
ISPAN: Parallel Identification of Strongly Connected
Components with Spanning Trees

Yuede Ji
George Washington University

yuedeji@gwu.edu

Hang Liu*

University of Massachusetts, Lowell
Hang Liu@uml.edu

H. Howie Huang
George Washington University

howie@gwu.edu

Abstract—Detecting strongly connected components (SCCs)
in a directed graph is crucial for understanding the structure
of graphs. Most real-world graphs have one large SCC that
contains the majority of the vertices, as well as many small SCCs
whose sizes are reversely proportional to the frequency of their
occurrences. For both types of SCCs, current approaches that
rely on depth or breadth first search (DFS and BFS) face the
challenges of both strict synchronization requirement and high
computation cost. In this paper, we advocate a new paradigm of
identifying SCCs with simple spanning trees, since SCC detection
requires only the knowledge of connectivity among the vertices.
We have developed a prototype called ISPAN, which consists of
parallel, relaxed synchronization construction of spanning trees
for detecting the large and small SCCs, combined with fast trims
for small SCCs. We further scale ISPAN to distributed memory
system by applying different distribution strategies to the data
and task parallel jobs. The evaluations show that ISPAN is able to
significantly outperform current state-of-the-art DFS and BFS-
based methods by average 18⇥ and 4⇥, respectively.

I. INTRODUCTION

In a directed graph, a strongly connected component (SCC)
is a maximal subset of vertices such that every vertex has
at least one directed path to all other vertices. Detecting all
the SCCs in a graph is a fundamental problem for graph
analytics [68]. A closely related problem is finding weakly
connected component (WCC), which is a maximal subset of
vertices such that every vertex can reach each other when
changing all directed edges to undirected [60]. SCC has been
used in many areas, including model verification [28], pattern
matching [22], and graph understanding [67], [69]. In addition,
SCC is a basic component for the widely used topological
sort [54], [44] and reachability queries [18], [68], [67].

Traditional SCC algorithms are based on depth-first search
(DFS) [62], [2]. However, DFS is hard to be parallelized [53].
New parallel algorithms, such as forward-backward (FW-
BW) [24] and color propagation [51], are proposed. To further
improve the performance, trim techniques which fast reduce
the large number of trivial SCCs (e.g., with one or two vertices,
called trim-1 and trim-2, respectively) are introduced by [29].

State-of-the-art methods combine the power of trim and FW-
BW to detect SCC [57], [29]. Particularly, this approach first
eliminates trivial SCCs which contain one or two veritces.
Afterwards, FW-BW performs BFS in both directions on the
remaining graph, that is, starting from a selected pivot, it first

*Work was, in part, done at the George Washington University.

performs a forward BFS to identify the vertex set that the
pivot can reach, followed by a backward BFS to identify the
set that can reach the pivot. The intersection between both sets
is the SCC that contains the pivot [24].

This work is particularly interested in accelerating the FW-
BW step of SCC detection stemming from the observation
that Multistep [57] and FW-BW BFS [29], two state-of-the-
art projects, spend on average 79% and 78%, respectively of
the time on FW-BW step for fourteen graphs (Table II).

To accelerate FW-BW step, we adopt the idea that any
spanning tree, not necessarily a BFS tree, is sufficient for FW-
BW approach to detect SCC [68]. By definition, a spanning
tree with the root vertex v is defined as a subgraph that uses
the minimum edges to cover all the vertices that are connected
with v. We admit BFS provides a satisfied spanning tree.
However, BFS introduces extra overhead because spanning
trees only need the connectivity information, while BFS also
provides the correct levels. To make the levels correct, BFS
has to satisfy the stringent requirements on which vertices
shall be visited at each level. This leads to a significant, yet
completely unnecessary synchronization bottleneck in existing
SCC methods.

This paper introduces a new synchronization paradigm –
relaxed synchronization (Rsync) – to take advantage of the
spanning tree based SCC detection idea because neither syn-
chronous (Sync) nor asynchronous (Async) traversal strategies
can satisfy our requirements. Particularly, Sync, which is used
in existing BFS methods, can provide better workload balance,
but introduces the overhead of level synchronizations. Async
can completely eliminate the synchronization overhead, but
can easily cause workload imbalance. In contrast, Rsync is
able to achieve not only reduced level synchronizations but
also balanced workload. By judiciously applying Sync, Async,
and Rsync strategies to direction-optimizing BFS, we build
a novel spanning tree construction algorithm. We devise a
fast SCC detection algorithm, ISPAN, by combining with the
optimized usage on trim and an extended trim-3 technique.
Further, we successfully scale ISPAN to distributed memory
system with judiciously selected communication strategies
towards data parallel and task parallel jobs.

Our main contributions are three fold:
First, we propose a relaxed synchronization strategy, Rsync

(Section IV), which enables an earlier termination for con-
ventional bottom-up traversal. Particularly, in lieu of only

SC18, November 11-16, 2018, Dallas, Texas, USA
978-1-5386-8384-2/18/$31.00 c�2018 IEEE

terminating the neighbor checking after a parent neighboring
vertex is found, Rsync terminates the inspection when a visited
neighboring vertex is found. Rsync makes the termination
earlier, potentially resulting in fewer neighbor checking and
traversal iterations. Our evaluation demonstrates that Rsync
achieves 2.7⇥ speedup over Sync bottom-up on average.

Second, we introduce a fast spanning tree construction
algorithm (Section V) by judiciously applying synchronous,
asynchronous, and our novel relaxed synchronous strategies to
direction-optimizing BFS, that is, starting with synchronous
top-down, switching to relaxed synchronous bottom-up, and
finishing with asynchronous top-down. Such a method is able
to accelerate SCC detection by upto 6.1⇥.

Third, we have implemented both the multi-threaded (shared
memory) and the distributed versions of ISPAN with the fast
spanning tree algorithm, optimized usage on trim and our
newly designed trim-3 technique for fast pruning size-3 SCCs.
Our evaluation on twelve real-world and two synthetic graphs
(Section VII) shows that ISPAN significantly outperforms
current DFS and BFS-based methods, i.e., on average, 18⇥
and 4⇥, respectively. Not limited there, we further evaluate
ISPAN with billion-vertex graphs and demonstrate that ISPAN
is able to achieve 1.7⇥ speedup over the state-of-the-art. Our
distributed version can achieve up to 10.7⇥ speedup with 32
nodes.

The rest of this paper is organized as follows: Section II
introduces the background. Section III overviews ISPAN. Sec-
tion IV presents the relaxed synchronization strategy, Rsync.
Section V presents the fast spanning tree construction method.
Section VI describes the distributed design of ISPAN. Sec-
tion VII describes the experimental setup and results. Sec-
tion VIII presents the related work. Section IX concludes.

II. BACKGROUND

In this paper, we use G = (V,E) to denote a directed graph,
where V is the set of vertices and E is the set of edges. |V |
and |E| represent the number of vertices and edges in the
original graph, |Vr| and |Er| the vertex and edge count for
the remaining graph after removing the large SCC. Existing
parallel SCC works use BFS which has top-down and bottom-
up methods [7]. Throughout this paper, we use the term expand
to refer to loading the neighbors and inspect for checking the
statuses of them.

A. Graph Property

Interestingly, real-world graphs demonstrate SCC features
which resemble power-law property [29]. A single large SCC
takes majority of the vertices which is in the same order of
graph size. And the rest are small SCCs which are smaller in
several orders of magnitude to the large SCC. For the Flickr
graph [49] shown in Figure 1, the large SCC has 69.7% of
the vertices, while half a million of small SCCs account for
the remaining 30.3% of vertices. Interestingly, except the large
SCC, this graph does not have other SCCs which has more
than 1,000 vertices.

1"SCC,
69.7%"
vertices

99.99%"SCCs,
30.3%"vertices

No"SCCs"
In8between

 0
 0.2
 0.4
 0.6
 0.8

 1

1 10 102 103 104 105 106 107

CD
F

SCC size

SCC Vertex

Fig. 1: Cumulative distribution function of SCC size in Flickr.

B. Trim and FW-BW SCC Detection

Trim aims to quickly identify trivial SCCs to greatly reduce
the graph size. Trim-1 is for a vertex that is a SCC by
itself [47]. The rule is simple: if a vertex has zero in-edges
or out-edges, it is a size-1 SCC. In Figure 2(b), vertex 23 is
trimmed due to 0 out-degree. Trim-1 will repeat since new
size-1 SCCs may appear after trimming, e.g., 22. A recent
work studies trim-2 [29]. The trim-2 pattern is that two vertices
mutually point to each other, and except the two edges, may
have other incoming or outgoing edges, but never both, which
guarantees that they cannot belong to other SCCs. In this
paper, we call this rule “single direction rule”. Vertices 19,
20 are trimmed as size-2 SCC in Figure 2(b).

