation network with the probability
scores assigned by the tagger acting as transi-
tion weights. These word networks were used
as constraining recognition networks with the
acoustic models trained on the CallHome cor-
pus to find the most likely word sequence (a
process called alignment). We performed this
procedure with different weights on the tagger
probabilities to see how much this information
should be weighted compared to the acoustic
scores. Results for weights 1 and 5 are reported
below.

Since the Buckwalter stemmer does not pro-
duce case endings, the word forms obtained
by adding case endings were included as vari-
ants in the pronunciation dictionary used by the
aligner. Additional variants listed in the dictio-
nary are the taa marbuta alternations /a/ and
/at/. In some cases (approximately 1.5% of all
words) the Buckwalter stemmer was not able to
produce an analysis of the word form due to mis-
spellings or novel words. These were mapped to
a generic reject model.

4.2 Combination of Acoustic and
Morphological Constraints

We were interested in separately evaluating the
usefulness of the probabilistic contextual knowl-
edge provided by the tagger, and the morpho-
logical knowledge contributed by the Buckwal-
ter tool. To that end we used the word networks
produced by the method described above but
stripped the tagger probabilities, thus assigning
uniform probability to all diacritized forms pro-
duced by the morphological analyzer. We used
the same acoustic models to find the most likely
alignment from the word networks.

4.3 Using only Acoustic Information
Similarly, we wanted to evaluate the importance
of using morphological information versus only
acoustic information to constrain the possible
diacritizations. This is particularly interesting
since, as new dialectal speech data become avail-
able, the acoustics may be the only informa-
tion source. As explained above, existing mor-
phological analysis tools such as the Buckwalter
stemmer have been developed for MSA only.

For that purpose, we generated word net-
works that include all possible short vowels at
each allowed position in the word and allowed

all possible case endings. This means that af-
ter every consonant there are at least 5 dif-
ferent choices: no vowel (corresponding to the
sukuun diacritic), /i/, /a/, /u/, or consonant
doubling caused by a shadda sign. Combina-
tions of shadda and a short vowel are also pos-
sible. Since we do not use acoustic models for
doubled consonants in our speech recognizer, we
ignore the variants involving shadda and allow
only four possibilities after every word-medial
consonant: the three short vowels or absence of
a vowel. Finally, we include the three tanween
endings in addition to these four possibilities in
word-final position. As before, the taa marbuta
variants are also included.

In this way, many more possible “pronuncia-
tions” are generated for a script form than could
ever occur. The number of possible variants in-
creases exponentially with the number of pos-
sible vowel slots in the word. For instance, for
a longer word with 7 possible positions, more
than 16K diacritized forms are possible, not
even counting the possible word endings. As be-
fore, we use these large pronunciation networks
to constrain our alignment with acoustic models
trained on CallHome data and choose the most
likely path as the output diacritization.

In principle it would also be possible to deter-
mine diacritization performance in the absence
of acoustic information, using only morphologi-
cal and contextual knowledge. This can be done
by selecting the best path from the weighted
word transition networks without rescoring the
network with acoustic models. However, this
would not lead to a valid comparison in our case
because case endings are only represented in the
pronunciation dictionary used by the acoustic
aligner; they are not present in the weighted
transition network and thus cannot be hypoth-
esized unless the acoustic aligner is used.

4.4 Autodiacritization Error Rates

We measured the performance of all three meth-
ods by comparing the output against hand tran-
scribed references on a 500 word subset of the
FBIS corpus. These references were fully dia-
critized script transcriptions created by a na-
tive speaker of Arabic who was trained in or-
thographic transcription but not in phonetic
transcription. The diacritization error rate was
measured as the percentage of wrong diacritiza-
tion decisions out of all possible decisions. In
particular, an error occurs when:
• a vowel is inserted although the reference

70

transcription shows either sukuun or no dia-
critic mark at the corresponding position (in-
sertion).
• no vowel is produced by the automatic pro-

cedure but the reference contains a vowel mark
at the corresponding position (deletion).
• the short vowel inserted does not match the

vowel at the corresponding position (substitu-
tion).
• in the case of tanween and taa marbuta end-

ings, either the required consonants or vowels
are missing or wrongly inserted. Thus, in the
case of a taa marbuwta ending with a following
case vowel /i/, for instance, both the /t/ and
the /i/ need to be present. If either is missing,
one error is assigned; if both are missing, two
errors are assigned.

Results are listed in Table 2. The first column
reports the error rate at the word level, i.e. the
percentage of words that contained at least one
diacritization mistake. The second column lists
the diacritization error computed as explained
above. The first three methods have a very sim-
ilar performance with respect to diacritization
error rate. The use of contextual information
(the tagger probabilities) gives a slight advan-
tage, although the difference is not statistically
significant. Despite these small differences, the
word error rate is the same for all three meth-
ods; this is because a word that contains at least
one mistake is counted as a word error, regard-
less of the total number of mistakes in the word,
which may vary from system to system. Using
only acoustic information doubles the diacriti-
zation error rate and increases the word error
rate to 50%. Errors result mostly from incorrect
insertions of vowels (e.g. X@ �Y 	ª�K. → X@ �Y �	ª�K.). Many
of these insertions may stem from acoustic ef-
fects created by neighbouring consonants, that
give a vowel-like quality to transitions between
consonants. The main benefit of using morpho-
logical knowledge lies in the prevention of such
spurious vowel insertions, since only those inser-
tions are permitted which result in valid words.
Even without the use of morphological infor-
mation, the vast majority of the missing vowels
are still identified correctly. Thus, this method
might be of use when diacritizing a variety of
Arabic for which morphological analysis tools
are not available. Note that the results obtained
here are not directly comparable to any of the
works described in Section 2.2 since we used a
data set with a much larger vocabulary size.

Word Character
Information used level level
acoustic + morphological
+ contextual 27.3 13.24
(tagger prob. weight=5)
acoustic + morphological
+ contextual 27.3 11.54
(tagger prob. weight=1)
acoustic + morphological
(tagger prob. weight=0) 27.3 11.94
acoustic only 50.0 23.08

Table 2: Automatic diacritization error rates
(%).

5 ASR Experiments

Our overall goal is to use large amounts of MSA
acoustic data to enrich training material for a
speech recognizer for conversational Egyptian
Arabic. The ECA recognizer was trained on the
romanized transcription of the CallHome cor-
pus described above and uses short vowel mod-
els. In order to be able to use the phonetically
deficient MSA transcriptions, we first need to
convert them to a diacritized form. In addition
to measuring autodiacritization error rates, as
above, we would like to evaluate the different
diacritization procedures by investigating how
acoustic models trained on the different outputs
affect ASR performance.

One motivation for using cross-dialectal data
is the assumption that infrequent triphones in
the CallHome corpus might have more training
samples in the larger MSA corpus. In (Kirch-
hoff and Vergyri, 2004) we demonstrated that
it is possible to get a small improvement in this
task by combining the scores of models trained
strictly on CallHome (CH) with models trained
on the combined FBIS+CH data, where the
FBIS data was diacritized using the method de-
scribed in Section 4.1. Here we compare that ex-
periment with the experiments where the meth-
ods described in Sections 4.2 and 4.3 were used
for diacritizing the FBIS corpus.

5.1 Baseline System
The baseline system was trained with only
CallHome data (CH-only). For these exper-
iments we used a single front-end (13 mel-
frequency cepstral coefficients with first and
second differences). Mean and variance as
well as Vocal Tract Length (VTL) normaliza-
tion were performed per conversation side for
CH and per speaker cluster (obtained auto-
matically) for FBIS. We trained non-crossword,

71

System dev96 eval03
simple CH-only 56.1 42.7
RT-2003 CH-only 52.6 39.7

Table 3: CH-only baseline WER (%)

continuous-density, genonic hidden Markov
models (HMMs) (Digalakis and Murveit, 1994),
with 128 gaussians per genone and 250 genones.
Recognition was done by SRI’s DECIPHERTM

engine in a multipass approach: in the first
pass, phone-loop adaptation with two Max-
imum Likelihood Linear Regression (MLLR)
transforms was applied. A recognition lexicon
with 18K words and a bigram language model
were used to generate the first pass recogni-
tion hypothesis. In the second pass the acoustic
models were adapted using constrained MLLR
(with 6 transformations) based on the previ-
ous hypothesis. Bigram lattices were generated
and then expanded using a trigram language
model. Finally, N-best lists were generated us-
ing the adapted models and the trigram lattices.
The final best hypothesis was obtained using N-
best ROVER (?). This system is simpler than
our best current recognition system (submitted
for the NIST RT-2003 benchmark evaluations)
(Stolcke et al., 2003) since we used a single front
end (instead of a combination of systems based
on different front ends) and did not include
HLDA, cross-word triphones, MMIE training
or a more complex language model. The lack
of these features resulted in a higher error rate
but our goal here was to explore exclusively the
effect of the additional MSA training data us-
ing different diacritization approaches. Table 3
shows the word error rates of the system used
for these experiments and the full system used
for the NIST RT-03 evaluations. Our full sys-
tem was about 2% absolute worse than the best
system submitted for that task. This shows that
even though the system is simpler we are not
operating far from the state-of-the-art perfor-
mance for this task.

