Research Imperatives

Areas of Research Needed in Information Security Julie J.C.H. Ryan, D.Sc. Assistant Professor The George Washington University

© 2003, Julie J. C. H. Ryan. All rights reserved.

What We Know

 Technology - Fabulous research going on in tech development Management Practices - This is where it all comes together Resource allocation System integration plans What works?

The Biggest Problems

Are also the biggest challenges

Research in INFOSEC

Product development

- Cryptography nearly 4,000 years
 - Privacy
 - Authentication
 - Integrity
- Recent efforts
 - Malicious code detection and evaluation
 - Barrier technologies
 - Access control
 - Firewalls
 - Smart cards
 - Biometrics
 - Intrusion detections systems
 - Vulnerability analysis systems

© 2003, Julie J. C. H. Ryan. All rights reserved.

Research in INFOSEC

Mathematical Models in INFOSEC

- Bell-LaPadula
- Graham-Denning
- Harrison-Ruzzo-Ullman
- Biba
- Clark-Wilson
- Trustedness models
 - Orange Book and Rainbow series
 - ITSEC
 - Common criteria
 - ISO 17799

Serious Shortfalls

- Situational awareness
 - Is it an attack?
 - By whom?
- Resource allocation
 - Probabilistic risk assessment
 - Operations research
 - Stochastic programming
 - Business continuity and crisis management
 - Knowledge management
 - Security v reliability

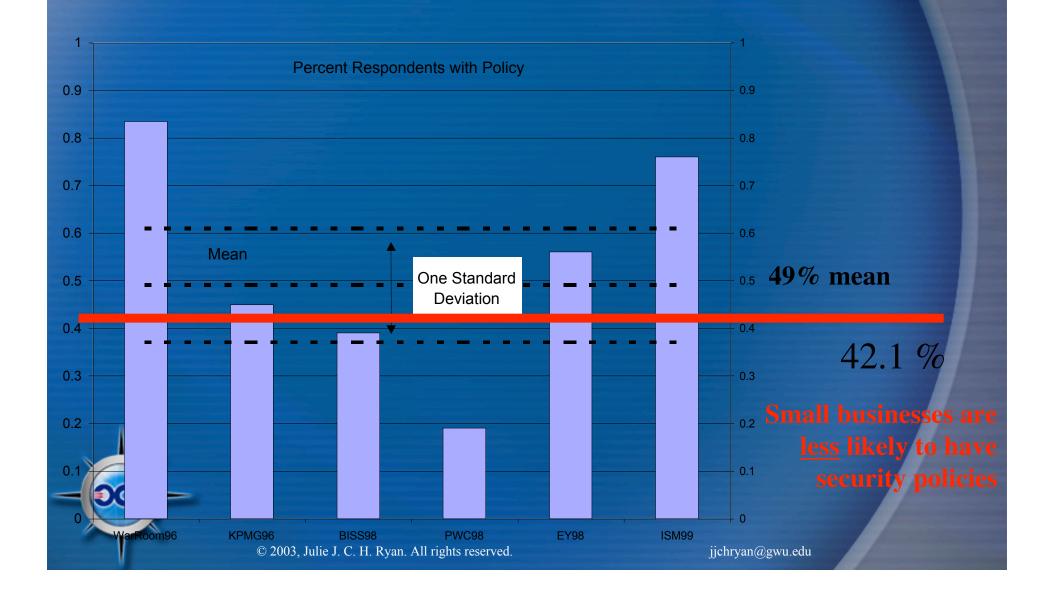
Common Assumptions

- Inside attacks pose a greater threat than outside attacks
 - If true, we're going about security backwards
 - But is it true?
- Lack of security is the vendors' fault
 - Security is a product of implementation and environment
 - Vendors don't supply the environment