Existing methods [24], [29], [57] rely on a FW-BW al-
gorithm that leverages BFS to detect SCCs. Starting from
the pivot vertex v, the FW-BW algorithm first produces the
forward vertex set, FW(v), that represents the vertices that
can be traversed using the out-edges. As a result, this will
yield a BFS tree shown in Figure 2(c). Next, it will create the
backward vertex set, BW(v), that consists of vertices that can
be traversed using the in-edges shown in Figure 2(d). Then, it
calculates the intersection of FW(v) and BW(v), which is the
detected SCC as shown in Figure 2(e).

Inspired by the graph property, state-of-the-art works apply
different methodologies to large and small SCCs as shown
in Figure 2(a) [29], [57]. Both of the works are using
BFS-based FW-BW algorithm to detect the large SCC. For
small SCCs, [29] uses trim-1 and new trim-2 to fast reduce
graph size, followed by the same BFS-based FW-BW algo-
rithm working on each weakly connected component (WCC).
While [57] uses trim-1 for size-1 SCCs, and color propagation
and serial Tarjan’s algorithm for the remaining small SCCs.

III. OVERVIEW

This section first overviews the framework of ISPAN, then
shows the correctness of using spanning tree for SCC.

A. The Framework of ISPAN

We will present our new SCC detection framework, ISPAN,
following the flow charts in Figure 3(b).

Large SCC. ISPAN uses our newly proposed fast spanning
tree construction method to accelerate the FW-BW algorithm
for the large SCC. For pivot selection, ISPAN follows the same
heuristic with [57], which selects the vertex that has the largest
product of its in-degree and out-degree. Although this rule
does not guarantee that the pivot is indeed from the large

7

8 21

6 4 5

3

(c) Forward BFS Tree

9

0

7

2

1

6

4

5

133 12

8

5

3

6

4

14

10

21

8

11

7

(d) Backward BFS Tree (e) FW-BW SCC(b) Trim-1 and Trim-2

10 14 9 0 7

17 11 8 21

16 15 6 4 5

21 13 3121820

19

22

23

(a) A Sample Graph

10 14 9 0 7

17 11 8 21

16 15 6 4 5

21 13 3121820

19

22

23

Fig. 2: (a) A toy graph running through the paper, (b) Trim-1 and trim-2 (shaded vertices). For vertex 8 (pivot), (c) shows the
forward BFS tree, (d) shows the backward one, (e) shows the detected SCC.

BFS FW-BW
Large SCC

BFS FW-BW

Small SCC
Trim-1/2

Spanning Tree FW-BW
Large SCC

Spanning Tree FW-BW

Small SCC

(a) State-of-the-art SCC detection

Trim-1/2 Trim-3

(b) iSpan-based SCC detection

Fig. 3: SCC detection methods, (a) state-of-the-art [29], (b)
ISPAN (the differences are shaded).

SCC, it works well for most real-world graphs. We will leave
other pivot selection rules to future works.

Small SCCs. ISPAN uses trim techniques for fast detection
of the SCCs and spanning tree based FW-BW to detect the
remaining small SCCs. In particular, trim is used at two
places, before and after large SCC detection. Before large
SCC detection, ISPAN only uses trim-1 due to the cost of
other trims being higher than the benefits. After the large SCC
is detected, ISPAN trims again, including trim-1, trim-2, and
our new extension of trim-3, before detecting small SCCs.
For the remaining small SCCs, ISPAN divides the graph into
WCCs using color propagation algorithm [57], and runs the
fast spanning tree FW-BW algorithm on each WCC. Since a
SCC is a subset of a WCC, ideally one can select the number
of pivots (equal to WCC count) to run FW-BW in parallel.

A

B C
Pattern 1

A

B C
Pattern 2

A

B C
Pattern 3

A

B C
Pattern 4

A

B C
Pattern 5

Fig. 4: The internal patterns of trim-3.

Trim-3 aims to quickly detect size-3 SCCs. In particular, we
detect the five patterns of size-3 SCCs as shown in Figure 4.
At the same time, the outside edges between a vertex from the
size-3 SCC and the remaining graph must follow the single
direction rule. It is possible to trim even larger SCCs beyond
size-3, although at the risk of diminishing returns.

B. Using Spanning Tree for SCC Detection

We will show that any spanning tree is sufficient for FW-
BW SCC detection, which serves as the theoretical guidance
for our implementation.

The idea of using spanning tree to detect SCC is also
investigated in [68]. That work mainly focuses on the I/O
efficiency of semi-external SCC detection, which still uses
sequential DFS to construct a spanning tree. Different from
that, we improve the parallel FW-BW algorithm with spanning
tree and devise a new framework for the fast construction of
a spanning tree in parallel.

In an undirected graph, a spanning tree with the root vertex
v is defined as a subgraph using the minimum number of edges
to cover all the vertices that are connected with v. Given a root,
one can generate many different valid spanning trees, including
BFS and DFS trees. In a directed graph, for a root vertex v,
there are two distinct types of spanning trees, forward and
backward spanning trees. Covering all the vertices that root v
reaches with outgoing edges forms the forward spanning tree,
and incoming edges the backward spanning tree.

Any valid spanning tree construction method, including BFS
and DFS, can produce valid forward or backward traversal.
Which means, they can deliver the correct results for forward
and backward traversal. Therefore, spanning tree based FW-
BW algorithm can deliver the correct SCCs.

This observation can be summarized as follows:
Lemma 1: For vertex v in a graph G, the SCC containing

v, SCC(v), can be obtained by the intersection of any pair of
valid forward and backward spanning trees. That is, SCC(v)
= FST(v) \ BST(v).

Proof 1: For vertex v, a valid forward spanning tree FST(v)
contains all the vertices that can be reached from v. Similarly,
a valid backward spanning tree BST(v) covers the vertices
that can reach v. That is, FST(v) equals to FW(v) and so does
BST(v) to BW(v). By definition, the SCC for vertex v will
contain the vertices shared in both sets.

IV. RSYNC: RELAXED SYNCHRONIZATION STRATEGY

This section will discuss the new relaxed synchronization
strategy and its benefits.

A. Rsync: Relaxed Synchronization
Rsync relaxes the level-by-level inspection imposed by

conventional synchronization (Sync) traversal but still syn-
chronizes to avoid workload imbalance in Async. Algorithm 1
presents the pseudocode of bottom-up Rsync method.

Bottom-up Rsync can terminate as long as finding a visited
parent or sibling. However, in conventional bottom-up BFS
where a vertex can only be terminated by the visited parent
vertex from the previous level. That is, for conventional BFS

Algorithm 1: rsyncBotUp(sa, beg pos, adj list)
1 foreach unvisited vertex u in parallel do
2 foreach vertex w 2 InNeighbor(u) do
3 if sa[w] is visited then
4 sa[u] = visited;
5 break;

6 barrier(); // synchronization point

3 4
✗

Expand

Sync

Inspect*

Iteration 0

Iteration 1

Iteration 2

9

0

1

4

65

8

2

37 12 13

T1

T4

1 5 78 1 2 3 2 3 48

Frontier Queue at Iteration 1

T0

T2

T3

✗ ✗ Early
Termination

1 2 4 5 6 …

In-neighbors

Fig. 5: Rsync bottom-up example (Shaded areas represent the
workload of each thread).

at the level i, the inspection is limited to the neighbors of the
vertices that belong to level (i � 1). In contrast, at the i-th
level, Rsync allows to inspect and expand to the neighbors of
all visited vertices, regardless of at which level the vertices
have been visited. Rsync is also different from DFS because
it only checks one hop of neighbor vertices.

The benefits of Rsync come from the new early termination
condition, which allows further reduction of needed computa-
tion. That is, the flexibility increases the possibility of early
termination, and reduces the amount of edges that need to be
inspected in the bottom-up traversal, which can be seen in the
two following cases.

Case 1: A vertex can be early terminated by newly inspected
vertices. The conventional BFS tree of Figure 2(b) is shown
in Figure 2(c). Vertex 4 needs to traverse 4 edges (increasing
order, 1, 2, 3, 8) so that it can be visited. However, in Rsync
bottom-up, assume the workload is distributed as shaded in
Figure 5, the (fast-running) thread 0 has already visited vertex
1 earlier at iteration 1. The (slow-running) thread 2 is able to
visit vertex 4 by checking only 1 edge. In this example, Rsync
reduces the traversed edge number by 3.

Case 2: The vertex that should be inspected at later level
can be inspected earlier. Rsync also allows the inspection
of the vertices which would not be allowed in conventional
BFS, e.g., vertices 2, 5, 6 in Figure 5. Rsync can work on all
unvisited vertices, unlike conventional BFS that only works on
the unvisited ones belong to the current depth. This method
introduces more parallelisms and better workload balance.