5.2 ASR Systems Using FBIS Data

In order to investigate the effect of additional
MSA training data, we trained a system similar
to the baseline but used training data pooled
from both corpora (CH+FBIS). After perform-
ing alignment of the FBIS data with the net-
works described in Section 4.1, 10% of the data
was discarded since no alignments could be
found. This could be due to segmentation prob-

lems or noise in the acoustic files. The remain-
ing 90% were used for our experiments. In or-
der to account for the fact that we had much
more data, and also more dissimilar data, we
increased the model size to 300 genones.

For training the CH+FBIS acoustic models,
we first used the whole data set with weight
2 for CH utterances and 1 for FBIS utterances.
Models were then MAP adapted on the CH-only
data (Digalakis et al., 1995). Since training in-
volves several EM iterations, we did not want
to keep the diacritization fixed from the first
pass, which used CH-only models. At every it-
eration, we obtain better acoustic models which
can be used to re-align the data. Thus, for the
first two approaches, where the size of the pro-
nunciation networks is limited due to the use
of morphological information, the EM forward-
backward counts were collected using the whole
diacritization network and the best diacritiza-
tion path was allowed to change at every iter-
ation. In the last case, where only acoustic in-
formation was used, the pronunciation networks
were too large to be run efficiently. For this rea-
son, we updated the diacritized references once
during training by realigning the networks with
the newer models after the first training iter-
ation. As reported in (Kirchhoff and Vergyri,
2004) the CH+FBIS trained system by itself did
not improve much over the baseline (we only
found a small improvement on the eval03 test-
set) but it provided sufficiently different infor-
mation, so that ROVER combination (Fiscus,
1997) with the baseline yielded an improvement.
As we can see in Table 4, all diacritization pro-
cedures performed practically the same: there
was no significant difference in the word error
rates obtained after the combination with the
CH-only baseline. This suggests that we may
be able to obtain improvements with automat-
ically diacritized data even when using inaccu-
rate diacritization, produced without the use of
morphological constraints.

6 Conclusions

In this study we have investigated different op-
tions for automatically diacritizing Arabic text
for use in acoustic model training for ASR. A
comparison of the different approaches showed
that more linguistic information (morphology
and syntactic context) in combination with
the acoustics provides lower diacritization er-
ror rates. However, there is no significant dif-
ference among the word error rates of ASR sys-

72

dev96 eval03
System alone Rover with CH-only alone Rover with CH-only
CH-only 56.1 42.7
CH+FBIS1(weight 1) 56.3 55.3 42.2 41.6
CH+FBIS1(weight 5) 56.1 55.2 42.2 41.8
CH+FBIS2 56.2 55.3 42.4 41.6
CH+FBIS3 56.6 55.7 42.1 41.6

Table 4: Word error rates (%) obtained after the final recognition pass and with ROVER combina-
tion with the baseline system. FBIS1, FBIS2 and FBIS3 correspond to the diacritization procedures
described in Sections 4.1, 4.2 and 4.3 respectively. For the first approach we report results using
the tagger probabilities with weights 1 and 5.

tems trained on data resulting from the different
methods. This result suggests that it is pos-
sible to use automatically diacritized training
data for acoustic modeling, even if the data has
a comparatively high diacritization error rate
(23% in our case). Note, however, that one
reason for this may be that the acoustic mod-
els are finally adapted to the accurately tran-
scribed CH-only data. In the future, we plan to
apply knowledge-poor diacritization procedures
to other dialects of Arabic, for which morpho-
logical analyzers do not exist.

7 Acknowledgments

This work was funded by DARPA under con-
tract No. MDA972-02-C-0038. We are grateful
to Kathleen Egan for making the FBIS corpus
available to us, and to Andreas Stolcke and Jing
Zheng for valuable advice on several aspects of
this work.

References

J. Billa et al. 2002. Audio indexing of Broad-
cast News. In Proceedings of ICASSP.

J. Bilmes and G. Zweig. 2002. The Graphical
Models Toolkit: An open source software sys-
tem for speech and time-series processing. In
Proceedings of ICASSP.

F. Debili, H. Achour, and E Souissi. 2002. De
l’étiquetage grammatical à la voyellation au-
tomatique de l’arabe. Technical report, Cor-
respondances de l’Institut de Recherche sur
le Maghreb Contemporain.

V. Digalakis and H. Murveit. 1994.
GENONES: Optimizing the degree of
mixture tying in a large vocabulary hidden
markov model based speech recognizer. In
Proceeding of ICASSP, pages I–537–540.

V.V. Digalakis, D. Rtischev, and L. G.
Neumeyer. 1995. Speaker adaptation using

constrained estimation of gaussian mixtures.
IEEE Transactions SAP, 3:357–366.

Yousif A. El-Imam. 2003. Phonetization of
Arabic: rules and algorithms. Computer,
Speech and Language, in press, preprint avail-
able online at www.sciencedirect.com.

J. G. Fiscus. 1997. A post-processing system
to yield reduced word error rates: Recognizer
output voting error reduction (ROVER). In
Proceedings IEEE Automatic Speech Recog-
nition and Understanding Workshop, pages
347–352, Santa Barbara, CA.

Ya’akov Gal. 2002. An HMM approach to vowel
restoration in Arabic and Hebrew. In Pro-
ceedings of the Workshop on Computational
Approaches to Semitic Languages, pages 27–
33, Philadelphia, July. Association for Com-
putational Linguistics.

K. Kirchhoff and D. Vergyri. 2004. Cross-
dialectal acoustic data sharing for Ara-
bic speech recognition. In Proceedings of
ICASSP.

K. Kirchhoff, J. Bilmes, J. Henderson,
R. Schwartz, M. Noamany, P. Schone, G. Ji,
S. Das, M. Egan, F. He, D. Vergyri, D. Liu,
and N. Duta. 2002. Novel approaches to Ara-
bic speech recognition - final report from the
JHU summer workshop 2002. Technical re-
port, Johns Hopkins University.

L. Lamel. 2003. Personal communication.
A. Stolcke, Y. Konig, and M. Weintraub. 1997.

Explicit word error minimization in N-best
list rescoring. In Proceedings of Eurospeech,
volume 1, pages 163–166.

A. Stolcke et al. 2003. Speech-to-text re-
search at sri-icsi-uw. Technical report, NIST
RT-03 Spring Workshop. availble online
http://www.nist.gov/speech/tests/rt/rt2003/
spring/presentations/sri+-rt03-stt.pdf.

73

Letter-to-Sound Conversion for Urdu Text-to-Speech System

Sarmad HUSSAIN
Center for Research in Urdu Language Processing,

National University of Computer and Emerging Sciences
B Block, Faisal Town

Lahore, Pakistan
sarmad.hussain@nu.edu.pk

Abstract

Urdu is spoken by more than 100 million
people across a score countries and is the
national language of Pakistan (http://www.
ethnologue.com). There is a great need for
developing a text-to-speech system for Urdu
because this population has low literacy rate
and therefore speech interface would greatly
assist in providing them access to information.
One of the significant parts of a text-to-speech
system is a natural language processor which
takes textual input and converts it into an
annotated phonetic string. To enable this, it is
necessary to develop models which map
textual input onto phonetic content. These
models may be very complex for various
languages having unpredictable behaviour
(e.g. English), but Urdu shows a relatively
regular behaviour and thus Urdu pronunciation
may be modelled from Urdu text by defining
fairly regular rules. These rules have been
identified and explained in this paper.

1 Introduction

Text-to-speech synthesis is logically divided into
two stages. The first stage takes raw text input,
processes it and converts it into precise phonetic
string to be spoken, appropriately annotated with
prosodic markers (e.g. stress and intonation). The
second stage takes this phonetic representation of
speech and generates the appropriate digital signal
using a particular synthesis technique. These
stages may be referred to as Natural Language
Processing (NLP) and Speech Synthesis (SS)
respectively (e.g. Dutoit 1997, p.14).