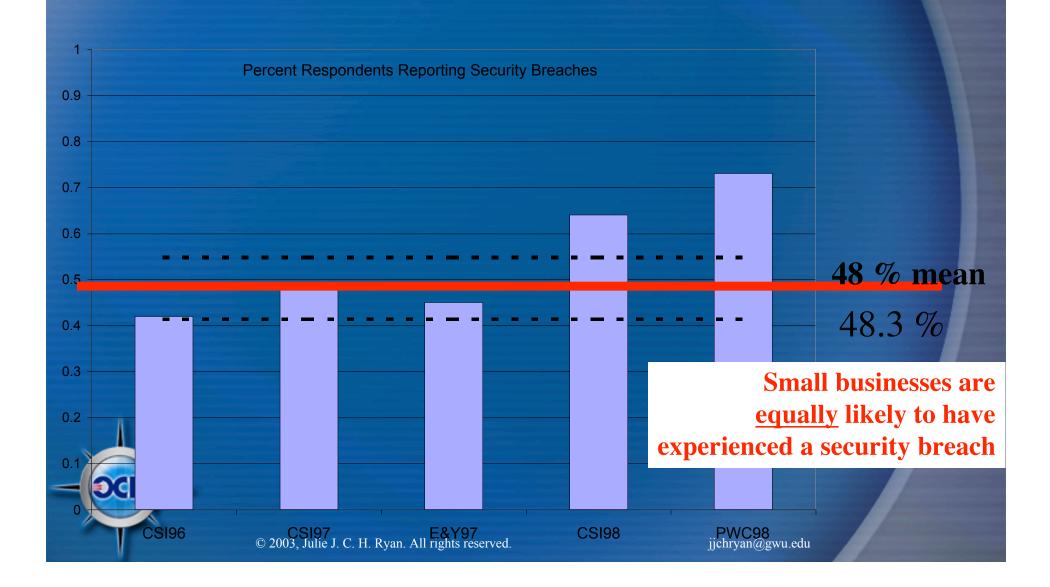
Common Assumptions

• We can automate security

- Security is a function of trust
- How can you quantify trust?
- Policies evolve, so automated security must evolve
- Certification of security experts will improve the state of security
 - Certification by whom, and how, and for what purpose?
 - Testing does not demonstrate performance proficiency; it tests cognitive knowledge

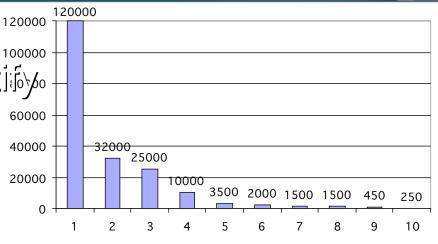

Common Assumptions

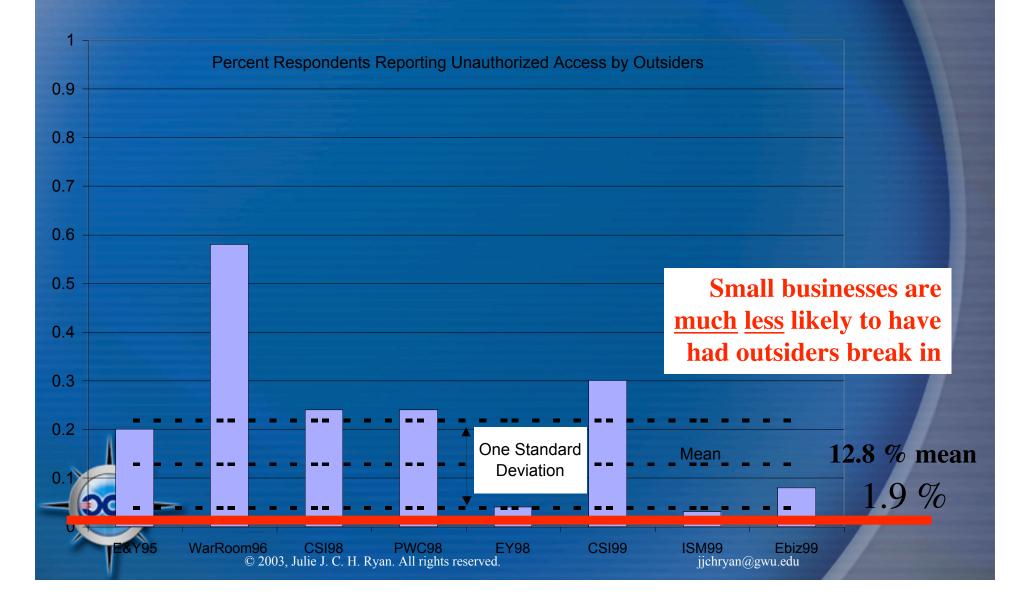
- We must teach security to everyone, including users
 - Home users of PCs?
 - Managers?
- We can achieve complete security
 - Different definitions?
 - Different institutional goals?
 - Different environments interoperating?


