
High-Performance Triangle Counting on GPUs
Yang Hu†∗, Hang Liu‡∗, and H. Howie Huang†

†The George Washington University
‡University of Massachusetts Lowell

∗Equal contributions

Abstract—Counting triangles in a network is a primary step
toward making sense of social networks. For instance, a graph
with a large number of triangles is regarded as a “tightly knit
community” with high degree of trust, because in this case all the
friends (neighbors) of one vertex are also friends (connected) to
each other. This work focuses on using Graphics Processing Units
(GPUs) to accelerate triangle counting. To accommodate large
graphs, the stat-of-the-art GPU-based triangle counting project –
TriCore– simply stores the entire graph in the secondary storage
to achieve communication free multi-GPU triangle counting. Our
key observation is that each modern GPU server (Table I) often
installs multiple GPUs which can easily overwhelm the disk
bandwidth. Therefore, this paper introduces a new design for
workload balancing to partition the graph and the workload in
order to buffer each partitioned data in the CPU memory for
faster data provisioning. Taken together, this work is the first,
to the best of our knowledge, to advance the rate of triangle
counting beyond 109 traversed edges per second (TEPS), as well
as the first project that achieves > 108 TEPS for graphs with
more than ten billion edges.

I. INTRODUCTION

The triangle counting algorithm intersects the neighbor lists
of two endpoints from each query edge to identify the triangles
in a graph. To achieve high-performance triangle counting on
GPUs, neither of the following designs is dispensable:

1) In pursuit of workload balancing, we often adopt edge
centric triangle counting algorithm [7], that is, we use
the edge list format of the graph to provide the query
edge while compressed sparse row (CSR) representation
for the access of the neighbor lists of the two endpoints
from the query edge.

2) To reduce the time complexity, orientation [12] is ex-
ploited to remove half of the edges from the undirected
version of the graph. In short, for each pair of undirected
edges, orientation deletes the one edge that leads to
the larger difference in out degrees between the two
endpoints, which proves to reduce the complexity [12],
[10].

The state-of-the-art GPU-based triangle counting design [6],
[7] comes with two techniques, that is, the binary search-
based intersection, and the I/O efficient dual partition method.
In particular, binary search-based intersection outperforms
the mainstream merge path-based practice stemming from
the fact that binary search-based intersection presents better
memory access pattern atop GPUs’ single instruction multiple
data (SIMD) architecture. The second technique advances the
traditional 2-D partition [9] for CSR representation of the

Computer and dataset #GPUs CPU memory space (GB)
Amazon EC2 8 V100 418
Google Cloud 8 V100 624
Microsoft Azure 4 V100 448
SDSC Comet 4 P100 128
Kron30 dataset - 64
Kron31 dataset - 128
Gsh dataset - 124

TABLE I: #GPUs and the corresponding CPU memory space
of each server, as well as the big graph sizes. Note, the space
consumption of the graph comes from both the edge list and
CSR formats. We use 4-byte to store the vertex ID while 8-
byte for the offsets.

graph for workload balancing. In addition, since most triangle
counting work often exploits both CSR and edge list to count
triangles, this dual partitioning method further splits the edge
list to meet the partitions that are conducted atop CSR [7].

Despite the existing designs significantly boost the perfor-
mance of triangle counting on GPUs, the key observation
of this paper is that contemporary GPU servers install a
collection of extremely powerful GPUs on a single machine.
Consequently, conventional designs [6], [7] face the looming
crisis that loading graph partitions from secondary storage
(e.g., disk) to the CPU memory and further to GPUs may
fail to catch up the processing capability of such an array
of powerful GPUs. Fortunately, as shown in Table I, those
powerful servers also equip considerable CPU memories,
which can hold virtually all the big graphs. Therefore, we
propose a workload balance group based buffering mechanism
that exploits the CPU memory to cache the set of graph
partitions of interest in the CPU memory to meet the speed
needs on data provisioning from those attached GPUs. The
detailed descriptions are presented in Section II and Figure 1.