For SS, formant based techniques (e.g. Klatt
1980) or diphone based techniques (e.g. Dutoit
1997) are normally employed and are generally
script independent (as they are only dependent on
temporal and spectral acoustic properties of the
language and take input in script-neutral form, e.g.
in IPA). However, NLP is very dependent on
cultural and linguistic specific usage of script.

NLP may also be divided into further parts. The

first component is dedicated to pre-processing,
‘cleaning’ and normalizing input text. Once the
input text is normalized, the second component
does phonological processing to generate a more
precise phonetic string to be spoken. One of the
first tasks in the Phonological Processing
Component is to convert the input text into a
phonemic string using Letter-to-Sound (LTS)
rules. This string is then eventually converted to
precise phonetic transcription after application of
sound change rules and other annotations, as
explained later. This paper overviews Urdu
writing system, phonemic inventory, NLP for TTS
and gives details of the LTS rules for Urdu (also
see Rafique et at. (2001) and Hussain (1997:
Appendix A), for introductory work).

2 Urdu Writing System and Phonemic
Inventory

Urdu is written in Arabic script in Nastaleeq
style using an extended Arabic character set.
Nastaleeq is a cursive, context-sensitive and highly
complex writing system (Hussain 2003). The
character set includes basic and secondary letters,
aerab (or diacritical marks), punctuation marks and
special symbols (Hussain and Afzal 2001, Afzal
and Hussain 2001). Urdu is normally written with
only the letters. However, the letters represent just
the consonantal content of the string and in some
cases (under-specified) vocalic content. The
vocalic content can be (optionally) completely
specified by using the aerab with the letters. Aerab
are normally not written and are assumed to be
known by the native speaker, thus making it very
hard for a foreigner to read. Certain aerab are also
used to specify additional consonants. Urdu letters
and aerab are given in Table 1 below.

74

ث ج چ پ ت ٹ ب ا
خ د ڈ ذ ر ڑ ز ح
ظ ع ض ط ص ش س ژ
ف ق ك گ ل م ن غ
ے و ہ ئ ى

ں ة ھ آ

 ْ ّ ً ٰ ُ ِ َ

Table 1: Urdu basic (top) and secondary

(middle) letters and aerab (bottom)

Combination of these characters realizes a rich

inventory of 44 consonants, 8 long oral vowels, 7
long nasal vowels, 3 short vowels and numerous
diphthongs (e.g. Saleem et al. 2002, Hussain 1997;
set of Urdu diphthongs is still under analysis).
This phonemic inventory is given in Table 2.

The italicized phonemes, whose existence is still
not determined, are not considered any further (see
Saleem et al. 2002 for further discussion).
Mapping of this phonetic inventory to the
characters given in Table 1 is discussed later.

 (a)
p b p b m m
t d t d n n
   
k  k   
t d t d q 
f v s z
  x  h
r r   j l l

(b)
i e  æ
u o  

  
i e æ
u o  

Table 2: Urdu (a) Consonantal and (b) Vocalic

phonemic inventory

3 NLP for Urdu TTS

As discussed earlier, to enable text-to-speech
system for any language, a Natural Language
Processing component is required. The NLP
system may have differing requirement for
different languages. However, it always takes raw
text input and always outputs precise phonetic
transcription for a language. The system can be
divided into two parts, Text-Normalization
Component and Phonological Processing
Component. These components may be further
divided. A simplified schematic is shown in
Figure 11.

Figure 1: NLP architecture for Urdu TTS system

1 This diagram is based on the architecture of Urdu

Text to Speech system under development at Center for
Research in Urdu Language Processing
(www.crulp.org).

Tokenizer

Semantic
Tagger

String
Generator

Letter to Sound
Converter

Sound Change
Manager

Syllabifier

Stress Marker

Intonation
Marker

Urdu Raw
Text Input

Normalized
Urdu Text

Annotated Phonetic
Output

75

The Text Normalization component takes a
character string as input and converts it into a
string of letters. Within it, the Tokenizer uses the
punctuation marks and space between words to
mark token boundaries which are then stamped as
words, punctuation, date, time and other relevant
categories by the Semantic Tagger. The String
Generator takes any non-letter based input (e.g. a
number or a date containing digits) and converts it
into a letter string.

After the input is converted into a string
comprising only of letters, the Phonological
Processing Component generates the
corresponding phonetic transcription. This is done
through a series of processes. The first process is
to use Letter-to-Sound Converter (detailed below)
to convert the normalized text input to a phonemic
string. This process may also be referred to as
grapheme-to-phoneme conversion. This is
followed by Syllabifier, which marks syllable
boundaries. The intermediate output is then
forwarded to a module which applies Urdu sound
change rules to generate the corresponding
phonetic string. Following these modules, Stress
Marker and Intonation Marker modules add stress
and intonation to the string being processed. Re-
syllabification is also performed after sound
change rules are applied, in case phones are
epenthesized or deleted and syllable boundaries
require re-adjustment. Urdu shows a reasonably
regular behavior and most of these tasks can be
achieved through rule-based systems (e.g. see
Hussain 1997 for stress assignment algorithm).
This paper focuses on Letter-to-Sound rules for
Urdu, the first in the series of modules in
Phonological Processing Component.

4 Urdu Letter to Sound Rules

Urdu shows a very regular mapping from
graphemes to phonemes. However, to explain the
behavior, the letters need to be further classified
into the following categories:

a. Consonantal characters
b. Dual (consonantal and vocalic) behavior

characters
c. Vowel modifier character
d. Consonant modifier character
e. Composite (consonantal and vocalic) character

Similarly, the aerab set can also be divided into

the following categories:

f. Basic vowel specifier
g. Extended vowel specifier
h. Consonantal gemination specifier
i. Dual (vocalic and consonantal) insertor

Finally, there is a third category which may take

shape of an letter and aerab:

j. Vowel-aerab placeholder

The Consonantal characters in (a) above always
represent a consonant of Urdu. In Urdu, there is
always a single consonant corresponding to a
single character of this category, unlike some other
languages e.g. English maps “ph” string to
phoneme /f/. Most of the Urdu consonantal
characters fall into this category. These characters
and corresponding consonantal phonemes are
given in Table 3 below. A simple mapping rule
would generate the phoneme corresponding to
these characters.

چ ج ث پ ت ٹ ب
t d s  t p b

خ د ڈ ذ ر ڑ ح
 r z  d x h

ط ض ص ز ژ س ش
t z s  s  z

گ ك ق ع غ ف ظ
 k q f   z

م ن ہ ة ل
 t h n m l

Table 3: Consonantal characters and their

corresponding phonemes

Three characters of Urdu show dual behavior,

i.e. in certain contexts they transform into
consonants, but in certain other contexts, they
transform into vowels. These characters are Alef

 Alef acts .(ے or ى) and Yay ,(و) vao ,(ا)

exceptionally in this category and therefore it is
discussed separately in (j) below. Vao changes to
/v/ and Yay changes to the approximant /j/ when
they occur in consonantal positions (in onset or
coda of a syllable). However, when they occur as
nucleus of a syllable, they form long vowels. As
an example, Yay occurs as a consonant when it

occurs in the onset of single syllable word ر/ZŠ
76

(/jar/, “friend”) but is a vowel when it occurs word

medially in LãŠ
َ
şZ (/bæl/, “ox”). These characters

represent category (b) listed above.
There is only one character in category (c), the

letter Noon Ghunna (ں), which does not add any

additional sound to the string but only nasalizes the
preceding vowel. This letter follows and combines
with the category (b) characters (when occurring as

vowels) to form the nasal long vowels, e.g. /ðş
(/d/, “go”) vs. ں/ðş (/d/, “life”). Catergory

(d) is the letter Do-Chashmey Hay (ھ), which

combines with all the stops and affricates to form
aspirated (breathy or voiceless) consonants but
does not add an additional phoneme. It may also
combine with nasal stops and approximants to
form their aspirated versions, though these sounds
are not clearly established phonetically. As an
example, adding this character adds aspiration to

the phoneme /p/: LZŢ (/pl/, “moment”) vs. Lņ Ţ\
(/pl/, “fruit”). Finally, there is also a single

character in category (e), the Alef Madda (آ). This

character is a stylistic way of writing two Alefs
and thus represents an Alef in consonantal position
(see (j) below) and an Alef in vocalic position,

forming /a/ vowel, e.g. آب .vs (”b/, “now/) اَب
(/b/, “water”).

