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Abstract

Optical Character Recognition (OCR) sys-
tems for Arabic rely on information con-
tained in the scanned images to recognize
sequences of characters and on language
models to emphasize fluency. In this paper
we incorporate linguistically and seman-
tically motivated features to an existing
OCR system. To do so we follow an n-best
list reranking approach that exploits recent
advances in learning to rank techniques.
We achieve 10.1% and 11.4% reduction in
recognition word error rate (WER) relative
to a standard baseline system on typewrit-
ten and handwritten Arabic respectively.

1 Introduction

Optical Character Recognition (OCR) is the task
of converting scanned images of handwritten,
typewritten or printed text into machine-encoded
text. Arabic OCR is a challenging problem due
to Arabic’s connected letter forms, consonantal
diacritics and rich morphology (Habash, 2010).
Therefore only a few OCR systems have been de-
veloped (Märgner and Abed, 2009). The BBN
Byblos OCR system (Natajan et al., 2002; Prasad
et al., 2008; Saleem et al., 2009), which we use
in this paper, relies on a hidden Markov model
(HMM) to recover the sequence of characters from
the image, and uses an n-gram language model
(LM) to emphasize the fluency of the output. For
an input image, the OCR decoder generates an n-
best list of hypotheses each of which is associated
with HMM and LM scores.

In addition to fluency as evaluated by LMs,
other information potentially helps in discrimi-
nating good from bad hypotheses. For example,
Habash and Roth (2011) use a variety of linguistic
(morphological and syntactic) and non-linguistic
features to automatically identify errors in OCR

hypotheses. Another example presented by De-
vlin et al. (2012) shows that using a statistical ma-
chine translation system to assess the difficulty of
translating an Arabic OCR hypothesis into English
gives valuable feedback on OCR quality. There-
fore, combining additional information with the
LMs could reduce recognition errors. However,
direct integration of such information in the de-
coder is difficult.

A straightforward alternative which we advo-
cate in this paper is to use the available informa-
tion to rerank the hypotheses in the n-best lists.
The new top ranked hypothesis is considered as
the new output of the system. We propose com-
bining LMs with linguistically and semantically
motivated features using learning to rank meth-
ods. Discriminative reranking allows each hypoth-
esis to be represented as an arbitrary set of features
without the need to explicitly model their interac-
tions. Therefore, the system benefits from global
and potentially complex features which are not
available to the baseline OCR decoder. This ap-
proach has successfully been applied in numerous
Natural Language Processing (NLP) tasks includ-
ing syntactic parsing (Collins and Koo, 2005), se-
mantic parsing (Ge and Mooney, 2006), machine
translation (Shen et al., 2004), spoken language
understanding (Dinarelli et al., 2012), etc. Fur-
thermore, we propose to combine several ranking
methods into an ensemble which learns from their
predictions to further reduce recognition errors.

We describe our features and reranking ap-
proach in §2, and we present our experiments and
results in §3.

2 Discriminative Reranking for OCR

Each hypothesis in an n-best list {hi}ni=1 is repre-
sented by a d-dimensional feature vector xi ∈ Rd.
Each xi is associated with a loss li to generate a
labeled n-best list H = {(xi, li)}ni=1. The loss is
computed as the Word Error Rate (WER) of the



hypotheses compared to a reference transcription.
For supervised training we use a set of n-best lists
H = {H(k)}Mk=1.

2.1 Learning to rank approaches

Major approaches to learning to rank can be di-
vided into pointwise score regression, pairwise
preference satisfaction, and listwise structured
learning. See Liu (2009) for a survey. In this
paper, we explore all of the following learning to
rank approaches.

Pointwise In the pointwise approach, the rank-
ing problem is formulated as a regression, or ordi-
nal classification, for which any existing method
can be applied. Each hypothesis constitutes a
learning instance. In this category we use a regres-
sion method called Multiple Additive Regression
Trees (MART) (Friedman, 2000) as implemented
in RankLib.1 The major problem with pointwise
approaches is that the structure of the list of hy-
potheses is ignored.