Performance Highlights. Our evaluation encompasses two
hightlights, as shown in Figure 2. Firstly, this is the first work,
to the best of our knowledge, that achieves beyond billion
TEPS (¶) performance for triangle counting. In Figure 2, these
datasets are amazon, cit-Patent and roadNet (i.e., CA,PA,TX).
Second, this is also the first work that retains 108 TEPS rate
for graphs at the scale of ten billion edges (·). Note, the
rate of triangle counting often drops when graph becomes
larger, as suggested by [10], [15], [11]. In this context,
achieving > 108 counting rate is extremely challenging. In

Machine 1

GPU1

CPU1

Disk1

Machine 2

GPU2

CPU2

Disk2
Machine i

CPUi

Diski

Machine j

CPUj

Diskj

(b) Previous approach (c) Current approach

Machine 1

CPU1

Disk1

…

Machine n

CPUn

Diskn

…

Workload balance group 1 Workload balance group 2

Graph

Partition

set 1

Partition

set 2

(a) Graph with four partitions

GPU1GPU1 GPU1GPUi
GPU1GPUj GPU1GPUk

I/O efficient

 dual partition

Fig. 1: For (a) graph with four partitions, we group them into two partition sets. (b) Previous approach stores the entire graph
in the disk for each GPU card. In contrast, (c) Current approach buffers each partition set in CPU memory to avoid slow disk
to CPU memory data movement. Note, each server maintains a partition set instead of single partition for the purpose of ease
of workload stealing.

particular, these three graphs are KR30, KR31 and Gsh [5].
Note Kron30 and Kron31 are generated by the Graph 500
Kronecker generator [3] with the average edge factor as 16
and vertex count to be 230 and 231, respectively.

Rate >109

Larger graph >108 rate

1

2
New result
2017 champion

103
104
105
106
107
108
109
1010

105 106 107 108 109 1010 1011 1012

R
at
e
(T
EP

S,
lo
gs
ca
le
)

Ne, Number of edges

Fig. 2: Performance and graph size comparison between this
work and the 2017 champion [11].

II. WORKLOAD BALANCE GROUP DESIGN

Figure 1 compares the system designs of [6], [7] and our
current approach. In particular, assuming the I/O efficient dual
partition method splits the graph into four parts with roughly
similar amount of edges. That is the yellow rectangles in
Figure 1(a). Previous approach [6], as shown in Figure 1(b),
simply stores the entire graph in the secondary storage disk for
every participating server. During computation, each machine,
on demand, loads the required partitions from disk to CPU
memory and further to GPU in order to count triangle. Once
workload imbalance surfaces, any GPU on any server can help
tackle that problem resulting from the fact that each server
maintains the entire copy of the graph. The issue of limited
secondary storage bandwidth was not surfaced in TriCore [7]
which only installs one relatively weak GPU on a server.

However, as shown in Table I, mainstream cloud providers
and supercomputers tend to attach a collection of super
powerful GPUs (e.g., NVIDIA V100 GPUs [1]) on each

server. That is, the collective processing capabilities of all
GPUs on one machine will reach a level that the aggregated
throughput from the disks fails to satisfy. In this setting,
disk bandwidth immediately becomes the major bottleneck for
triangle counting which is also evident by ¶ from Figure 3.

To tackle this problem, we proposes to buffer the graph in
the CPU memory so that moving data to GPU takes shorter
time, thanks to the fact that contemporary servers also equip
substantial amount of CPU memories that can hold a large
portion of, if not the entire, graph.

Figure 1(c) illustrates our current design. In particular, we
attempt to split the servers into workload balancing groups.
As suggested by the name, this method allows each machine
to address workload imbalance issues inside of the group.
For instance, in Figure 1(c), we divide the graph into two
partition groups. Next, the servers in workload balance group
1 are responsible for the partition group 1 of the graph while
workload balance group 2 for partition group 2, and so on.
This design can support graphs that are larger than the CPU
memory because each server only needs to hold one partition
group of the graph. If workload imbalance issue arises, all
the servers from the same workload balance group can help
alleviate the problem.