Rsync essentially eliminates the inter-level constraint in
BFS, and synchronizes when the threads complete processing
(at the end of an iteration) as shown in line 6 of Algorithm 1. It
can generate the correct spanning tree because a vertex which
can be visited in conventional BFS will be guaranteed to be
visited in Rsync bottom-up. Therefore, Rsync bottom-up can

be used to detect SCC.

B. Benefits of Rsync
Bottom-up BFS has been shown to be faster to traverse the

levels in the middle [7]. We will show that Rsync bottom-up
is faster than Sync under the same conditions.

Sync Bottom-Up. Let N denote the number of vertices
in a graph, ¯d the average in-degree, Nv(k) the number of
vertices visited in the k-th level, and Nu(k) the number of
vertices remaining unvisited in the k-th level. As a result, the
probability of an unvisited vertex will be visited at k-th level
is:

p =
Nv(k � 1)

N
(1)

At level k, for each unvisited vertex i, assuming it has di
in-neighbors, this vertex can either find no parent, which has
the probability of (1 � p)di , or a parent of the j-th neighbor,
which has a probability of (1 � p)j�1 · p. Thus, for vertex i,
the expected number of edges traversed at level k is:

Ei
k(p) = di · (1� p)di + p ·

diX

j=1

j · (1� p)j�1 (2)

There is a geometric series in Equation 2. We can get Equa-
tion 3 by multiplying (1� p) on both parts.

(1� p)Ei
k(p) = di · (1� p)di+1 + p ·

diX

j=1

j · (1� p)j (3)

By doing subtraction of Equation 2 and 3, we can get the final
expectation as Equation 4.

Ei
k(p) =

1� (1� p)di

p
(4)

Assuming di is an integer constant in range [0,1) the first
derivative of Ei

k(p) against p is:

@Ei
k(p)
@p

=
dip(1� p)di�1 + (1� p)di � 1

p2
(5)

Assuming p is in the range (0, 1), we can transform Equa-
tion 5 to

@Ei
k(p)
@p

=
dip+ 1� p� (1� p)1�di

p2(1� p)1�di
(6)

The denominator is greater than 0 due to p 2 (0, 1). Let g(p)
denote the numerator and its first derivative is:

@g(p)
@p

= (di � 1)
(1� p)di � 1
(1� p)di

(7)

@g(p)
@p is smaller than 0 when di 2 (1,1), is 0 when di is 0

or 1. When di 2 (1,1), g(p) is a nonincreasing function and
g(0) equals 0, thus g(p) is smaller than 0 when p 2 (0, 1). That
means, @Ei

k(p)
@p is smaller than 0, which denotes that Ei

k(p) is a
nonincreasing function when di 2 (1,1). When di is 0 or 1,
Ei
k(p) is 0 or 1, respectively. In conclusion, Ei

k(p) is either
a nonincreasing function (di 2 (1,1)) or a fixed number
(di is 0 or 1).

Rsync Bottom-Up.
Lemma 2: Assuming the same switching condition is

applied for both Sync and Rsync bottom-up, Rsync will check
less edges than Sync.

Proof 2: As shown in Algorithm 1, Rsync relaxes the early
termination condition by allowing the termination as long as
one neighbor is visited. As a result, the probability of visiting a

vertex for Rsync, previously shown in Equation 1, is changed
to:

pr =
�Nv(k) +Nv(k � 1)

N
=

�Nv(k)
N

+ p (8)

where � is the portion of vertices that terminate based on
vertices just visited at the k-th iteration. This equation means
Rsync not only terminates the inspection when it finds a visited
neighbor, as Nv(k�1), but also when it meets a vertex that is
visited by level k as only a portion – � of vertex can terminate
based on vertices belonging to level k. At level k, for all
unvisited vertices (total as Nu(k)), bottom-up BFS needs to
check the edges of

Tk =

Nu(k)X

i=1

Ei
k(p) (9)

As a result, the difference between Sync and Rsync of checked
number of edges is

� =

Nu(k)X

i=1

(Ei
k(p)� Ei

k(pr)) (10)

Since Ei
k(p) is nonincreasing and pr � p, we can conclude

that Ei
k(p)� Ei

k(pr) 0. Therefore, the accumulated � 0,
which means, Rsync checks less edges than Sync bottom-up.

C. Actual Rsync Behaviors

To illustrate the performance benefit, we compare the visited
edges of Rsync and Sync bottom-up for detecting the large
SCC, under the same switch condition and configurations
(graphs are shown in Table II). The ratio is calculated by the
edge number of Sync over Rsync. On average, Sync traversed
2.66⇥ and 3.17⇥ more edges than Rsync for forward and
backward as shown in Figure 6.

0
3
6
9
12

RM FL HD WL TW RD PK BD WC FB DB WT LJ TM WE AVG

Sy
nc

ed
ge

ov
er
R
sy
nc FW

BW

Fig. 6: Traversed edge of Sync over Rsync bottom-up.

V. FAST SPANNING TREE CONSTRUCTION METHOD

The novelty of our fast spanning tree construction dwells
in our judicious choice of applying the most suitable syn-
chronization mechanisms for various traversal steps, despite,
similar to existing projects [29], [57], we adopt direction
optimizing BFS [7] for ISPAN. Figure 7 compares our IS-
PAN traversal (Figure 7(b)) against state-of-the-art direction-
optimizing approach (Figure 7(a)). Particularly, ISPAN starts
with a conventional synchronous top-down (Step I), switches
to our novel Rsync bottom-up (Step II), and finishes with
Async top-down (Step III). The pseudocode of our forward and
backward traversal is shown in Algorithm 2. This algorithm
is called twice, one for forward and another for backward
traversal. The graph is represented in compressed sparse row
(CSR) format [15], which is widely used in contemporary
graph systems [41], [11], [48]. The forward CSR is represented
by fw beg pos[|V |+1] and fw adj list[|E|] and the backward
CSR uses bw beg pos[|V |+ 1] and bw adj list[|E|].

!

(a) Direction-optimizing BFS (b) iSpan traversal

Sync Top-down

Async Top-down

Rsync Bottom-up
"′

!′

Sync Top-down

Sync Top-down

Sync Bottom-up
"

Step I

Step II

Step III

Fig. 7: The spanning tree construction method in (a) Direction-
optimizing BFS (a.k.a., state-of-the-art [29], [57] approach)
and our (b) ISPAN traversal.

Algorithm 2: iSpanTraversal(pivot, sa, fw beg pos,
fw adj list, bw beg pos, bw adj list)

1 isSyncTopDown = true;
2 isBottomUp = false;
3 isAsyncTopDown = false;
4 sa[pivot] = 1;
5 level = 1;
6 while frontier queue changes do
7 foreach thread t 2 T in parallel do
8 if isSyncTopDown then
9 syncTopDown(sa, fw beg pos, fw adj list);

10 else if isBottomUp then
11 rsyncBotUp(sa, bw beg pos, bw adj list);

12 else if isAsyncTopDown then
13 asyncTopDown(sa, fw beg pos, fw adj list);

// Switch condition

14 if isSyncTopDown and Mf > (Mr/↵) then
15 isSyncTopDown = false;
16 isBottomUp = true;

17 else if isBottomUp and Nf < (|V |/�) then
18 isBottomUp = false;
19 isAsyncTopDown = true;

20 barrier(); // synchronization point

21 level++;

A. Synchronization Strategy

Synchronous (Sync) method requires synchronization
across different threads at the end of every level. Later, the
workload will be redistributed to each thread to balance the
workloads. Applying this philosophy to top-down traversal,
as shown in Figure 8, each thread at each level identifies the
frontiers that will be expanded at the next level and stores them
in private frontier queues. For synchronization, all threads need
to combine all the frontiers into one global frontier queue. At
the next level, the threads will get equally distributed work
from the shared global queue. Thus, the workload of each
thread is balanced.

Expand

Sync

Inspect
Level 0

Level 1

Level 2

Level 3 9

0

7

2

1

6

4

5

133 12

8

T1 T3
Private FQ 0 2

1 4Global FQ

T0 T1 T2

5 6

0 2 5 6Global FQ

T0 T2

T3

T2T0

Sync

Fig. 8: Sync top-down example (shaded areas represent the
workload of each thread).

Inspect

Expand
9

0

7

2

1

6

4

5 13

3

12

8

T0 T1

Sync

Async Private FQ 1

1 4Global FQ

4T0 T1

0 2 6

Fig. 9: Async top-down example (shaded areas represent the
possible workload of each thread).