Pairwise The pairwise approach takes pairs of
hypotheses as instances in learning, and formal-
izes the ranking problem as a pairwise classifica-
tion or pairwise regression. We use several meth-
ods from this category.

RankSVM (Joachims, 2002) is a method based
on Support Vector Machines (SVMs) for which
we use only linear kernels to keep complexity low.
Exact optimization of the RankSVM objective can
be computationally expensive as the number of
hypothesis pairs can be very large. Approximate
stochastic training strategies reduces complexity
and produce comparable performance. There-
fore, in addition to RankSVM, we use stochas-
tic sub-gradient descent (SGDSVM), Pegasos (Pe-
gasosSVM) and Passive-Aggressive Perceptron
(PAPSVM) as implemented in Sculley (2009).2

RankBoost (Freund et al., 2003) is a pairwise
boosting approach implemented in RankLib. It
uses a linear combination of weak rankers, each of
which is a binary function associated with a single
feature. This function is 1 when the feature value
exceeds some threshold and 0 otherwise.

RankMIRA is a ranking method presented in (Le
Roux et al., 2012).3 It uses a weighted linear
combination of features which assigns the highest

1http://people.cs.umass.edu/˜vdang/
ranklib.html

2http://code.google.com/p/sofia-ml
3https://github.com/jihelhere/

adMIRAble

score to the hypotheses with the lowest loss. Dur-
ing training, the weights are updated according to
the Margin-Infused Relaxed Algorithm (MIRA),
whenever the highest scoring hypothesis differs
from the hypothesis with the lowest error rate.

In pairwise approaches, the group structure of
the n-best list is still ignored. Additionally, the
number of training pairs generated from an n-best
list depends on its size, which could result in train-
ing a model biased toward larger hypothesis lists
(Cao et al., 2006).

Listwise The listwise approach takes n-best lists
as instances in both learning and prediction. The
group structure is considered explicitly and rank-
ing evaluation measures can be directly optimized.
The listwise methods we use are implemented in
RankLib.

AdaRank (Xu and Li, 2007) is a boosting ap-
proach, similar to RankBoost, except that it opti-
mizes an arbitrary ranking metric, for which we
use Mean Average Precision (MAP).

Coordinate Ascent (CA) uses a listwise linear
model whose weights are learned by a coordinate
ascent method to optimize a ranking metric (Met-
zler and Bruce Croft, 2007). As with AdaRank we
use MAP.

ListNet (Cao et al., 2007) uses a neural network
model whose parameters are learned by gradient
descent method to optimize a listwise loss based
on a probabilistic model of permutations.

2.2 Ensemble reranking

In addition to the above mentioned approaches,
we couple simple feature selection and reranking
models combination via a straightforward ensem-
ble learning method similar to stacked general-
ization (Wolpert, 1992) and Combiner (Chan and
Stolfo, 1993). Our goal is to generate an overall
meta-ranker that outperforms all base-rankers by
learning from their predictions how they correlate
with each other.

To obtain the base-rankers, we train each of the
ranking models of §2.1 using all the features of
§2.3 and also using each feature family added to
the baseline features separately. Then, we use the
best model for each ranking approach to make pre-
dictions on a held-out data set of n-best lists. We
can think of each base-ranker as computing one
feature for each hypothesis. Hence, the scores
generated by all the rankers for a given hypothe-
sis constitute its feature vector.

The held-out n-best lists and the predictions of



the base-rankers represent the training data for the
meta-ranker. We choose RankSVM4 as the meta-
ranker since it performed well as a base-ranker.

2.3 Features

Our features fall into five families.
Base features include the HMM and LM scores

produced by the OCR system. These features are
used by the baseline system5 as well as by the var-
ious reranking methods.