III. RESULTS

We have implemented this project atop the prior HEPC
work [6] with 800 extra lines of C++/CUDA code. We use
CUDA toolkit 9.1 and G++ 5.4.0 with compilation flag as
O3 to compile the source code. Our test environment is the
NVIDIA P100 GPUs from Comet supercomputers at San
Diego Supercomputer Center (SDSC) [4] of the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE) [14].

We have examined all the graphs from Graph Challenge
website, as plotted in Figure 1 and some extremely big graphs
from Table III are downloaded from [2], [3]. In particular,
we categorize the datasets into three categories, i.e., small,
medium and large. For the first two categories, the vertex

Graph Name |V | |E| #Triangles Time (second) TEPS
Friendster [13] 65,608,367 1,806,067,135 4,173,724,142 2.1 8.48E+08

Twitter [8] 41,652,230 1,468,365,182 34,824,916,864 6.5 2.26E+08
Scale25-16 [3] 33,554,432 523,611,003 22,535,831,016 2.5 2.06E+08

Twitter [8]: 2017 Champion [10] 256× machines 41,652,230 1,468,365,182 34,824,916,864 8.5 1.72E+08

TABLE II: Performance for medium size graphs on 8 GPUs.

Graph Name |V | |E| #Triangles Time (second) TEPS
Kron30 [3] 1,073,741,824 17,022,115,838 1,074,908,326,232 156.7 1.08E+08
Kron31 [3] 2,147,483,648 34,101,759,806 2,306,560,594,152 586.8 5.81E+07

Gsh [5] 988,490,691 33,274,090,228 1,788,448,336,689 253.4 1.31E+08

TABLE III: Performance for large graphs on 32 GPUs (with partition algorithm).

and edge counts span from 4,040 to 65,608,367 and 12,572
and 1,806,067,135, respectively. For the last category, the
vertex and edge counts are 988,490,691 – 2,147,483,648 and
17,022,115,838 – 33,274,090,228, respectively. Note, we use
32-bit and 64-bit to represent vertex ID and offset indexing,
respectively.

We report three runtimes. For small size graphs with in-
memory computation, we report runtime includes time from
data ready in DRAM to the end, and nomem runtime with
only GPU kernel time (excludes memory copy time between
DRAM and GPU memory). For the results of big graphs with
partition algorithm, we report the total time, includes the IO
time, data copy to GPUs and computation time. We only report
this because the MPI based load balancing scheme used for
this implementation makes it hard to separate I/O, memory
copy and GPU kernel time.

The following sections will report both the time consump-
tion and corresponding traversed edges per second (TEPS) per-
formance metrics for our evaluations. The time of performing
graph partitioning is excluded. Besides, all the results are the
average of 64 runs.

A. Small Graphs

For smaller graphs which contain less than 1 billion edges,
we evaluate them on both a single and eight GPUs. As shown
in Figure 3, for single GPU, we observe a collection of datasets
from this category (i.e., P100 TEPS) achieve > 108 TEPS
albeit including the data transferring data from CPU memory
to GPU.

Once scaling to eight P100 GPUs, labeled as 8× P100 in
Figure 3, we find the computing rate stays similar to 1×P100
case. We thus hypothesize moving data from CPU to GPU
memory may dominate the entire time consumption given
those datasets are extremely small. To address this issue, we
directly store all the graphs in the GPU memory for these
small graphs, which is labeled as nonmem in Figure 3. With
this optimization, for 1×P100 nonmem, the majority of the
graphs achieve beyond 108 computing rate. Observation ¶
from Figure 3 also backs our hypothesis.