Asynchronous (Async) approach, in contrast, allows every
thread to work on its private frontier queue and does not im-
pose any synchronization. Still using top-down as an example,
as shown in Figure 9, after returning from bottom-up to top-
down, the global queue {1, 4} is divided into two private ones,
thread 0 has {1} and thread 1 has {4}. Then, each thread will
work on this private queue and stops when it becomes empty
without synchronizing with other threads. Thus, the workloads
of all the threads are easy to be imbalanced.

Async also faces race conditions when two threads access
the same vertex at the same time. Both threads will put the ver-
tex into their private queues. However, when the two threads
expand from this vertex, they will inspect the status before
expanding the neighbors. Since the probability of expanding
the same vertex at the same time again is rather low, it only
wastes the status inspection time of one thread for one vertex,
but the spanning tree is still correct.

Relaxed-Synchronization (Rsync). To fill the gap between
Sync and Async, we leverage our relaxed synchronization
strategey, Rsync. We should note that Rsync can reduce the
number of level synchronizations but cannot fully avoid, and
it cannot be used in top-down traversal.

In summary, Sync gains better workload balance but limited
by thread synchronization, Async avoids thread synchroniza-
tion but may run into workload imbalance, Rsync provides
better workload balance and reduces synchronization levels.
This comparison is summarized in Table I.

B. Direction-Aware Fast Spanning Tree Construction Method
Applying Sync Top-down to Step I: Sync instead of Async

is selected for this step for two reasons. First, this step needs
to switch to bottom-up at a certain level. Such a decision can
only be made when we know the global amount of workload
across all participating threads, which contradicts the design of
Async that is complete asynchronous traversal. Second, often,
step I only requires very few iterations before switching, which
makes level synchronization overhead negligible comparing to
its benefit of balancing the workload. Therefore, we use Sync
top-down to initialize our spanning tree construction.
↵0: Our spanning tree method follows the same switch

condition as in [7], that is, when Mf > (Mu/↵), where Mf

denotes the number of edges in the frontier, Mu the number
of unvisited edges, and ↵ is a pre-defined threshold. Similarly,
we approximate Mf = Nf ⇤ d, Mu = Nr ⇤ d, where Nf

denotes the number of visited vertices, d denotes the average
degree, Nr denotes the remaining unvisited vertices [57]. A

TABLE I: Comparison of different traversal methods.

Top-down Bottom-up
Sync Rsync Async Sync Rsync Async

Reduced
synchronization 7 – 3 7 3 –

Workload
balance 3 – 7 3 3 –

larger ↵ value will lead to an earlier switch, and as a result,
Rsync bottom-up can be leveraged to decrease the number of
traversed edges and provide better performance than Sync as
we will show later. Our current implementation leaves ↵ as a
runtime parameter which can be tuned based on the application
need. In our evaluation, we set ↵ to a fixed value of 30.

Applying Rsync Bottom-up to Step II: As the traversal
continues, the amount of edges that need to be expanded
and inspected climbs rapidly, leading to the switch from top-
down to bottom-up. Async bottom-up is not selected because
direction switching requires the collective information across
all threads which is not supported by Async. On the other
hand, we select Rsync instead of Sync bottom-up because
Rsync is proved to be faster under the same condition.
�0: As the frontier size becomes smaller, ISPAN needs

to switch back to top-down. For this, ISPAN uses another
condition Nf < (|V |/�), where Nf denotes the number of
vertices in the frontier, and � is a pre-defined parameter. The
larger the � value, the later the switching happens. We set
the � value much larger than [7] to fully utilize the power
of Rsync. In particular, we set � to 200 in our experiments
instead of 24 in [7].

Applying Async Top-down to Step III: We select Async
instead of Sync top-down to mainly cope with the long-
tail phenomena that is commonly presented in real-world
graphs [50]. Formally, long-tail is the situation that the traver-
sal lasts for large number of iterations with few vertices in a
frontier. Figure 10 demonstrates such a scenario in Wikipedia
graph (WL). At first, there exists a large number of frontiers,
more than millions at certain levels. However, after the 30-th
level, the frontier size becomes smaller than 10, and reduces
to 1 at the 425-th level till its termination at 1, 361 level.

In this case, the workload is extremely small from level 30
- 1,361 which suggests that even synchronizing the traversal
at each level cannot affect workload distribution. However, the
overhead of synchronization stays. Actually, synchronization
becomes the major time consumer during 30 - 1,361 levels
which motivates our design of Async. It is also important to
mention that Async top-down can provide comparable to, if
not better than, Sync top-down even without long-tail.

100
102
104
106

1 10 102 103

Fr
on

tie
r s

ize
 (L

og
 s

ca
le

)

Level (Log scale)

Fig. 10: Long tail in the Wikipedia graph (WL).

VI. DISTRIBUTED ISPAN

This section scales ISPAN to distributed memory system
with OpenMPI. We partition the graph using row-wise 1-
d partitioning method [58], [16], [38]. This simple method
can produce graph partitions that are communication friendly
because the vertices in each partition are consecutive, and also
beneficial to bottom-up approach as shown in [8].

A. Data Parallel for the Large SCC
The large SCC detection is data parallel because all the

workers are working together to resolve one task. The
challenge in such a data parallel job is the high communication
cost – all the workers have to communicate vertex statuses at
the end of each iteration [7]. A naive communication strategy
will communicate the status array of size |V | at the end of
each iteration. To reduce the high communication cost, we
design a hybrid communication strategy that adaptively uses
bitwise compression and frontier queue only mechanisms.

Bitwise status compression. Bitwise status array has been
explored in distributed memory systems [55]. In particular,
[55] compresses the 4-byte status array into bitwise status
array in order to exchange the newly visited vertices. Note
that this method cannot directly use bitwise status array for
traversal because it has to differentiate the unvisited, and the
levels of visited vertices (more than two statuses). During
traversal, this approach has to update both the original and
bitwise status arrays. After communication, it also has to
use received bitwise status array to update the original status
array. However, in our case, because ISPAN eliminates the
needs of recording the level information, it simply uses a
bitwise array to record the status of each vertex. Therefore,
our communication is largely simplified. Although bottom-up
traversal only needs visited or unvisited information, it will
need the last level information when switching to top-down.
Thus, we need three statuses (2 bits) for a vertex, i.e., unvisited
(00), previously visited (01), and newly visited (10). If bottom-
up is used, every worker will scan the vertices in its partition
and change the status from newly visited to previously visited.
Then, it will traverse in the normal bottom-up manner. When
it switches to top-down, one can get the frontier queue by
extracting vertices with newly visited status.

Frontier queue. Chances are, at the beginning and end
iterations of large SCC detection, only a very small portion
of the status array will be updated [7]. This implies that
communicating the entire status array, albeit compressed,
is wasteful. We thus only communicate the frontiers. After
receiving the frontiers, we update the bitwise status array
correspondingly. This approach has been used in [16].

Hybrid. Clearly, the aforementioned two communication
mechanisms excel at complementary scenarios, that is, bitwise
status compression prefers large volume of updates while
the other is opposite. Our hybrid design chooses the best
communication strategy at each iteration based upon the
number of frontiers. We use node-to-node traffic to quantify
the communication cost. In particular, at each iteration, bitwise
status compression communicates |V |

8 bytes for top-down

traversal and |V |
4w bytes for bottom-up because each worker can

update the entire status array in top-down while only touches
its own partition in bottom-up, where w denotes the number
of workers. For the second design, assuming f j

i denotes the
frontier queue size of the j-th worker at the i-th iteration,
and we use 4-byte integer to represent each frontier, this
method will exchange the maximum frontier queue size among
all the workers, which is maxj2w(4f

j
i) bytes. Therefore,

we choose the frontier queue approach if maxj2w(4f
j
i) is

smaller and the bitwise status compression method otherwise.
In summary, the forward traversal needs to communicatePtT

i=1 min(maxj2w(4f
j
i),

|V |
8) +

PtB
i=1 min(maxj2w(4f

j
i) +

|V |
4w) bytes of data, where tT , tB denote the number of
iterations in top-down and bottom-up traversals, respectively.
Assuming the frontier queues are equally distributed among
the workers and the forward traversal shares the same frontier
size and iteration number with the backward, the size of
communication packet will be 2 ·

PtT
i=1 min(

4fi
w , |V |

8) + 2 ·PtB
i=1 min(

4fi
w , |V |

4w) bytes since maxj2w(4f
j
i) is simplified

to 4fi
w , where fi denotes the frontier queue size in the i-th

iteration.

B. Task Parallel for the Small SCCs
The small SCC detection, which is comprised of thou-

sands of tasks, is clearly task parallel because each task is
fulfilled by one worker exclusively. In trim-1, each worker
only needs to check the vertices in its local partition, which
is communication free. However, for the trim-2/3 and non-
trivial small SCCs, each worker may access the vertices
that are not in its local partition. If exploiting our designed
hybrid communication strategy, frequent communications will
introduce high overhead.