There are three Basic vowel aerab used in Urdu
called Zabar (Arabic Fatha), Zer (Arabic Kasra)
and Pesh (Arabic Damma). In addition, absence of
these aerab also define certain vowels and thus this
absence is referred to as Null aerab. They combine
with characters to form vowels according to the
following principles:

(i) Short vowels, when they occur with category

(a) and (b) consonants not followed by
category (b) letters.

(ii) Long vowels, when they occur with category
(a) and (b) consonants followed and
combined by category (b) characters.

(iii) Long nasal vowels, when they combine with
category (a) and (b) consonants followed by
category (b) characters followed by category
(c) Noon Ghunna.

Different combination of these aerab with
category (b) characters generate the various
vowels, as indicated in Table 4 (all vowels shown

in combination with ب (phoneme /b/) as a

consonant character is required as a placeholder for
the aerab).

Bay + Zabar َب 

Bay + Zer ِب 

Bay + Pesh ُب 

Bay + NULL + Alef /Zş 

Bay + NULL + Vao Pƹş o

Bay + Zabar + Vao Pƹَş 

Bay + Pesh + Vao Pƹُş u

Bay + NULL + Yay Ûş e

Bay + Zabar + Yay Ûَş æ

Bay + (NULL | Zer)2 + Yay Tş] i

Bay + NULL + Alef + Noon
Ghunna ں/Zş 
Bay + NULL + Vao + Noon
Ghunna ںPƹş o
Bay + Zabar + Vao + Noon
Ghunna ںPƹَş 
Bay + Pesh + Vao + Noon
Ghunna ںPƹُş u
Bay + NULL + Yay + Noon
Ghunna ZşèŠO e
Bay + Zabar + Yay + Noon
Ghunna ZَşèŠO æ

2 NULL or Zer. It is controversial whether Zer is

present for the representation of vowel /i/. One solution
is to process both cases till the diction controversy is
solved.

77

Bay + (Null | Zer) + Yay +
Noon Ghunna
(see Footnote 2)

ZِşèO Š i

Table 4: Letter and aerab combinations and
corresponding vowels

Existence of the remaining vocalic phoneme //

is controversial in Urdu as there is no way of
expressing it using the Urdu writing system and
because it is schwa conditioned by the following
/h/ phoneme and only occurs in this context.
However, it may exist phonetically e.g. in the word

<Ƒ� (/hr/, “city”) (see discussion in Qureshi,

1992; also see some supporting acoustic evidence
in Fatima et. al, 2003, e.g. duration of // is 136 ms
compared with 235 ms for /æ/).

The next category (g) consists of Khari Zabar.
This represents the vowel Alef and, whenever
occurs on top of a Vao or Yay, replaces these
sounds with the Alef vowel sound /a/ as in words

ٰزPƻة (/zkt/,"zakat") and T Ķ�ٰا (/l/, special").

Sporadically Khari Zer and Ulta Pesh are referred
to in Urdu as well but they generally do not occur
on Urdu words. These are not considered here.

The gemination mark of category (h) is called
Shad in Urdu and occurs on consonantal characters
(of categories (a, b) except Alef). Shad geminates
the consonant on which it occurs, which is
normally word medially and inter-vocalically. As
a result of gemination, the duplicate consonant acts
as coda of previous syllable and onset of following

syllable. For example, 9اƯ (/.d/, "a poor

person") vs. 9اƯّ (/d.d/, "mattress").

The category (i) aerab, called Do-Zabar only
occurs on Alef (in vocalic position) and converts
the long vowel /a/ to short schwa followed by

consonant /n/, e.g. in word راPƺً (/frn/,

"immediately"). Do-Zer and Do-Pesh are similarly
referred to in Urdu but are not generatively used
and are mostly in foreign words especially of
Arabic and are not considered further here. If
considered, they would present a similar analysis.
Finally, (j) is a very interesting category as it
represents allo-graphs Alef and Hamza (former a
character and latter (arguably) an aerab and

character3). Both of them are default markers and
occur in complimentary distribution, Alef always
word initially and Hamza always otherwise. As
discussed earlier, aerab in Urdu always need a
Kursi (“seat"). If a short vowel occurs word
initially without a consonant (i.e. in a syllable
which has no onset), there is no placeholder for
aerab. A default place holder is necessary and Alef
is used. Word medially, if there is an onset-less
syllable, Urdu faces the same problem. In these
cases, Hamza (instead of Alef) is used as a
placeholder for aerab. There are two further
possible sub-cases. In one, the preceding syllable
is open and ends with a vowel. This case is very
frequent and Hamza is introduced inter.-vocalically

(e.g. Î/õِ9ہ /fa.dh/, “advantage”). In the second

less productive sub-case, the preceding syllable is
closed by a coda consonant. In this case, Hamza is
(optionally) used with Alef (e.g. both forms are

correct: ات<ðş / ð>ا
َٔ
şت /dr.t/, “courage”).

Hindi which employs a different mechanism by
defining different shapes for vowels word-initially
and word-medially (Matras). The Matras are
anchored onto the consonants, e.g. in Aanað
vaalaa , “about to come” vowel /a/ is written as

Aa word initially, but is written as a word

medially).
These rules have been implemented in an on-

going project (see Footnote 1 above) and are
successfully generating the desired phonemic
output. This phonemic output is passed through
sound change rule module to generate the desired
phonetic form.

5 Conclusion

This paper briefly discusses the architecture of
Natural Language Processing portion of an Urdu
Text-to-Speech system. It explains the details of
Urdu consonantal and vocalic system and Urdu
letters. Urdu shows regular behavior and thus the
phonemic forms are predictable from the textual
input. The letter-to-sound rules define this

3 Hamza sometimes requires a Kursi or seat (LÎ/© and

not ل/©ٔ) and sometimes does not (لاؤZŢ and not PǂلاZŢ)
indicating it behaves both like a character and an aerab.
It is still unclear on how this behavior is distributed and
whether it is predictable. As it is a script centric issue, it
is not discussed further here.

78

mapping and are thus essential for developing
Urdu TTS.

6 Acknowledgements

This work has been partially supported by the
grant for "Urdu Localization Project: MT, TTS and
Lexicon" by E-Government Directorate of
Ministry of IT and Telecommunications,
Government of Pakistan.

The author also wishes to thank anonymous
reviewers for comments, especially on glottal stop
and Hamza and Tahira Khizar and Qasim Vaince
for eventual discussion on the role of Hamza in
Urdu script.

References

M. Afzal and S. Hussain. 2001. Urdu Computing
Standards: Development of Urdu Zabta Takhti
(UZT 1.01). Proceedings of IEEE International
Multi-topic Conference, Lahore, Pakistan.

T. Dutoit. 1997. An Introduction to Text-to-Speech
Síntesis. Kluwer Academic Publishers,
Dordrecht, The Netherlands.

N. Fatima and R. Aden. Vowel Structure of Urdu.
2003. CRULP Annual Student Report published
in Akhbar-e-Urdu, April-May, National
Language Authority, Islamabad, Pakistan.

S. Hussain. 2003. www.LICT4D.aisa/Fonts/
Nafees_Nastalique. Proceedings of 12th AMIC
Annual Conference on E-Worlds: Governments,
Business and Civil Society, Asian Media
Information Center, Singapore.

S. Hussain. 1997. Phonetic Correlates of Lexical
Stress in Urdu. Unpublished Doctoral
Dissertation, Northwestern University, Evanston,
USA.

S. Hussain, and M. Afzal. 2001. Urdu Computing
Standards: Urdu Zabta Takhti (UZT 1.01).
Proceedings of IEEE International Multi-topic
Conference, Lahore, Pakistan.

D. H. Klatt. 1980. Software for Cascade/Parallel
Formant SynthesiZer. JASA 67: 971-995.

M. M. Rafique, M. K. Riaz, and S.R. Shahid. 2002.
Vowel Insertion Grammar. CRULP Annual
Student Report published in Akhbar-e-Urdu,
April-May, National Language Authority,
Islamabad, Pakistan.

B. A. Qureshi. 1992. Standard Twentieth Centuary
Dictionary: Urdu to English. Educational
Publishing House, New Dehli, India.