And the most exciting achievements appear in 8×P100
nonmem case. In particular, we retain, on average, 7.3×108

computing rate with the minimum and maximum of 2.1×108

and 4.7×109 from roadNet-CA and as20000102 graphs, re-
spectively. In total, eight datasets obtain > 109 TEPS com-
puting rate. In Figure 3, we use · to highlight the 109

computing rate. For ease of presentation, we also include the
time consumption in Table IV. Our nonmem approach is
similar to the 2017 graph challenge work that also reports
the result excluding the memory copy time [15].

1x107

1x108

1x109

1x1010

am
az
on
03
02

am
az
on
03
12

am
az
on
05
05

am
az
on
06
01

as
-c
ai
da
20
07
11
05

as
20
00
01
02

ca
-A
st
ro
P
h

ca
-C
on
dM

at
ca
-G
rQ
c

ca
-H
ep
P
h

ca
-H
ep
Th

ci
t-H

ep
P
h

ci
t-H

ep
Th

ci
t-P

at
en
ts

em
ai
l-E
nr
on

em
ai
l-E
uA
ll

fa
ce
bo
ok

co
m
bi
ne
d

fi
ck
rE
dg
es

gr
ap
h5
00
-s
ca
le
18
-e
f1
6

gr
ap
h5
00
-s
ca
le
19
-e
f1
6

gr
ap
h5
00
-s
ca
le
20
-e
f1
6

gr
ap
h5
00
-s
ca
le
21
-e
f1
6

lo
c-
br
ig
ht
ki
te
ed
ge
s

lo
c-
go
w
al
la
ed
ge
s

or
eg
on
1 0
10
33
1

or
eg
on
1 0
10
40
7

or
eg
on
1 0
10
41
4

or
eg
on
1 0
10
42
1

or
eg
on
1 0
10
42
8

or
eg
on
1 0
10
50
5

or
eg
on
1 0
10
51
2

or
eg
on
1 0
10
51
9

or
eg
on
1 0
10
52
6

or
eg
on
2 0
10
33
1

or
eg
on
2 0
10
40
7

or
eg
on
2 0
10
41
4

or
eg
on
2 0
10
42
1

or
eg
on
2 0
10
42
8

or
eg
on
2 0
10
50
5

or
eg
on
2 0
10
51
2

or
eg
on
2 0
10
51
9

or
eg
on
2 0
10
52
6

p2
p-
G
nu
te
lla
04

p2
p-
G
nu
te
lla
05

p2
p-
G
nu
te
lla
06

p2
p-
G
nu
te
lla
08

p2
p-
G
nu
te
lla
09

p2
p-
G
nu
te
lla
24

p2
p-
G
nu
te
lla
25

p2
p-
G
nu
te
lla
30

p2
p-
G
nu
te
lla
31

ro
ad
N
et
-C
A

ro
ad
N
et
-P
A

ro
ad
N
et
-T
X

so
c-
E
pi
ni
on
s1

so
c-
S
la
sh
do
t0
81
1

so
c-
S
la
sh
do
t0
90
2

TE
P
S
(lo
gs
ca
le
)

1xP100
1xP100 nonmem
8xP100
8xP100 nonmem

Rate > 109

The difference means
I/O is the bottleneck

2

1

Fig. 3: TEPS for small graphs on one and eight GPUs,
respectively. Corresponding time consumptions are listed in
Table IV.

B. Medium Graphs

Table II presents the graph specifications, triangle counts,
runtime and TEPS of three popular medium size graphs
on eight P100 GPUs. These results are extremely close to
109 TEPS. Comparing to 2017 champion [10] which counts
triangles for Twitter [8] datasets in 8.5 seconds with 256
machines, our design only needs 6.5 seconds on eight P100
GPUs.