The Practice of InfoSec

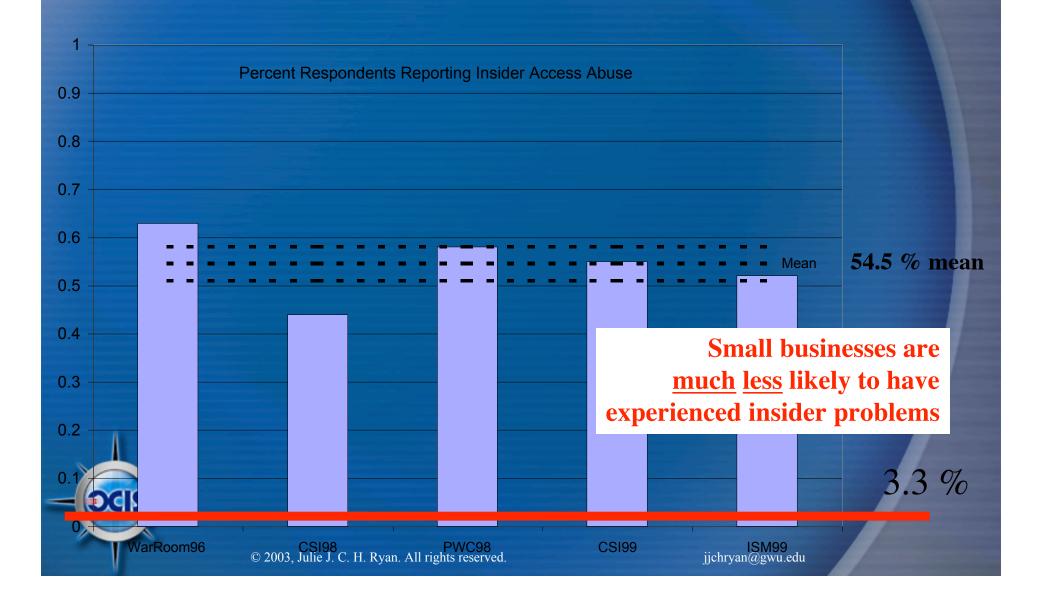
- According to surveys taken over past decade:
 - About half have security policies
 - About half have experienced security breaches
 - About 12 % have been hacked
 - About half have had problems with insiders
 - Of those with \$\$ loss, only 37% can quantify amount
 - Viruses, theft, and component failure are big concerns
 - About half have business continuity plans

Policies

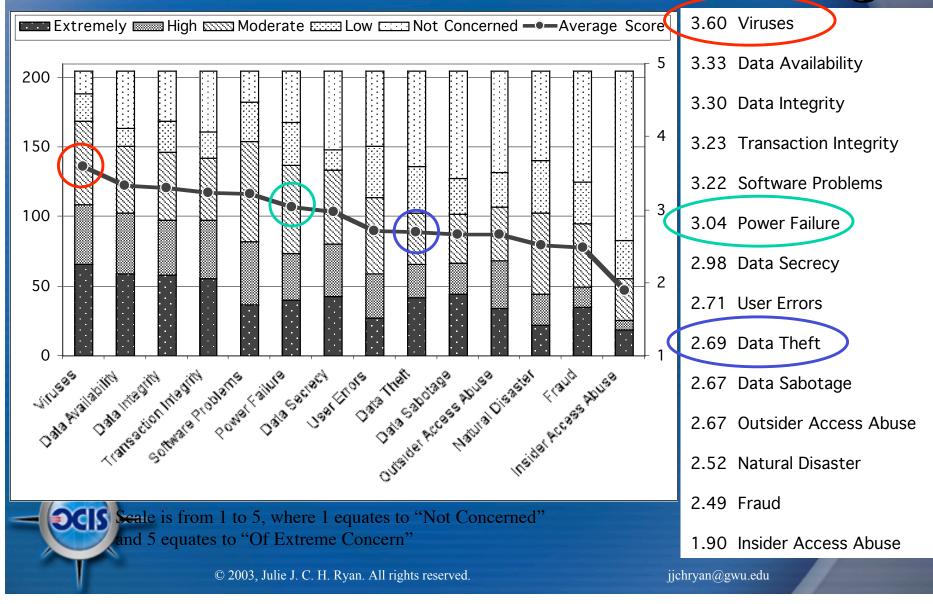

Security Breaches


Financial Losses

Experienced financial loss?