Instead, we compact the remaining graph into a smaller
subgraph and distribute one copy across all workers to avoid
communications stemming from the following two reasons:
First, we observe that the remaining subgraph only contains,
on average, 2.1% vertices and 0.5% edges of the original
graphs for the fourteen tested graphs. The largest percentages
are 11.8% and 3.2% for the vertex and edge, respectively.
Such a small subgraph can be easily generated and stored
across all workers. Second, we can reorder the vertices during
graph compaction which can potentially bring better cache
locality [4], [64], [33].

Furthermore, we introduce graph compaction technique
in this distributed setting. Initially, every machine reads the
status array and builds the mapping from the original vertex
IDs to the new ones. Then, every machine scans its local
partition and gets the size of the remaining vertices and edges
in that partition. Subsequently, all the machines communicate
to get the size array of each partition and calculate their
global addresses in CSR. Afterwards, every node will rescan
its local partition and update their CSR. Finally, we rely on
MPI Allgatherv to construct the full view of the graph across
all machines. Let |V rj |, |Erj | denote the number of vertices
and edges in the j-th worker for the remaining graph, the
node-to-node communication consumption is 8 +maxj2w(4 ·

|V rj |) + maxj2w(4 · |Erj |) bytes, where the 8 bytes is for
the two size arrays. Thus, the graph compaction operation for
both the forward and backward CSR will communicate the
data of 16 + 2 · maxj2w(4 · |V rj |) + 2 · maxj2w(4 · |Erj |)
bytes. Assuming the vertices are equally distributed among
the workers, the communication can be further simplified to
8 · |V r|+|Er|

w + 16, where |V r| and |Er| denote the number
of vertices and edges for the remaining graph r, with the
analogous simplification process from Section VI-A.
C. Communication Complexity

In addition to the communications in the large SCC and
graph compaction, there are several other communications. In
particular, ISPAN needs to communicate the status array before
detecting the large SCC, which communicates 4|V |

w bytes of
data. With the compacted graph, the coloring-based WCC
computation communicates

Ptr
i=1

4fi
w data because ISPAN

uses bottom-up for color propagation which cannot use the
bitwise status compression, where tr denotes the number of
iterations of traversing the remaining graph. The later trim-2/3
and small SCC detection will only incur two synchronizations,
which will exchange 8|Vr|

w data. Thus, the total amount node-
to-node communication data will be 4|V |+16|V r|+8|Er|

w + 2 ·PtT
i=1 min(

4fi
w , |V |

8)+2·
PtB

i=1 min(

4fi
w , |V |

4w)+

PtR
i=1

4fi
w +16,

where tT , tB denote the number of iterations of top-down and
bottom-up traversal for the original graph.

VII. EXPERIMENTS

The experiments are performed on a server with two Intel
Xeon E5-2683 (2.00 GHz) CPUs, each of which has 14 cores
and 28 hardware threads with 35 MB of last-level cache and
512 GB of main memory. The server runs CentOS Linux (7.2)
operating system. ISPAN is implemented in about 4, 900 lines
of C++ codes and compiled using g++ version 4.8.5 with the
-O3 option. We use OpenMP version 3.1 as the multithread
library. The results are reported with an average of ten runs.
A. Graph Benchmarks

We evaluate the performance of ISPAN on 12 real-world
graphs and 2 synthetic graphs shown in Table II. The real-
world graphs are collected from University of Koblenz-
Landau [37] and Stanford University [39]. They are classi-
fied into three categories: social networks, web graphs, and
communication networks as summarized in Table II.

B. Comparison of State-of-the-Art
This section compares the performance of ISPAN with

state-of-the-art approaches. Specifically, Tarjan stands for the
classical serial Tarjan’s algorithm [62], UFSCC is a DFS-
based on-the-fly SCC detection approach [13], BFS FW-BW
stands for a three-step FW-BW SCC detection approach [29],
and Multistep [57] is another three-step detection project. We
get the source codes of UFSCC, Hong’s BFS FW-BW and
Multistep from the authors, and Tarjan algorithm from Hong’s
implementation. We run their source codes on our server with
the same configurations. Note that BFS FW-BW sometimes
cannot select a pivot from the large SCC for graphs, like

TABLE II: Graph benchmarks specification.

Graph (Abbr.) # Nodes # Edges # SCC
Large # Small Size-1 Size-2 Size-3

SCC size SCC SCC SCC SCC
Baidu (BD) 2,141,301 17,794,839 1,503,004 609,905 1,503,003 1,480,722 18,688 2,473
Dbpedia (DB) 3,966,925 13,820,853 3,636,316 178,593 3,636,315 3,587,274 24,933 8,868
Facebook (FB) 96,079,682 679,728,426 93,892,292 2,186,877 93,892,291 93,891,890 322 54
Flickr (FL) 2,302,926 33,140,017 485,572 1,605,184 485,571 426,936 25,620 10,567
Hudong (HD) 2,452,716 18,854,882 2,189,120 185,668 2,189,119 2,153,858 24,832 4,786
LiveJournal (LJ) 4,847,572 68,475,391 971,233 3,828,682 971,232 947,777 16,875 3,280
Pokec (PK) 1,632,804 30,622,564 325,893 1,304,537 325,892 323,799 1,904 151
Twitter (TW) 41,652,231 1,468,365,182 8,044,729 33,479,734 8,044,728 7,947,098 80,112 12,198
Wiki-com (WC) 2,394,386 5,021,410 2,281,880 111,881 2,281,879 2,281,312 529 29
Wiki-en (WE) 18,268,993 172,183,984 14,459,547 3,796,073 14,459,546 14,450,686 7,201 1,107
Wiki-link (WL) 11,196,008 340,309,824 4,266,559 6,916,926 4,266,558 4,260,669 3,014 1,128
Wiki-talk (WT) 2,987,536 24,981,161 2,736,716 249,610 2,736,715 2,735,641 992 58
Random (RD) 4,000,001 256,000,000 2 4,000,000 1 1 0 0
R-MAT (RM) 3,999,984 256,000,000 2,105,950 1,894,035 2,105,949 2,105,948 0 0

DB and HD, which dramatically lowers its performance. For
these graphs, we choose to report their best performance from
multiple tests. Also, Multistep does not work for several graphs
including DB, WC, WT and HD, even after our attempts to
adjust configurations such as stack size in the code.

The total runtime is composed of the three steps (trim, large
SCC, small SCCs) and the pivot selection. Figure 11 shows
the speedup achieved by ISPAN over these methods. Corre-
spondingly, Table III presents the detailed time consumption of
each method on various graphs. For all the graphs, on average,
ISPAN can get 67.3⇥, 20.9⇥, 4.1⇥, and 3.6⇥ speedup over
Tarjan, UFSCC, BFS FW-BW, and Multistep, respectively.
For DFS-based Tarjan and UFSCC, ISPAN obtains the largest
speedup from graph FB by 271.7⇥ and 150.3⇥. The reason is
that for graph FB, the vertices in size-1 SCCs take the major
of about 97.72%. For this kind of graph, trim benefits a lot for
three-step detection approaches (e.g., BFS FW-BW, Multistep,
and ISPAN).

1
4
16
64
256

BD DB FB FL HD LJ PK TW WC WE WL WT RD RM AVG

Sp
ee
du
p
(L
og

sc
al
e)

Tarjan UFSCC BFS FW-BW Multistep

Fig. 11: Speedup of ISPAN over state of the art (56 threads).
The x-axis shows graphs and the last one is average.

Compared to BFS FW-BW method, ISPAN achieves the
maximum and minimum speedup from FB and HD of 12.9⇥
and 1.7⇥. And with regard to the Multistep method, ISPAN
gets the maximum speedup by 7.8⇥ on PK and minimum
speedup from TW by 1.6⇥.

C. Shared Memory Scalability
In this section, we will present three experiments, large

graphs, the speedup over Tarjan’s algorithm, and the scalability
over itself.

We test iSpan on several larger graphs as shown in Table IV,
specifically TM and FR graphs from [37], and a synthetic
graph KR generated from Graph500 generator. Note that while
iSpan is able to run all three graphs, current implementations
of BFS FW-BW [29] and Multistep [57] crash on billion vertex
graphs due to segmentation faults. We successfully modify the
codes in Multistep to support large graphs but fail for BFS
FW-BW. On the average of ten runs, iSpan achieves 1.7⇥ and

TABLE III: Runtime (ms) (The speedup of Rsync over current best approach is shown in parentheses).
Graph BD DB FB FL HD LJ PK TW WC WE WL WT RD RM Avg
Tarjan 414 352 21,262 551 292 1,710 628 38,999 171 3,801 6,591 507 5,281 3,578 6,010
UFSCC 107 104 11,759 160 85 274 127 4,887 145 544 846 214 838 554 1,475
BFS FW-BW 81 191 1011 117 91 116 51 1450 29 220 302 92 124 62 281
Multistep 167 - 406 152 - 109 144 816 - 314 312 - 115 104 264
ISPAN 16 (5.1) 66 (1.6) 78 (5.2) 54 (2.2) 53 (1.6) 46 (2.4) 13 (3.9) 457(1.8) 5 (5.8) 91 (2.4) 104 (2.9) 14 (6.6) 40 (2.9) 24 (2.6) 76 (3.5)

TABLE IV: Runtime (seconds) on large graphs (- denotes
program crash caused by segmentation fault).