Simple features (“simple”) include the baseline
rank of the hypothesis and a 0-to-1 range normal-
ized version of it. We also use a hypothesis confi-
dence feature which corresponds to the average of
the confidence of individual words in the hypoth-
esis; “confidence” for a given word is computed
as the fraction of hypotheses in the n-best list
that contain the word (Habash and Roth, 2011).
The more consensus words a hypothesis contains,
the higher its assigned confidence. We also use
the average word length and the number of con-
tent words (normalized by the hypothesis length).
We define “content words” as non-punctuation and
non-digit words. Additionally, we use a set of bi-
nary features indicating if the hypothesis contains
a sequence of duplicated characters, a date-like se-
quence and an occurrence of a specific character
class (punctuation, alphabetic and digit).

Word LM features (“LM-word”) include the
log probabilities of the hypothesis obtained us-
ing n-gram LMs with n ∈ {1, . . . , 5}. Separate
LMs are trained on the Arabic Gigaword 3 corpus
(Graff, 2007), and on the reference transcriptions
of the training data (see §3.1). The LM models
are built using the SRI Language Modeling Toolkit
(Stolcke, 2002).

Linguistic LM features (“LM-MADA”) are
similar to the word LM features except that they
are computed using the part-of-speech and the
lemma of the words instead of the actual words.6

Semantic coherence feature (“SemCoh”) is
motivated by the fact that semantic information
can be very useful in modeling the fluency of
phrases, and can augment the information pro-
vided by n-gram LMs. In modeling contextual

4RankSVM has also been shown to be a good choice for
the meta-learner in general stacking ensemble learning (Tang
et al., 2010).

5The baseline ranking is simply based on the sum of the
logs of the HMM and LM scores.

6The part-of-speech and the lemmas are obtained using
MADA 3.0, a tool for Arabic morphological analysis and
disambiguation (Habash and Rambow, 2005; Habash et al.,
2009).

lexical semantic information, simple bag-of-words
models usually have a lot of noise; while more
sophisticated models considering positional infor-
mation have sparsity issues. To strike a balance
between these two extremes, we introduce a novel
model of semantic coherence that is based on a
measure of semantic relatedness between pairs of
words. We model semantic relatedness between
two words using the Information Content (IC) of
the pair in a method similar to the one used by Lin
(1997) and Lin (1998).

IC(w1,d, w2) = log
f(w1, d, w2)f(∗,d, ∗)
f(w1, d, ∗)f(∗,d, w2)

Here, d can generally represent some form of re-
lation between w1 and w2. Whereas Lin (1997)
and Lin (1998) used dependency relation between
words, we use distance. Given a sentence, the dis-
tance between w1 and w2 is one plus the number
of words that are seen after w1 and before w2 in
that sentence. Hence, f(w1, d, w2) is the number
of times w1 occurs before w2 at a distance d in
all the sentences in a corpus. ∗ is a placeholder
for any word, i.e., f(∗, d, ∗) is the frequency of all
word pairs occurring at distance d. The distances
are directional and not absolute values. A simi-
lar measure of relatedness was also used by Kolb
(2009).

We estimate the frequencies from the Arabic
Gigaword. We set the window size to 3 and cal-
culate IC values of all pairs of words occurring at
distance within the window size. Since the dis-
tances are directional, it has to be noted that given
a word, its relations with three words before it and
three words after it are modeled. During testing,
for each phrase in our test set, we measure se-
mantic relatedness of pairs of words using the IC
values estimated from the Arabic Gigaword, and
normalize their sum by the number of pairs in the
phrase to obtain a measure of Semantic Coherence
(SC) of the phrase. That is,

SC(p) =
1

m
×

∑
1≤d≤W
1≤i+d<n

IC(wi,d, wi+d)

where p is the phrase being evaluated, n is the
number of words in it, d is the distance between
words, W is the window size (set to 3), and m is
the number of all possible wi, wi+d pairs in the
phrase given these conditions.



print hand
|H∗| n |h| |H∗| n |h|

Hb 1,560 62 9 2,295 225 8
Hm 1,000 76 9 1,000 225 9
Ht 1,000 64 9 1,000 227 9

Table 1: Data sets statistics. |H∗| refers to the
number of n-best lists, n is the average size of the
lists, and |h| is the average length of a hypothesis.

print hand
Baseline 13.8% 35%
Oracle 9.8% 20.9%
Best result 12.4% 30.9%

Table 2: WER for baseline, oracle and best
reranked hypotheses.