A. M. Saleem, H. Kabir, M.K. Riaz, M.M.
Rafique, N. Khalid, and S.R. Shahid. 2002.
Urdu Consonantal and Vocalic Sounds. CRULP
Annual Student Report published in Akhbar-e-
Urdu, April-May, National Language Authority,
Islamabad, Pakistan.

79

Urdu Localization Project: Lexicon, MT and TTS (ULP)
Sarmad HUSSAIN

Center for Research in Urdu Language Processing,
National University of Computer and Emerging Sciences

B Block, Faisal Town
Lahore, Pakistan

sarmad.hussain@nu.edu.pk

Abstract

Pakistan has a population of 140 million
speaking more than 56 different languages.
Urdu is the lingua franca of these people, as
many speak Urdu as a second language, also
the national language of Pakistan. Being a
developing population, Pakistani people need
access to information. Most of the
information over the ICT infrastructure is only
available in English and only 5-10% of these
people are familiar with English. Therefore,
Government of Pakistan has embarked on a
project which will generate software to
automatically translate the information
available in English to Urdu. The project will
also be able to convert Urdu text to speech to
extend this information to the illiterate
population as well. This paper overviews the
overall architecture of the project and provides
briefs on the three components of this project,
namely Urdu Lexicon, English to Urdu
Machine Translation System and Urdu Text to
Speech System.

1 Introduction

In today’s information age it is critical to provide
access to information to people for their
development. One precursor to this access is
availability of information in the native languages.
Due to limitations in technology, it has not been
possible to generate information in many
languages of the world. However, with recent
advances in internationalization and localization
technology, many languages are not enabled.
However, as this is recent development, the
published content in these languages is still
limited, and far lags behind the content available
for English, Spanish and some other languages
spoken in developed countries. Realizing this gap
in content and the need to provide access to
information to its citizens, Government of Pakistan
has recently launched Urdu Localization Project1.

1 Urdu Localization Project is a three-year initiative

being undertaken by Center for Research in Urdu
Language Processing (www.crulp.org) and is funded

This project will enable translation and access of
English content to literate and illiterate Urdu
speakers.

Urdu Localization Project aims to provide access
to existing English language content to Urdu
language speakers. The project has three
components: Urdu Computational Lexicon,
English-to-Urdu Machine Translation System,
Urdu Text-to-Speech system. This paper briefly
describes the architecture and work achieved to-
date for different systems within ULP.

2 ULP Architecture

As indicated, ULP comprises of three largely
independent systems: Lexicon, MT and TTS,
though these components may also be integrated to
develop a written and oral interface to information.
The project has three architectural layers. At the
base are the core data and engines for Lexicon, MT
and TTS. The middle layer provides public
programming interfaces to these engines (APIs) so
that they may be integrated with end-user
applications at the top layer or used by third-party
applications. Both the engine and API layer
components are being developed in standard
C/C++ to enable them to compile on all platforms
(e.g. Microsoft, Linux, Unix). The user-end/top
layer has to be technology centric and is currently
being enabled in Microsoft platform. The lexicon
will be given a web interface for user access. In
addition, plug-ins for internet and email clients will
be developed for MT and TTS to enable end-users
to translate and re-display English websites in
Urdu and also enable them to convert the translated
Urdu text to speech. This is shown in Figure 1
below. In the figure the layers and systems are
demarcated (horizontally and vertically
respectively). The figure also shows that MT and
TTS may be using the Lexicon through the APIs
for getting appropriate data.

through a grant by E-Government Directorate of
Ministry of IT&Telecom., Government of Pakistan.

80

Figure 1: Architecture Diagram for ULP

These three systems are discussed briefly below.

2.1 Urdu Lexicon

Urdu Computational Lexicon being designed
would be holding more than 25 dimensions of a
single headword. The first task to date has been to
determine this hierarchical storage structure. The
structure required for end-user has been finalized.
However, requirements for computational
applications, e.g. MT, are still being finalized.
This was perhaps one of the most challenging tasks
as there are currently no standards which exist,
although some guidelines are available. In
addition, Urdu also had some additional
requirements (e.g. multiple plural forms,
depending on whether the word is derived from
Arabic or Sanskrit). Entries of more than thirty
thousand headwords and complete entry of about a
thousand headwords along with specification of at
least 15 entries has already been done. Currently
more content is being generated. In addition, work
is under progress to define the physical structure of
the lexicon (e.g. storage and retrieval models).
The prototype showing this application is also
available in Microsoft platform.

2.2 English-Urdu Machine Translation

Work is under progress to develop English to
Urdu MT engine. The translation is based on LFG
formalism and is developing grammars, lexica and
the parsing/mapping/generation engine for LFG.
Mapping and Generation prototypes have already
been developed and are integrated with a freely

available LFG parser for internal testing. In
addition sample grammars for English, Urdu and
English-Urdu mapping have also been written.
The prototype covers about 10 percent of
grammatical rules and already translates within the
limited vocabulary of the engine. The work is
being extended to write the parser and rewrite
mapper and generator and to develop English,
Urdu and English Urdu grammars and lexica.

2.3 Urdu Text to Speech System

The Urdu TTS is divided into two main part, the
Urdu Natural Language Processor and Urdu
Speech Synthesizer. The work on NLP is
completed (except the intonational module, on
which preliminary work has been completed). The
NLP processor inputs Urdu Unicode text and
output narrow phonetic transcription with syllable
and stress markers. The NLP processor is
integrated with Festival speech synthesis system
(though by-passes its NLP module). A vocabulary
of about 500 words is already defined at the
diphones have been created. Prototype application
is already developed which synthesized these
single words. Work is currently in progress to
define Urdu intonational and durational model. In
addition, work is also under progress to extend the
vocabulary and functionality to synthesize
complete sentences. The functional prototype
works on both Linux an Microsoft platforms.

3 Conclusion

Most of the work being done in the project is
novel. Urdu language is not very well defined for
use with computers. Script, speech and language
aspects of Urdu are being studied, documented and
implemented in this project. The project is also
testing the work which has been matured on
western languages but only being recently exposed
to other languages, e.g. the lexical
recommendations by ISLE, LFG framework, use
of LFG for MT, speech modeling of Urdu (both
spectral and temporal) and more. Non-functional
issues including performance are also being
negotiated. Pre-compiled lexica, user-centric pre-
stored performance-enhancing profiles and
frequency lists, etc. are part of the architectural
tasks being addressed. Though only initial work
has been done, this work in itself is substantial, and
has raised many questions which will be answered
as the project progresses.

MT
Engine

Lexicon
Engine

TTS
Engine

MT API Lexicon
API

TTS API

Website/
Email

Translator

Online
Urdu

Dictionary

Website/
Email
Reader

End User Third Party
Applications

81

FarsiSum - A Persian text summarizer

Martin Hassel
KTH NADA

Royal Institute of Technology
100 44 Stockholm, Sweden

xmartin@nada.kth.se

Nima Mazdak
Department of Linguistics

Stockholm University
106 91 Stockholm, Sweden
nima.mazdak@comhem.se

Abstract

FarsiSum is an attempt to create an automatic
text summarization system for Persian. The
system is implemented as a HTTP
client/server application written in Perl. It uses
modules implemented in an existing
summarizer geared towards the Germanic
languages, a Persian stop-list in Unicode
format and a small set of heuristic rules.

1 Introduction

FarsiSum is an attempt to create an automatic
text summarization system for Persian (Mazdak,
2004). The system is implemented as a HTTP
client/server application written in Perl. It uses
modules implemented in SweSum (Dalianis 2000),
a Persian stop-list in Unicode format and a small
set of heuristic rules. The stop-list is a file
including the most common verbs, pronouns,
adverbs, conjunctions, prepositions and articles in
Persian. The words not included in the stop-list are
supposed to be nouns or adjectives. The idea is that
nouns and adjectives are meaning-carrying words
and should be regarded as keywords.

The current implementation of FarsiSum is still a
prototype. It uses a very simple stop-list in order to
filter and identify the important keywords in the
text. Persian acronyms and abbreviations are not
detected by the current tokenizer.

In addition, Persian syntax is quite ambiguous in
its written form (Megerdoomian and Rémi 2000),
which raises certain difficulties in automatic
parsing of written text and automatic text
summarization for Persian.

For example, selection of important keywords
in the topic identification process will be affected
by the following word boundary ambiguities:
• Compound words may appear as two different

words.
• Bound morphemes may appear as free

morphemes or vice versa.

These ambiguities are not resolved in the current

implementation.