Graph |V | |E| BFS FW-BW Multistep iSpan (speedup)
Twitter MPI (TM) 52M 2.0B 1.8 1.2 0.7 (1.7⇥)

Friendster (FR) 68M 2.6B - 1.3 1.1 (1.2⇥)
Kron 30 (KR) 1.07B 17.2B - 62.7 46.7 (1.3⇥)

1.2⇥ speedup on TM and FR. For a graph with billions of
vertices, iSpan takes tens of seconds to compute, specifically
46.7 seconds on KR, 1.3⇥ speedup over Multstep.

ISPAN is a parallel solution that can scale to a large number
of threads. We compared the performance of ISPAN against
other approaches under different number of threads. We select
seven representative graphs covering social network graphs
(LJ, FL, TM, TM), web graph (WE, WL) and synthetic graph
(RD). Figure 12 presents the speedup over the serial Tarjan
algorithm as [29], [57] did in their experiments. For all the
graphs from Table II and TM from Table IV, Figure 12(h)
presents the average speedup. The other two graphs (FR and
KR) from Table IV are not included stemming from the failure
of the baseline method (Tarjan’s implementation from [29]).
One can see that ISPAN achieves the best performance with the
increase of threads on both real-world and synthetic graphs.
Taking LJ as an example, for 1 thread, ISPAN, Multistep, and
BFS FW-BW get 5.9⇥, 5.1⇥, 1.5⇥ speedup, while UFSCC
is worse than Tarjan. As the thread increases, the speedups
of the four approaches also improve. When it reaches to 56

threads, ISPAN can get upto 37⇥ speedup, while Multistep,
BFS FW-BW, and UFSCC get at most 16⇥ speedup.

 0
 5

 10
 15
 20
 25
 30
 35
 40

 1 2 4 8 16 32 56
(a) LJ

iSpan
BFS FW-BW
UFSCC
Multistep

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 1 2 4 8 16 32 56
(b) WE

iSpan
BFS FW-BW
UFSCC
Multistep

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 4 8 16 32 56
(c) FL

iSpan
BFS FW-BW
UFSCC
Multistep

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16 32 56
(d) RD

iSpan
BFS FW-BW
UFSCC
Multistep

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 4 8 16 32 56
(e) WL

iSpan
BFS FW-BW
UFSCC
Multistep

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 1 2 4 8 16 32 56
(f) TW

iSpan
BFS FW-BW
UFSCC
Multistep

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16 32 56
(g) TM

iSpan
BFS FW-BW
UFSCC
Multistep

 0
 10
 20
 30
 40
 50
 60
 70
 80

 1 2 4 8 16 32 56
(h) AVG

iSpan
BFS FW-BW
UFSCC
Multistep

Fig. 12: The speedup over Tarjan’s serial algorithm (x-axis
shows the number of threads, y-axis shows the speedup).

Further, we show the scalability with regarding to the
increase of threads. Figure 13 presents the scalability of the
three largest graphs and the average on all the 17 graphs. While
ISPAN is able to run all the graphs, two related projects fail

on some graphs1. One can see that for all the graphs, ISPAN is
able to achieve 11⇥ speedup on average. Particularly, ISPAN
can scale upto to 19⇥ speedup on the largest graph KR, which
almost doubles the scalability of Multistep.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32 56
(a) TM

iSpan
Multistep
BFS FW-BW

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 4 8 16 32 56
(b) FR

iSpan
Multistep

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 1 2 4 8 16 32 56
(c) KR

iSpan
Multistep

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 4 8 16 32 56
(d) AVG

iSpan
Multistep
BFS FW-BW

Fig. 13: The scalability on the large graphs and average (x-axis
shows the number of threads, y-axis shows the speedup).

D. Distributed Scalability

We test the scalability of distributed ISPAN on a cluster. We
scale ISPAN to 32 nodes and use seven representative graphs
covering social network graphs (LJ, FL, TW, TM, FR), web
graph (WE), and synthetic graph (RD). Later, we will show in
Figure 16 the performance of ISPAN on additional 9 graphs2.

Figure 14 presents the scalability of each step and total
runtime for the seven graphs and the average. The time of
small SCC includes CSR compaction time, WCC computation
time, and remaining FW-BW computation time. For the total
runtime, ISPAN achieves 10.7⇥, 6.7⇥, 5.5⇥, 4.8⇥, 4.7⇥,
3.7⇥, and 3.5⇥ speedups on RD, FR, TM, WE, FL, LJ, and
TW graphs, respectively. In particular, trim technique enjoys
good scalability for the 7 graphs and achieves upto 4.4⇥
speedup on FL, because it is a pure task parallel job which
is communication free. Large SCC scales well and reaches
upto 14.9⇥ for RD. It is a computation intensive job in which
communication overhead is canceled out by computation time.
Large SCC detection dominates the distributed scalability
which is consistent with the results from the shared memory
tests. Small SCC can scale for FL, but does not scale for RD
because it has zero small SCCs. For other graphs, small SCC
do not scale well when the nodes are more than 8 due to the
large communication overhead. Overall, both the data and task
parallel jobs can scale well. The data parallel jobs can enjoy
the benefit of our hybrid communication strategy especially
when it dominates the runtime.

Furthermore, we compare to the state-of-the-art distributed
SCC implementation, named HPCGraph [58] as shown in
Figure 15. When it scales to 32 nodes, ISPAN achieves better
scalability for graph WE, FL, and RD. Particularly, ISPAN

1BFS FW-BW fails on the two largest graphs (FR, KR), and Multistep fails
on four graphs (DB, HD, WC, and WT)

2HPCGraph [58] fails on several graphs, e.g., FR, TW, TM, DB, HD, WC,
and WT.

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

 1 2 4 8 16 32
(a) LJ

Trim-1/2/3
Large
Small
Total

 1

 2

 3

 4

 5

 6

 7

 1 2 4 8 16 32
(b) WE

Trim-1/2/3
Large
Small
Total

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 1 2 4 8 16 32
(c) FL

Trim-1/2/3
Large
Small
Total

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 4 8 16 32
(d) RD

Trim-1/2/3
Large
Small
Total

 1

 2

 3

 4

 5

 6

 7

 1 2 4 8 16 32
(e) TW

Trim-1/2/3
Large
Small
Total

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 4 8 16 32
(f) TM

Trim-1/2/3
Large
Small
Total

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 4 8 16 32
(g) FR

Trim-1/2/3
Large
Small
Total

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5
 5.5

 1 2 4 8 16 32
(h) AVG

Trim-1/2/3
Large
Small
Total

Fig. 14: The scalability of ISPAN in distributed systems (x-axis
shows the number of nodes, y-axis shows the speedup).

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4 8 16 32
(a) LJ

HPCGraph
iSpan

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 1 2 4 8 16 32
(b) WE

HPCGraph
iSpan

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 1 2 4 8 16 32
(c) FL

HPCGraph
iSpan

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

 1 2 4 8 16 32
(d) RD

HPCGraph
iSpan

Fig. 15: The distributed scalability comparison (x-axis shows
the number of nodes, y-axis shows the speedup).

can achieve 4.7⇥, 4.8⇥, and 10.7⇥ compared to HPCGraph’s
3.8⇥, 3.5⇥, and 5.8⇥, respectively. ISPAN has lower scal-
ability for graph LJ 2.7⇥ compared to HPCGraph’s 3.6⇥.
However, the runtime of our baseline (i.e, 1 node) is much
faster than the baseline of HPCGraph. Ours is able to achieve
8⇥, 1.9⇥, 3.3⇥, and 32.4⇥ speedup over HPCGraph for graph
LJ, WE, FL, and RD, respectively. Therefore, ISPAN achieves
significant improvement for the distributed SCC detection.

We present the details of the execution and communication
time breakdown of the distributed ISPAN. Figure 16 presents
the breakdown of running with 32 nodes on the 16 graphs.
One can see that, the large SCC computation dominates most
graphs with, on average, 48.5% of the total time across all
the datasets. The communication time during computing the
large SCC takes the largest communication cost with 12.5%
on average.