3 Experiments

3.1 Data and baselines
We used two data sets derived from high-
resolution image scans of typewritten and hand-
written Arabic text along with ground truth tran-
scriptions.7 The BBN Byblos system was then
used to process these scanned images into se-
quences of segments (sentence fragments) and
generate a ranked n-best list of hypotheses for
each segment (Natajan et al., 2002; Prasad et al.,
2008; Saleem et al., 2009). We divided each of the
typewritten data set (“print”) and handwritten data
set (“hand”) into three disjoint parts: a training set
for the base-rankersHb, a training set for the meta-
ranker Hm and a test set Ht. Table 1 presents
some statistics about these data sets. Our base-
line is based on the sum of the logs of the HMM
and LM scores. Table 2 presents the WER for our
baseline hypothesis, the best hypothesis in the list
(our oracle) and our best reranking results which
we describe in details in §3.2.

For LM training we used 220M words from
Arabic Gigaword 3, and 2.4M words from each
“print” and “hand” ground truth annotations.

Effect of n-best training size on WER The size
of the training n-best lists is crucial to the learning
of the ranking model. In particular, it determines
the number of training instances per list. To deter-
mine the optimal n to use for the rest of this pa-
per, we conducted the following experiment aims
to understand the effect of the size of n-best lists

7The Anfal data set discussed here was collected by the
Linguistic Data Consortium.
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Figure 1: Effect of the size of training n-best lists
on WER. The horizontal axis represents the max-
imum size of the n-best lists and the vertical axis
represents WER, left is “print” and right is “hand”.

on the reranking performance for one of our best
reranking models, namely RankSVM. We trained
each model with different sizes of n-best, varying
from n = 5 to n = 60 for “print” data, and be-
tween n = 5 and n = 150 for “hand” data. The
top n hypotheses according to the baseline are se-
lected for each n. Figure 1 plots WER as a func-
tion of the size of the training list n for both “print”
and “hand” data.

The lowest WER scores are achieved for n =
10 and n = 15 for both “print” and “hand” data.
We note that a small number of hypotheses per list
is sufficient for RankSVM to obtain a good per-
formance, but also increasing n further seems to
increase the error rate. For the rest of this paper
we use the top 10-best hypotheses per segment.

3.2 Reranking results
The reranking results for “print” and “hand” are
presented in Table 3. The results are presented
as the difference in WER from the baseline WER.
See the caption in Table 3 for more information.

For “print”, the pairwise approaches clearly out-
perform the listwise approaches and achieve the
lowest WER of 12.4% (10.1% WER reduction rel-
ative to the baseline) with 7 different combinations
of rankers and feature families. While both ap-
proaches do not minimize WER directly, the pair-
wise methods have the advantage of using objec-
tives that are simpler to optimize, and they are
trained on much larger number of examples which
may explain their superiority. RankBoost, how-
ever, is less competitive with a performance closer
to that of listwise approaches. All the methods
improved over the baseline with any feature fam-
ily, except for the pointwise approach which did