- 82 % reported losses for one survey (PWC98)
- Quantification of losses varies
 - From 31% (CSI99) to 48 % (CSI97)
- Small businesses much less likely to lose money
 - 9 %
- But better able to quantility
 when it happens
 73.7 %

Outsiders



Insiders

Concerns											
53% of small businesses think viruses are of extreme of high concern			36.1 % think that power failure is of extreme or high concern			32.2 % think that data theft is of high or extreme concern					
Survey E&Y95	Top Five Security C Network failure	oncerns Software er	ror 🌔	Viruses	Hardwa	are failure	Stolen data				
E&Y98	Unauthorized users access violation	Authorized user access violation		Contract worker access violation		employee violation	Competitors access violation				
BISS98	Power failure	User error		LAN failure	Viruses		Theft				
CSI98	Denial of Service attack	System penetration from outside		Theft of proprietary data	Financ	ial fraud	Sabotage				
PWC98	Viruses	Loss of information		Loss of integrity	Denial	of Service	Software manipulation				
CS199	Insider abuse	Viruses		Laptop theft	Denial attacks	of service	Sabotage				
Ebiz99	Viruses	E-mail incidents		Spam	Power		Hoaxes, jokes, pranks				
ISM99	Viruses	Employee a abuse	access	Unauthorized outsider		r destruction	Loss of proprietary data				
© 2003, Julie J. C. H. Ryan. All rights reserved. jjchryan@gwu.edu											

Concerns -- Overall Ranking

Business Continuity Plans

Survey BISS98

Business Continuity Plan

56 percent had a business continuity plan
-- 90 percent of those said it reduced the impact of a security breach

E&Y98

23 percent had incident response teams in place
-- 10 percent had put a business continuity
plan in place the previous year

Management Tools	Counts		Percentages		
	Yes	No	Yes	No	
Data Recovery Procedures	83	126	39.7%	60.3%	
Information Security Policy	64	145	30.6%	69.4%	
Computer Use & Misuse Policy	52	157	24.9%	75.1%	
Information Security Procedures	48	161	23.0%	77.0%	
Business Continuity Plan	45	164	21.5%	78.5%	
Proprietary Data Use & Misuse Policy	38	171	18.2%	81.8%	
Communications Use & Misuse Policy	29	180	13.9%	86.1%	
Information Sensitivity Levels or Coding	28	181	13.4%	86.6%	
Computer Emergency Response Plan	28	181	13.4%	86.6%	
Data Destruction Procedures	27	182	12.9%	87.1%	
Computer Emergency Response Team	15	194	7.2%	92.8%	
Media Destruction Procedures	14	195	6.7%	93.3%	

© 2003, Julie J. C. H. Ryan. All rights reserved.

Technology Use

Technology Tools	Percentages				
	Yes	No	Yes	No	
Anti-Virus Software	182	27	87.1%	12.9%	
Data Backup System	157	52	75.1%	24.9%	
System Access Control	152	57	72.7%	27.3%	
Power Surge Protectors	147	62	70.3%	29.7%	
Redundant Systems	95	114	45.5%	54.5%	Τος
Shredders	93	116	44.5%	55.5%	
Data Segregation	60	149	28.7%	71.3%	50%
Firewalls	54	155	25.8%	74.2%	
Encryption	53	156	25.4%	74.6%	
Intrusion Detection Systems	47	162	22.5%	77.5%	Les
System Activity Monitor	33	176	15.8%	84.2%	
Facility Access Control	30	179	14.4%	85.6%	259
Security Evaluation System	24	185	11.5%	88.5%	
Dial Back Modem	21	188	10.0%	90.0%	
Media Degaussers	7	202	3.3%	96.7%	

© 2003, Julie J. C. H. Ryan. All rights reserved.

jjchryan@gwu.edu

than

lise

Problems

- Existing research is imprecise and limited in applicability
- There are a few surprises
 - Little relationship between experiences, resource allocation
 - What does occur seems to be a matter of advertising, buzz, and fad rather than a reasoned approach to security
- More research is needed to understand causal relationships