 0
 20
 40
 60
 80

 100

LJ FL WE RD TW TM WT DB FB PK BD HD RM WL WC FR AVG

Pe
rc

en
ta

ge
 (%

) Trim-1
Trim-1 comm

Pivot
Large

Large comm
Compact

Compact comm
Trim-1/2/3

Small
Small comm

Fig. 16: Execution time breakdown of the distributed ISPAN.

VIII. RELATED WORK

This section discusses the related work landscape of ISPAN
from three categories, namely, DFS-based, FW-BW-based and
the other remaining endeavors.

DFS-based SCC detection. SCC detection originates from
a DFS-based work [62]. Another work [2] conducts two DFS

computations, the first on the original graph, the other on the
transposed graph to improve the parallelism. A recent DFS
work devises an on-the-fly SCC detection method [13]. DFS
can be parallelized, but with a number of drawbacks [21], [1].

A closely related DFS work is a serial semi-external SCC
detection method [68], which uses spanning tree with weak
order DFS to reduce the edge number for I/O efficiency. In
contrast, ISPAN completely removes the constraint of the order,
delivering very fast construction of spanning trees. Specifi-
cally, ISPAN devises a BFS-based parallel method, which can
be orders of magnitude faster. For example, [68] takes about
20s to process a graph with 34M edges, while ISPAN needs
only 54ms for a similar size graph (FL).

FW-BW-based SCC detection. The FW-BW algorithm
paves the road for parallel SCC detection. Fleischer et al. [24]
first introduces FW-BW algorithm, divide-and-conquer strong
components method, to improve the parallelism. Later, Mclen-
don et al. [47] extends FW-BW algorithm by adding trim.
Recently, a BFS-based FW-BW algorithm [29] designs a
three step FW-BW-Trim approach for small-world graphs.
Multistep [57] goes further by combining the power of FW-
BW, color propagation, and Tarjan’s DFS to detect SCC.

Both [29] and [57] follow the original FW-BW algorithm
to detect the large SCC. For detecting small SCCs, [29] intro-
duces trim-2 and WCC-based FW-BW algorithm, while [57]
uses color propagation algorithm. Different from them, ISPAN
improves the FW-BW algorithm by using the spanning trees,
and design a new relaxed synchronization technique. Com-
bined with trim-3, ISPAN is able to deliver about 4⇥ speedup.

Others. Color propagation algorithm is also proposed to de-
tect SCC in parallel [51], while it suffers from load imbalance
caused by large components. ISPAN is also related to the graph
traversal and connected component detection works [6], [65],
[19], [63], [56], [61], [25], [23], [27], [26], [35], [36], [42].
We will explore ISPAN in future works from three directions,
better distributed scalability [14], [5], [30], [59], [46], [52], [3],
[12], Graphics Processing Units (GPUs) [9], [43], and more
applications [31], [17], [32], [60], [45], [10], [40], [66].

IX. CONCLUSION

This work designs ISPAN, a new spanning tree-based SCC
detection method that leverages a novel fast spanning tree con-
struction method by judiciously applying synchronous, asyn-
chronous, and relaxed synchronization strategy to direction-
optimizing BFS to achieve better workload balance and re-
duced level synchronization. As a result, ISPAN can signifi-
cantly outperform state-of-the-art DFS and BFS-based meth-
ods by average 18⇥ and 4⇥, respectively. ISPAN is able to
achieve 1.7⇥ speedup on three large graphs (upto billion
vertex) and upto 10.7⇥ speedup when scaling to 32 nodes.

X. ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful sugges-
tions. This work was supported in part by National Science
Foundation CAREER award 1350766 and grants 1618706 and
1717774.

REFERENCES

[1] U. A. Acar, A. Charguéraud, and M. Rainey. A work-efficient algorithm
for parallel unordered -first search. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), page 67. ACM, 2015.

[2] A. V. Aho, J. D. Ullman, and J. E. Hopcroft. Data structures and
algorithms. 1983.

[3] M. J. Anderson, N. Sundaram, N. Satish, M. M. A. Patwary, T. L.
Willke, and P. Dubey. Graphpad: Optimized graph primitives for
parallel and distributed platforms. In Parallel and Distributed Processing
Symposium, 2016 IEEE International, pages 313–322. IEEE, 2016.

[4] J. Arai, H. Shiokawa, T. Yamamuro, M. Onizuka, and S. Iwamura.
Rabbit order: Just-in-time parallel reordering for fast graph analysis.
In Parallel and Distributed Processing Symposium, 2016 IEEE Interna-
tional, pages 22–31. IEEE, 2016.

[5] A. Azad and A. Buluc. Towards a graphblas library in chapel. In
Parallel and Distributed Processing Symposium Workshops (IPDPSW),
2017 IEEE International, pages 1095–1104. IEEE, 2017.

[6] L. Barrière and et al. Connected graph searching. Information and
Computation, 2012.

[7] S. Beamer, K. Asanovic, and D. Patterson. Direction-optimizing breadth-
first search. In International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC), pages 1–10. IEEE, 2012.

[8] S. Beamer, A. Buluc, K. Asanovic, and D. Patterson. Distributed
memory breadth-first search revisited: Enabling bottom-up search. In
Parallel and Distributed Processing Symposium Workshops & PhD
Forum (IPDPSW), 2013 IEEE 27th International, pages 1618–1627.
IEEE, 2013.

[9] O. Beaumont, B. Becker, A. Deflumere, L. Eyraud-Dubois, T. Lambert,
and A. Lastovetsky. Recent advances in matrix partitioning for parallel
computing on heterogeneous platforms. 2017.

[10] J. Berry, M. Oster, C. A. Phillips, S. Plimpton, and T. M. Shead.
Maintaining connected components for infinite graph streams. In
Proceedings of the 2nd International Workshop on Big Data, Streams
and Heterogeneous Source Mining: Algorithms, Systems, Programming
Models and Applications, pages 95–102. ACM, 2013.

[11] M. Besta, F. Marending, E. Solomonik, and T. Hoefler. Slimsell: A
vectorizable graph representation for breadth-first search. In IPDPS’17.

[12] M. Besta, M. Podstawski, L. Groner, E. Solomonik, and T. Hoefler.
To push or to pull: On reducing communication and synchronization in
graph computations. In Proceedings of the 26th International Symposium
on High-Performance Parallel and Distributed Computing, pages 93–
104. ACM, 2017.

[13] V. Bloemen, A. Laarman, and J. van de Pol. Multi-core on-the-fly scc
decomposition. In Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP), page 8.
ACM, 2016.

[14] A. Buluc, S. Beamer, K. Madduri, K. Asanovic, and D. Patterson.
Distributed-memory breadth-first search on massive graphs. arXiv
preprint arXiv:1705.04590, 2017.

[15] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiserson.
Parallel sparse matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks. In Proceedings of the twenty-first an-
nual symposium on Parallelism in algorithms and architectures (SPAA),
pages 233–244. ACM, 2009.

[16] A. Buluç and K. Madduri. Parallel breadth-first search on distributed
memory systems. In Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis,
page 65. ACM, 2011.

[17] J. Cao, Q. Li, Y. Ji, Y. He, and D. Guo. Detection of forwarding-
based malicious urls in online social networks. International Journal of
Parallel Programming, 44(1):163–180, 2016.

[18] J. Cheng, S. Huang, H. Wu, and A. W.-C. Fu. Tf-label: a topological-
folding labeling scheme for reachability querying in a large graph. In
Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data (SIGMOD), pages 193–204. ACM, 2013.

[19] G. Cong and K. Makarychev. Optimizing large-scale graph analysis on
multithreaded, multicore platforms. In Proc. of IPDPS’12, 2012.

[20] K. D. Devine and et al. Parallel hypergraph partitioning for scientific
computing. In Proc. of IPDPS’06, 2006.

[21] J. A. Edwards and U. Vishkin. Better speedups using simpler parallel
programming for graph connectivity and biconnectivity. In Proceedings
of the 2012 International Workshop on Programming Models and

Applications for Multicores and Manycores, pages 103–114. ACM,
2012.

[22] W. Fan, J. Li, S. Ma, H. Wang, and Y. Wu. Graph homomorphism
revisited for graph matching. Proceedings of the VLDB Endowment,
3(1-2):1161–1172, 2010.

[23] J. S. Firoz, M. Zalewski, and A. Lumsdaine. A scalable distance-1
vertex coloring algorithm for power-law graphs. In Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 391–392. ACM, 2018.

[24] L. K. Fleischer, B. Hendrickson, and A. Pınar. On identifying strongly
connected components in parallel. In International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 505–511. Springer,
2000.

[25] P. Flick, C. Jain, T. Pan, and S. Aluru. A parallel connectivity algorithm
for de bruijn graphs in metagenomic applications. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, page 15. ACM, 2015.