Pointwise Listwise Pairwise

Features M
A

RT

A
da

Ra
nk

Li
stN

et
CA Ra

nk
Bo

os
t

Ra
nk

SV
M

SG
D

SV
M

Ra
nk

M
IR

A
Pe

ga
.S

V
M

PA
PS

V
M

Pr
in

t
Base 1.1 -0.4 -1.0 -1.0 -1.0 -1.1 -1.2 -1.2 -1.3 -1.3

+simple -0.1 0.0 -0.1 -0.2 0.0 -0.1 0.1 0.0 0.1 0.0
+LM-word -1.0 -0.2 0.1 -0.1 -0.1 -0.3 -0.2 -0.1 0.0 -0.1
+LM-MADA 0.0 -0.3 0.1 -0.2 -0.1 0.0 -0.1 -0.2 -0.1 -0.1
+SemCoh 0.0 -0.4 0.0 -0.2 -0.1 -0.1 0.0 -0.1 0.0 0.1

+All 0.6 0.1 0.0 0.1 0.0 0.1 0.2 0.2 0.2 0.0

H
an

d

Base 4.2 -3.1 -3.2 -3.4 -2.9 -3.2 -3.5 -3.8 -3.6 -3.8

+simple 0.3 -0.1 0.1 0.2 0.1 -0.1 0.2 -0.2 0.1 0.2
+LM-word 0.4 -0.1 0.1 0.8 -0.2 -0.7 -0.2 -0.1 0.0 0.1
+LM-MADA 0.0 -0.5 0.1 0.0 0.1 -0.4 -0.1 0.3 -0.2 0.1
+SemCoh 0.0 -0.1 0.0 -0.4 0.0 -0.2 -0.3 -0.2 -0.2 0.0

+All 0.2 0.4 0.0 0.4 0.2 0.4 0.2 0.1 0.2 0.0

Table 3: Reranking results for the “print” and “hand” data sets; the “print” baseline WER is 13.9% and the “hand” baseline
WER is 35.0%. The “Base” numbers represent the difference in WER between the corresponding ranker using “Base” features
only and the baseline, which uses the same “Base” features. The “+features” numbers represent additional gain (relative to
“Base”) obtained by adding the corresponding feature family. The “+All” numbers represent the gain of using all features,
relative to the best single-family system. The actual WER of a ranker can be obtained by summing the baseline WER and the
corresponding “Base” and “+features” scores. Bolded values are the best performers overall.

worse than the baseline. When combined with
the “Base” features, “LM-words” lead to improve-
ments with 8 out of 10 rankers, and proved to be
the most helpful among feature families. “LM-
MADA” follows with improvements with 7 out of
10 rankers. The lowest WER is achieved using
one of these two LM-based families. Combining
all feature families did not help and in many cases
resulted in a higher WER than the best family.

Similar improvements are observed for “hand”.
The lowest achieved WER is 31% (11.4% WER
reduction relative to the baseline). Here also,
the pointwise method increased the WER by 12%
relative to the baseline (as opposed to 7% for
“print”). Again, the listwise approaches are over-
all less effective than their pairwise counterparts,
except for RankBoost which resulted in the small-
est WER reduction among all rankers. The two
best rankers correspond to RankMIRA with the
“simple” and the “SemCoh” features. The “Sem-
Coh” feature resulted in improvements for 6 out of
the 10 rankers, and thus was the best single feature
on average for the “hand” data set. As observed
with “print” data, combining all the features does
not lead to the best performance.

In an additional experiment, we selected the
best model for each ranking method and combined
them to build an ensemble as described in §2.2.
For “hand”, the ensemble slightly outperformed
all the individual rankers and achieved the lowest
WER of 30.9%. However, for the “print” data, the

ensemble failed to improve over the base-rankers
and resulted in a WER of 12.4%.

The best overall results are presented in Table 2.
Our best results reduce the distance to the oracle
top line by 35% for “print” and 29% for “hand”.

4 Conclusion

We presented a set of experiments on incorporat-
ing features into an existing OCR system via n-
best list reranking. We compared several learn-
ing to rank techniques and combined them us-
ing an ensemble technique. We obtained 10.1%
and 11.4% reduction in WER relative to the base-
line for “print” and “hand” data respectively. Our
best systems used pairwise reranking which out-
performed the other methods, and used the MADA
based features for “print” and our novel semantic
coherence feature for “hand”.
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