2 SweSum

SweSum1 (Dalianis 2000) is a web-based
automatic text summarizer developed at the Royal
Institute of Technology (KTH) in Sweden. It uses
text extraction based on statistical and linguistic as
well as heuristic methods to obtain text
summarization and its main domain is Swedish
HTML-tagged newspaper text2.

2.1 SweSum’s architecture

SweSum is a client/server application. The
summarizer is located on the web server. It takes a
Swedish text as input and performs summarization
in three phases to create the final output (the
summarized text).

HTTP

Web Server

Web Client

Apache HTTP Server

Lexicon

Summarizer

Summarized
Text

Original Text

HTTP Client (Win Explorer/Netscape/Mac)

Pass IIIPass IIPass I
Tokenizing
Scoring
Keyword extraction

Sentence Ranking Summary Extraction

1

2

8

7

6

5

4

3

Figure 1: SweSum architecture

Pass 1: The sentence and word boundaries are
identified by searching for periods, exclamation
and question marks etc (with the exception of
when periods occur in known abbreviations). The
sentences are then scored by using statistical,
linguistic and heuristic methods. The scoring
depends on, for example, the position of the
sentence in the text, numerical values in and

1 An online demo is available at

http://swesum.nada.kth.se/index.html
2 SweSum is also available for English, Danish,

Norwegian, Spanish, French, German, and now with the
implementation described in this paper, Farsi.

82

http://swesum.nada.kth.se/index.html

various formatting of the sentence such as bold,
headings, etc.

Pass 2: In the second pass, the score of each

word in the sentence is calculated and added to the
sentence score. Sentences containing common
content words get higher scores.

Pass 3: In the third pass, the final summary file

(HTML format) is created. This file includes:
• The highest ranking sentences up to a pre-

set threshold.
• Optionally, statistical information about

the summary, i.e. the number of words,
number of lines, the most frequent
keywords, actual compression rate etc.

For most languages SweSum uses a static

lexicon containing many high frequent open class
words. The lexicon is a data structure for storing
key/value pairs where the key is the inflected word
and the value is the stem/root of the word. For
example boy and boys have different inflections
but the same root (lemma).

3 FarsiSum

FarsiSum is a web-based text summarizer for
Persian based upon SweSum. It summarizes
Persian newspaper text/HTML in Unicode format.
FarsiSum uses the same structure used by SweSum
(see Figure 2), with exception of the lexicons, but
some modifications have been made in SweSum in
order to support Persian texts in Unicode format.

3.1 User Interface

The user interface includes:
• The first page of FarsiSum on WWW

presented in Persian3.
• A Persian online editor for writing in

Persian.
The final summary including statistical

information to the user, presented in Persian.

3.2 Stop List

The current implementation uses a simple stop
list rather than a full-fledged Persian lexicon. The
stop-list is a HTML file (UTF-8 encoding)
containing about 200 high-frequency Persian
words including the most common verbs,
pronouns, adverbs, conjunctions, prepositions and
articles.

3 http://www.nada.kth.se/iplab/hlt/farsisum/index-

farsi.html

The stop-list has been successively built
during the implementation phase by iteratively
running FarsiSum in order to find the most
common words in Persian.

The assumption is that words not included in the
stop-list are nouns or adjectives (content words)
and should be counted as such in the word
frequency list.

3.3 Tokenizer

The tokenizer is modified in order to recognize
Persian comma, semi colon and question mark.

• Sentence boundaries are found by
searching for periods, exclamation and
question marks as well as
 (the
HTML new line) and the Persian question
mark (؟).

• The tokenizer finds the word boundaries
by searching for characters such as “.”, “,”,
“!”, “?”, “<”, “>”, “:”, spaces, tabs and
new lines. Persian semi colon, comma and
question mark can also be recognized.

• All words in the document are converted
from ASCII to UTF-8. These words are
then compared with the words in the stop-
list. Words not included in the stop list are
regarded as content words and will be
counted as keywords.

The word order in Persian is SOV4, i.e. the last
word in a sentence is a verb. This knowledge is
used to prevent verbs from being stored in the
Word frequency table.

3.4 Architecture

FarsiSum is implemented as a HTTP
client/server application as shown in Figure 2. The
summarization program is located on the server
side and the client is a browser such as Internet
Explorer or Netscape Navigator.

Summarized
text

Original text
Tokenizing

Scoring
Keyword Extraction

Sentence ranking

Summary extraction

Pass 1

Pass 2

Pass 3

User Interface

Stop-list

HTTP

FarsiSum

cod

6

5

43

2
1

ArchitectureAlphabet Roman/Persian
Encoding ASCII/Unicode
Data Lexicon/Stop List

Unicode

Unicode

Uni e

Unicode

Unicode

ASCII

ASCII

 Figure 1: FarsiSum architecture

4 SOV stands for Subject, Object and Verb.

83

http://www.nada.kth.se/iplab/hlt/farsisum/index-farsi.html
http://www.nada.kth.se/iplab/hlt/farsisum/index-farsi.html

The summarization process starts when the user
(client) clicks on a hyperlink (summarize) on the
FarsiSum Web site:

• The browser (Web client) sends a
summarization request (marked 1 in
Figure 2) to the Web server where
FarsiSum is located. The document/ (URL
of the document) to be summarized is
attached to the request. (The original text
is in Unicode format).

• The document is summarized in three
phases including tokenizing, scoring and
keyword extraction. Words in the
document are converted from ASCII to
UTF-8. These words are then compared
with the words in the stop-list (2-5).

• The summary is returned back to the
HTTP server that returns the summarized
document to the client (6).

The browser then renders the summarized text to
the screen.

4 Conclusions

The system would most certainly benefit from
deeper language specific analysis, but with no
access to Persian resources, in this system fairly
language independent methods have proven to
come a long way.

References

Dalianis, H. 2000. SweSum - A Text Summarizer
for Swedish, Technical report, TRITA-NA-
P0015, IPLab-174, NADA, KTH, October 2000.

Mazdak, N. 2004. FarsiSum - a Persian text

summarizer, Master thesis, Department of
Linguistics, Stockholm University, (PDF)

Megerdoomian, Karine and Rémi, Zajac 2000.

Processing Persian Text: Tokenization in the
Shiraz Project. NMSU, CRL, Memoranda in
Computer and Cognitive Science (MCCS-00-
322).

84

http://www.dsv.su.se/~hercules/papers/FarsiSum.pdf

Stemming the Qur’an

Naglaa Thabet
School of English Literature, Language and Linguistics

University of Newcastle
Newcastle upon Tyne, UK, NE1 7RU

n.a.thabet@ncl.ac.uk

Abstract

 In natural language, a stem is the
morphological base of a word to which affixes can
be attached to form derivatives. Stemming is a
process of assigning morphological variants of
words to equivalence classes such that each class
corresponds to a single stem. Different stemmers
have been developed for a wide range of languages
and for a variety of purposes. Arabic, a highly
inflected language with complex orthography,
requires good stemming for effective text analysis.
Preliminary investigation indicates that existing
approaches to Arabic stemming fail to provide
effective and accurate equivalence classes when
applied to a text like the Qur’an written in
Classical Arabic. Therefore, I propose a new
stemming approach based on a light stemming
technique that uses a transliterated version of the
Qur’an in western script.

1 Introduction

 Stemming has been widely used in several

fields of natural language processing such as data
mining, information retrieval, and multivariate
analysis. Some applications of multivariate
analysis of text involve the identification of lexical
occurrences of word stems in a text. Such lexical
analysis, in which the frequency of word
occurrences is significant, cannot be done without
some form of stemming.

 In morphology, variants of words which have
similar semantic interpretations are considered to
belong to the same stem and to be equivalent for
purposes of text analysis and information retrieval.
For this reason, a number of stemming algorithms
have been developed in an attempt to reduce such
morphological variants of words to their common
stem.

 Various stemming algorithms for a number of
languages have been proposed. The structure of
these stemmers range from the simplest technique,
such as removing suffixes, to a more complicated
design which uses the morphological structure of
words to derive a stem.

 In case of Arabic, several stemming algorithms
have been developed. The major inadequacy of
existing systems to stem the Qur’an results from

the fact that most of them deal with Modern
Standard Arabic as their input text; the language of
the Qur’an is Classical Arabic. Orthographic
variations and the use of diacritics and glyphs in
the representation of the language of Classical
Arabic increase the difficulty of stemming. In
many respects, the Qur’an, with its unique lexicon
and orthography requires dedicated attention.