[26] O. Green, M. Dukhan, and R. Vuduc. Branch-avoiding graph algorithms.
In Proceedings of the 27th ACM symposium on Parallelism in Algorithms
and Architectures, pages 212–223. ACM, 2015.

[27] W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson. Ordering
heuristics for parallel graph coloring. In Proceedings of the 26th ACM
symposium on Parallelism in algorithms and architectures, pages 166–
177. ACM, 2014.

[28] R. Hojati, R. K. Brayton, and R. P. Kurshan. Bdd-based debugging of
designs using language containment and fair ctl. In International Con-
ference on Computer Aided Verification (CAV), pages 41–58. Springer,
1993.

[29] S. Hong, N. C. Rodia, and K. Olukotun. On fast parallel detection of
strongly connected components (scc) in small-world graphs.

[30] J. Iverson, C. Kamath, and G. Karypis. Evaluation of connected-
component labeling algorithms for distributed-memory systems. Parallel
Computing, 44:53–68, 2015.

[31] Y. Ji, Y. He, X. Jiang, J. Cao, and Q. Li. Combating the evasion
mechanisms of social bots. computers & security, 58:230–249, 2016.

[32] Y. Ji, Y. He, D. Zhu, Q. Li, and D. Guo. A mulitiprocess mechanism
of evading behavior-based bot detection approaches. In ISPEC.

[33] K. I. Karantasis, A. Lenharth, D. Nguyen, M. J. Garzarán, and K. Pingali.
Parallelization of reordering algorithms for bandwidth and wavefront
reduction. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 921–
932. IEEE Press, 2014.

[34] G. Kollias, M. Sathe, O. Schenk, and A. Grama. Fast parallel algorithms
for graph similarity and matching. JPDC, 2014.

[35] P. Kumar and H. H. Huang. G-store: high-performance graph store for
trillion-edge processing. In High Performance Computing, Networking,
Storage and Analysis, SC16: International Conference for, pages 830–
841. IEEE, 2016.

[36] P. Kumar and H. H. Huang. Falcon: Scaling io performance in multissd
volumes. In Usenix ATC, 2017.

[37] J. Kunegis. Konect: the koblenz network collection. In Proceedings of
the 22nd International Conference on World Wide Web (WWW), pages
1343–1350. ACM, 2013.

[38] D. LaSalle, M. M. A. Patwary, N. Satish, N. Sundaram, P. Dubey,
and G. Karypis. Improving graph partitioning for modern graphs
and architectures. In Proceedings of the 5th Workshop on Irregular
Applications: Architectures and Algorithms, page 14. ACM, 2015.

[39] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, June 2014.

[40] C. Liu, M. Xu, and S. Subramaniam. A reconfigurable high-performance
optical data center architecture. In Global Communications Conference
(GLOBECOM), 2016 IEEE, pages 1–6. IEEE, 2016.

[41] H. Liu and H. H. Huang. Enterprise: breadth-first graph traversal on
gpus. In Proceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis (SC), page 68.
ACM, 2015.

[42] H. Liu and H. H. Huang. Graphene: Fine-grained io management for
graph computing. In FAST, 2017.

[43] H. Liu, H. H. Huang, and Y. Hu. ibfs: Concurrent breadth-first search
on gpus. In Proceedings of the 2016 International Conference on
Management of Data (SIGMOD), pages 403–416. ACM, 2016.

[44] X. Luo, J. Gao, C. Zhou, and J. X. Yu. Uniwalk: Unidirectional random
walk based scalable simrank computation over large graph. In Data

Engineering (ICDE), 2017 IEEE 33rd International Conference on,
pages 325–336. IEEE, 2017.

[45] A. Magner, A. Grama, J. Sreedharan, and W. Szpankowski. Recovery
of vertex orderings in dynamic graphs. In Information Theory (ISIT),
2017 IEEE International Symposium on, pages 1563–1567. IEEE, 2017.

[46] S. Maleki, D. Nguyen, A. Lenharth, M. Garzarán, D. Padua, and
K. Pingali. Dsmr: a shared and distributed memory algorithm for single-
source shortest path problem. ACM SIGPLAN Notices, 51(8):39, 2016.

[47] W. Mclendon Iii, B. Hendrickson, S. J. Plimpton, and L. Rauchwerger.
Finding strongly connected components in distributed graphs. Journal
of Parallel and Distributed Computing, 65(8):901–910, 2005.

[48] D. Merrill, M. Garland, and A. Grimshaw. Scalable gpu graph traversal.
In ACM SIGPLAN Notices, volume 47, pages 117–128. ACM, 2012.

[49] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel, and B. Bhat-
tacharjee. Growth of the Flickr social network. In Proc. Workshop on
Online Social Networks, pages 25–30, 2008.

[50] M. E. Newman. The structure and function of complex networks. SIAM
review, 2003.

[51] S. M. Orzan. On distributed verification and verified distribution. Ph.D.
dissertation, 2004.

[52] K. Raffenetti, A. Amer, L. Oden, C. Archer, W. Bland, H. Fujita,
Y. Guo, T. Janjusic, D. Durnov, M. Blocksome, et al. Why is mpi
so slow?: analyzing the fundamental limits in implementing mpi-3.1.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, page 62. ACM, 2017.

[53] J. H. Reif. Depth-first search is inherently sequential. Information
Processing Letters, 20(5):229–234, 1985.

[54] D. Sacharidis, S. Papadopoulos, and D. Papadias. Topologically sorted
skylines for partially ordered domains. In Data Engineering, 2009.
ICDE’09. IEEE 25th International Conference on, pages 1072–1083.
IEEE, 2009.

[55] N. Satish, C. Kim, J. Chhugani, and P. Dubey. Large-scale energy-
efficient graph traversal: a path to efficient data-intensive supercomput-
ing. In High Performance Computing, Networking, Storage and Analysis
(SC), 2012 International Conference for, pages 1–11. IEEE, 2012.

[56] Y. Shiloach and U. Vishkin. An o (logn) parallel connectivity algorithm.
Journal of Algorithms, 1982.

[57] G. M. Slota, S. Rajamanickam, and K. Madduri. Bfs and coloring-based
parallel algorithms for strongly connected components and related prob-

lems. In International Parallel and Distributed Processing Symposium
(IPDPS), pages 550–559. IEEE, 2014.

[58] G. M. Slota, S. Rajamanickam, and K. Madduri. A case study of
complex graph analysis in distributed memory: Implementation and
optimization. In Parallel and Distributed Processing Symposium, 2016
IEEE International, pages 293–302. IEEE, 2016.

[59] F. Song, H. Ltaief, B. Hadri, and J. Dongarra. Scalable tile
communication-avoiding qr factorization on multicore cluster systems.
In High Performance Computing, Networking, Storage and Analysis
(SC), 2010 International Conference for, pages 1–11. IEEE, 2010.

[60] S. Srinivasan and et al. Application of graph sparsification in developing
parallel algorithms for updating connected components. In IPDPSW’16.

[61] G. Tan, D. Fan, J. Zhang, A. Russo, and G. R. Gao. Experience on
optimizing irregular computation for memory hierarchy in manycore
architecture. In Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and practice of parallel programming, pages 279–280. ACM,
2008.

[62] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal
on computing, 1(2):146–160, 1972.

[63] R. E. Tarjan and U. Vishkin. An efficient parallel biconnectivity
algorithm. SIAM Journal on Computing, 1985.

[64] H. Wei, J. X. Yu, C. Lu, and X. Lin. Speedup graph processing by
graph ordering. In Proceedings of the 2016 International Conference
on Management of Data (SIGMOD), pages 1813–1828. ACM, 2016.

[65] B. West and et al. A hybrid approach to processing big data graphs on
memory-restricted systems. In Proc. of IPDPS’15, 2015.

[66] M. Xu, C. Liu, and S. Subramaniam. Podca: A passive optical data
center architecture. In Communications (ICC), 2016 IEEE International
Conference on, pages 1–6. IEEE, 2016.

[67] D. Yan, J. Cheng, K. Xing, Y. Lu, W. Ng, and Y. Bu. Pregel algo-
rithms for graph connectivity problems with performance guarantees.
Proceedings of the VLDB Endowment, 7(14):1821–1832, 2014.

[68] Z. Zhang, J. X. Yu, L. Qin, L. Chang, and X. Lin. I/o efficient:
computing sccs in massive graphs. In Proceedings of the 2013 ACM

SIGMOD International Conference on Management of Data, pages 181–
192. ACM, 2013.

[69] A. D. Zhu, W. Lin, S. Wang, and X. Xiao. Reachability queries on
large dynamic graphs: a total order approach. In Proceedings of the
2014 ACM SIGMOD international conference on Management of data
(SIGMOD), pages 1323–1334. ACM, 2014.