 Therefore, I have developed a new light
stemmer that uses the Qur’an in western
transliteration to improve the effectiveness of the
stemming of the text.

2 Stemming in Arabic

 Arabic belongs to the Semitic family of
languages, and as such differs from European
languages morphologically, syntactically and
semantically. The Arabic language is somewhat
difficult to deal with due to its orthographic
variations and its complex morphological structure.
Xu et al. provide an overview of the challenges the
Arabic language creates for information retrieval
[10, 11].

2.1 Arabic Morphology

 The grammatical system of the Arabic
language is based on a root-and-affix structure and
is considered as a root-based language. Most
Arabic words are morphologically derived from a
list of roots, to which many affixes can be attached
to form surface words. Most of these roots are
made up of three consonants which convey
semantics. In addition to the different forms of the
Arabic word that results from the derivational and
inflectional process, most prepositions,
conjunctions, pronouns, and possession forms are
attached to the Arabic surface form.

2.2 Arabic Orthography

 Orthographic variations are prevalent in Arabic.
Vocalized texts make use of diacritics to represent
short vowels. The omission of such diacritics in
non-vocalized text gives rise to ambiguity,
specifically if words are read out of context. Other
spelling variations include changing the letter ي to

85

 with آ and ,أ ,إ at the end of a word and replacing ى
plain ا. A sense of discrimination and a good
knowledge of grammar and usage are required if
one is to avoid misreading a word.

 In terms of multivariate analysis of text as well
as information retrieval, the combination of a rich
morphology and a pervasively ambiguous writing
system results in a degree of complexity such that
some sort of pre-processing and classification is
required. Therefore, stemming is very important
for Arabic text analysis.

2.3 Approaches to Arabic Stemming

 Several stemming algorithms for Arabic have

been proposed based on different principles; each
produces rather different sets of stem
classifications. It is possible to evaluate these
stemming algorithms by the accuracy of the results
they produce. Larkey et al. gives a good summary
of stemming approaches for the Arabic language
[9]. The most common approaches used in Arabic
stemming are the light and the root-based
stemmers.

 Root-based Stemming is based on removing all
attached prefixes and suffixes in an attempt to
extract the root of a given Arabic surface word.
Several morphological analyzers have been
developed, e.g. Buckwalter [3], Khoja and Garside
[7] and Darwish [5].

 Light Stemming is used not to produce the
linguistic root of a given Arabic surface form, but
to remove the most frequent suffixes and prefixes.
The most common suffixation includes duals and
plurals for masculine and feminine, possessive
forms, definite articles, and pronouns. Several light
stemmers have been developed, all based on suffix
and prefix removal and normalization. Examples
of light stemmers include: Aljlayl & Frieder’s
Stemmer [2], Darwish’s Al-Stem [6], Chen &
Gey’s TREC 2002 Stemmer [4], and Larkey et
al.’s U Mass Stemmer [8, 9].

 All light stemmers adhere to the same steps of
normalization and stemming. The main difference
among them is the number of prefixes and suffixes
removed from each one. During the normalization
process, all diacritics, punctuation, and glyphs are
removed. The light stemmers had different
stopword lists consisting of Arabic pronouns,
particles and the like removed after minimal
normalization. Test results of previous researchers
as in [2, 8], proved that the light stemmer achieved
superior performance over the root-based approach
since it reduces sense ambiguity by grouping
semantically related words into the same class.

 Although light stemming can correctly classify
many variants of words into large stem classes, it
can fail to classify other forms that should go

together. For example, broken plurals for nouns
and adjectives do not get conflated with their
singular forms, and past tense verbs do not get
conflated with their present tense forms, because
they retain some affixes and internal differences.

3 Stemming the Qur’an

 My main objective for stemming the Qur’an is

to prepare the text as data for multivariate analysis
of the lexical semantics of the Qur’an using self-
organizing maps in which words with similar
meanings are placed at the same or neighbouring
points so that the topological relations among them
represent degrees of semantic similarity. This work
requires the construction of vector space models of
the suras (chapters) of the Qur’an such that each
sura is represented by a vector indicating the
occurrence frequency of variables. This involves
counting the occurrences of lexical items in the
Qur’an. Such a task cannot be done accurately
without some sort of stemming of words in the text.

 The Qur’an has two significant textual features.
The first is that the Classical Arabic language in
which the Qur’an is written has created difficulty
in reading and understanding it, even for the Arabs
themselves. Its lexicon, morphology and grammar
are more complicated than Modern Standard
Arabic. It, therefore, requires specific attention.

 The second significant point is the wide use of
vocalization. Diacritics (,ْ ,ّ ِ , ,ُ ,َ ٍ , ,ٌ ً) representing
short vowels are prevalent in the Qur’an. Every
word, even every letter is marked with a diacritic.
The meanings of the words in the Qur’an require
the use of such diacritical marks; otherwise it
becomes very difficult to comprehend their
meanings especially when out of context.

 Vocalized text, in Arabic includes diacritics for
short vowels and other details. Thus, a word could
have several meanings when marked with different
diacritics. (see Table 1).

Word Transliteration Meaning

كلْمُ mulk reign
كلِمَ malik king
كلَمَ malak angel
قلْخُ khuluq morals
قلْخَ khalq creation
ةمَاَ amah female slave
ةَّماُ ummah nation

Table 1. Orthographic variations of words

 For those reasons stemming the Qur’an is not

an easy task. In principal, the way existing Arabic
stemmers are structured indicates that they will not
work reliably on the stemming of the Qur’an. Most
of the existing stemmers rely on Modern Standard
Arabic as their input script. This modern form of

86

Arabic is a simplified form of Classical Arabic.
The main differences between both forms are that
Modern Standard Arabic has less orthographic
variation, a less complicated lexicon and a more
modern vocabulary. The following two points are
also significant regarding the use of existing
stemmers to stem the Qur’an.

 First, the root-based algorithm increases word
ambiguity. The root algorithm stems the surface
form to a base form from which the word variants
are derived. A major problem with this type of
stemmer is that many word variants are different in
meaning, though they originate from one identical
root. For example words like hasib (he thought),
hasaba (he counted), and hasab (of noble origin)
are all derived from the same root hsb. Therefore,
the over-stemming of the root algorithm results in
the deterioration of the retrieval performance as
compared to the light stemming algorithm. As
noted by Khoja [7], another problem that the
stemmer faces is that some of the letters that
appear to be affixes are in fact part of the word.

 Second, the light stemmers perform better than
the root-based algorithms, though not entirely
efficiently. All initial steps of the light-based
algorithms require normalization which involves
the removal of diacritics. Thus, if diacritics were
removed from the words listed in Table 1 above,
there would be no other way to indicate the
difference in meaning of all word variants. The
normalization technique, though it appears simple,
increases ambiguity. If normalization was applied
to the Qur’an, it would leave the text highly
ambiguous. As the case with root-based algorithms,
some of the suffixes and prefixes to be removed
using light stemmers are originally part of the word.

 Therefore, I propose a new light stemming
approach that gives better results, particularly
when applied to a rich vocalized text as the Qur’an.
The stemmer is basically a light stemmer to
remove prefixes and suffixes and is applied to a
version of the Qur’an transliterated into western
script.

 The use of the transliteration is highly
significant for resolving the problem of diacritics
in the Qur’an. Given that the transliteration of the
Qur’an is available in western script, the problem
of diacritics is resolved, since in the transliterated
version of the Qur’an, each diacritic is translated
into a letter in Roman script. Thus, the ambiguity
that arises when removing the diacritics from the
Arabic text is avoided. So, while the word كلم
could have three different meanings when it
appears without diacritics in Arabic, in
transliteration each meaningful word has a single
representation. (see Table 1).

 Another advantage of using transliteration is
avoiding the removal of suffixes and prefixes that
sometimes could be part of the word. The prefix ب
(pronounced as “bi”) is very common in Arabic.
This preposition resembles the letter ب of the
Arabic alphabet. Thus, removing this letter
indistinguishably would cause ambiguity if the
letter is part of a word. For example, in words as
رحبَ (sea), ُناهرب (proof), the letter ب is part of the

word, whereas, in ِملقب (with a pen) the ب is a
preposition. If the diacritics that are marking the
letter ب were removed, the first letter in each word
would be exactly the same, though different in
pronunciation. Therfore, stemming the words from
the prefix ب, in general, would be incorrect. When
transliterating the same three words (رحبَ ناهربُ , ,
ملقبِ) the prefix ب would be represented as ba (bahr),

bu (burhan), and bi (biqalam) respectively. The
proposed light stemmer would only include “bi” as
a prefix thus, avoiding removing the other
representations of that letter. A few stems in
Arabic begin with “bi”; those are added to a
stopword list to be removed before stemming. The
same process would be applied to the other
prefixes to be removed such as (لا ,س ,ف ,آ ,ل), (la/li,
ka, fa, sa, al).

3.1 Implementation

 The stemmer has been developed for the

windows environment in Delphi, an object-
oriented programming language which creates a
graphical user interface to facilitate the
presentation of its applications.

a. Preprocessing

 Rather than the use of Arabic script, the system
uses a Roman transliteration of the Qur’an which is
formatted on the Web as HTML. This presents a
particular problem that need to be remedied before
the text can be stemmed. The problem is that some
phonemically important distinctions, i.e.,
distinctions that are represented by different graphs
in Arabic, are shown using HTML tags; when the
HTML files are saved as text, these tags disappear,
and the distinctions are lost. The Arabic phonemes
 are represented in the HTML (ظ ,ذ ,ض ,ص ,ح ,ط ,آ)
transliteration files as underlined (a, t, h, s, d, th, th)
respectively.

 Preprocessing involves (1) stripping out the
entire HTML markup, and (2) before doing so,
replacing all the above phonemes with the
following characters: a^, t^, h^, s^, d^, z^, z*. The
result is a pure text file in ASCII codes.

87

b. Construction of stopword list

 A stopword list of all the words to be excluded
from the stemming process was compiled. The list
was manually constructed using a concordance of
the Qur’anic lexicon compiled by Abd Al-Baqi [1].
It consists of words which begin with the same
letters which compose Arabic prefixes. Arabic
pronouns, prepositions and names of people and
places were also included in the stopword list.

c. Construction of stemmer

 The algorithm for the stemmer is as follows:

Step 1. Prefix Stemming
 The program reads individual suras from text

files, replaces all uppercase letters with lower case
letters and constructs a list of word lists, where
each word list contains all the words in a single
sura. It then reads single words from each word list
and compares the current word supplied as a
parameter to each successive word in the stopword
list. If the word is found in the stopword list, it is
excluded from prefix stemming; otherwise it
adheres to following procedures:

• Remove prefixes (wa, fa, la, li, lil, bi, ka,
sa, s^a, al)

• After stemming, the word is inserted
back into the word list.

Step 2. Suffix Stemming
 Six groups of suffixes are identified ranging

from one-letter suffixes to six-letter suffixes. The
system starts stemming the words in the word lists
from the longest prefixes (six-letter prefixes) to the
three-letter prefixes. Stemming the one and two-
letter suffixes causes some ambiguity, since some
of the suffixes could sometimes be part of the word
stem. To resolve this problem, the stemmer sorts
the words alphabetically. In the sorted list of words,
if a given sequence displays a variety of suffixes
including one and two-letter suffixes, the suffixes
are removed and the stem is retained, otherwise the
word is left intact.

3.2 Results

 Preliminary results for seven long suras

selected randomly and representing 6% of the
Qur’an show that the stemmer achieves an
accuracy of 99.6% for prefix stemming and 97%
for suffix stemming. As the stemmer is being used,
some inaccuracies were detected, but investigation
shows that they are mainly to do with erroneous
lexical items in the transliterated Qur’an. An
evaluation of the system with accuracy figures
should be available shortly for the entire Qur’anic
text.

4 Conclusion

 Stemming is important for a highly inflected
language as Arabic. Existing Arabic stemmers,
though produced effective results in some
applications, failed to provide good stemming for
the Qur’an. Therefore, I have proposed this new
method of using transliterated script, which gave
good preliminary results. Ongoing work on the
system is focused on improving the accuracy of the
results either by modifying the algorithms or
editing the transliteration of the Qur’an.

References

[1] M.F. Abd Al-Baqi. 1987. Al-Ma&jam Al-
Mufahras li-alfaz Al-Qur’an Al-Karim. Dar
Al-hadith, Cairo.

[2] M. Aljlayl and O. Frieder. 2002. On Arabic
Search: Improving the retrieval effectiveness
via a light stemming approach. In
Proceedings of CIKM’02, VA, USA.

[3] T. Buckwalter. 2002. Buckwalter Arabic
Morphological Analyzer Version 1.0.
http://www.ldc.upenn.edu/Catalog/CatologE
ntry.jsp?catologId=LDC2002L49.

[4] A. Chen and F. Gey. 2002. Building an
Arabic stemmer for information retrieval. In
Proceedings of TREC 2002, Gaithersburg,
Maryland.

[5] K. Darwish. An Arabic Morphological
analyzer.
http://www.glue.umd.edu/~Kareem/research/

[6] K. Darwish and D. Oard. 2002. CLIR
Experiments at Maryland for TREC-2002:
Evidence combination for Arabic-English
Retrieval. In Proceedings of TREC 2002,
Gaithersburg, Maryland.

[7] S. Khoja and R. Garside. 1999. Stemming
Arabic text. Computing Department,
Lancaster University, Lancaster.
http://www.comp.lancs.ac.uk/computing/use
rs/khoja/stemmer.ps

[8] L. S. Larkey and M. E. Connell. 2001.
Arabic information retrieval at UMass. In
Proceedings of TREC 2001, Gaithersburg:
NIST, 2001.

[9] L. S. Larkey, L. Ballesteros and M.E.Connell.
2002. Improving stemming for Arabic
information retrieval: Light Stemming and
co-occurrence analysis. In SIGIR 2002,
Tampere, Finland: ACM, 2002.

[10] J. Xu, A. Fraser and R. Weischedel. 2001.
TREC 2001 cross-lingual retrieval at BBN.
In TREC 2001, Gaithersburg: NIST, 2001.

[11] J. Xu, A. Fraser and R. Weischedel. 2002.
Empirical studies in strategies for Arabic
information retrieval. In SIGIR 2002,
Tampere, Finland: ACM, 2002.

88

Language Weaver Arabic->English MT

Daniel MARCU, Alex FRASER, William WONG, Kevin KNIGHT
Language Weaver, Inc.

4640 Admiralty Way, Suite 1210
Marina del Rey, CA, USA, 90292

{marcu,afraser,wong,knight}@languageweaver.com

Abstract

This presentation is primarily a demonstration
of a working statistical machine translation
system which translates Modern Standard
Arabic into English.

1 Overview

Language Weaver has produced a high-
performance statistical Arabic-to-English machine
translation system, based on research work
conducted at the University of Southern California,
Information Sciences Institute (USC/ISI). Getting
resource-unlimited laboratory systems to run in
real time, on a typical desktop Windows machine,
is among Language Weaver’s contributions. The
system is designed to provide broad general
coverage of Arabic news, and is currently used at
various sites within the U.S. Government.

The Arabic->English translation system to be

demonstrated has been prepared in versions that
require 1 or 2 GB of RAM, and run on a 1.5GHz or
faster processor and translates at a minimum rate
of 500 words per minute. The system includes an
option to trade off speed for quality in the
translation process allowing users to select the
fastest possible gisting-quality output, or the best
possible translation quality for each sentence.

2 Demonstration

The translation system will be demonstrated on
current news, and possibly other postings from
Internet, or other files:

89

	Part2.pdf
	Part2.pdf
	MaamouriBies4.pdf
	MaamouriBies4.pdf
	Introduction
	Issues of methodology and training with Modern Standard Arabic
	Defining the specificities of ‘Modern Standard Arabic’
	How important is the missing information?
	The issue of vocalization

	Reconciling Treebank annotation with traditional grammar concepts in Arabic
	Training annotators, ATB annotation characteristics and speed

	Tools and procedures
	Lexicon and morphological analyzer
	Parsing engine
	Annotation procedure
	POS annotation quality control

	Specifications for the Penn Arabic Treebank annotation guidelines
	Morphological analysis/Part-of-Speech
	Syntactic analysis
	Current issues and nagging problems
	Clitics
	Gerunds (Masdar) and participials

	Future work
	Conclusion
	Acknowledgements

	Buckwalter8.pdf
	Introduction
	Lessons from the AFP corpus
	Lessons from the Ummah corpus
	Lessons from all three corpora
	Concatenation in Arabic orthography
	Conclusion
	Acknowledgements

	HasselMazdak-demo17.pdf
	Introduction
	SweSum
	SweSum’s architecture

	FarsiSum
	User Interface
	Stop List
	Tokenizer
	Architecture

	Conclusions