C. Large Graphs

Table III further studies the performance of our design for
extremely large graphs. In particular, we use 32 P100 GPUs to
conduct the tests. Clearly, all the TEPS we achieve are beyond
108 rate. Note, larger graphs are often more challenging to
compute triangles, as suggested by [10]. To the best of our

Graph |V | |E| Triangle
Runtime (second) Rate (TEPS)

1XP100 1XP100 nomem 8XP100 8XP100 nomem 1XP100 1XP100 nomem 8XP100 8XP100 nomem

amazon0302 262,112 899,792 717,719 4.25E-03 1.40E-03 3.46E-03 6.15E-04 2.12E+08 6.41E+08 2.60E+08 1.46E+09
amazon0312 400,728 2,349,869 3,686,467 1.15E-02 5.28E-03 6.76E-03 8.91E-04 2.05E+08 4.45E+08 3.48E+08 2.64E+09
amazon0505 410,237 2,439,437 3,951,063 1.18E-02 5.47E-03 7.27E-03 1.07E-03 2.06E+08 4.46E+08 3.36E+08 2.28E+09
amazon0601 403,395 2,443,408 3,986,507 1.06E-02 4.41E-03 7.28E-03 1.18E-03 2.31E+08 5.54E+08 3.36E+08 2.07E+09
as-caida20071105 26,476 53,381 36,365 1.28E-03 1.31E-04 1.27E-03 1.26E-04 4.16E+07 4.07E+08 4.21E+07 4.24E+08
as20000102 6,475 12,572 6,584 1.15E-03 4.94E-05 1.14E-03 6.10E-05 1.09E+07 2.55E+08 1.10E+07 2.06E+08
ca-AstroPh 18,773 198,050 1,351,441 2.11E-03 4.72E-04 2.06E-03 3.94E-04 9.37E+07 4.19E+08 9.60E+07 5.02E+08
ca-CondMat 23,134 93,439 173,361 1.46E-03 2.16E-04 1.37E-03 1.59E-04 6.41E+07 4.33E+08 6.82E+07 5.86E+08
ca-GrQc 5,243 14,484 48,260 1.10E-03 5.63E-05 1.16E-03 6.56E-05 1.32E+07 2.57E+08 1.25E+07 2.21E+08
ca-HepPh 12,009 118,489 3,358,499 1.74E-03 5.27E-04 1.61E-03 4.72E-04 6.79E+07 2.25E+08 7.35E+07 2.51E+08
ca-HepTh 9,878 25,973 28,339 8.23E-04 7.35E-05 8.98E-04 7.74E-05 3.16E+07 3.53E+08 2.89E+07 3.36E+08
cit-HepPh 34,547 420,877 1,276,868 2.66E-03 9.40E-04 2.19E-03 5.97E-04 1.58E+08 4.48E+08 1.92E+08 7.05E+08
cit-HepTh 27,771 352,285 1,478,735 2.78E-03 8.50E-04 2.63E-03 6.03E-04 1.27E+08 4.14E+08 1.34E+08 5.85E+08
cit-Patents 3,774,769 16,518,947 7,515,023 7.77E-02 3.34E-02 5.20E-02 4.22E-03 2.13E+08 4.94E+08 3.18E+08 3.91E+09
email-Enron 36,693 183,831 727,044 1.75E-03 4.48E-04 1.65E-03 3.63E-04 1.05E+08 4.10E+08 1.12E+08 5.06E+08
email-EuAll 265,215 364,481 267,313 3.56E-03 1.14E-03 2.62E-03 4.36E-04 1.02E+08 3.19E+08 1.39E+08 8.36E+08
facebook combined 4,040 88,234 1,612,010 1.43E-03 3.23E-04 1.34E-03 3.47E-04 6.15E+07 2.73E+08 6.58E+07 2.55E+08
flickrEdges 105,939 2,316,948 107,987,357 2.87E-02 2.35E-02 1.41E-02 9.26E-03 8.07E+07 9.87E+07 1.65E+08 2.50E+08
graph500-scale18-ef16 174,148 3,800,348 82,287,285 4.70E-02 3.77E-02 2.07E-02 1.15E-02 8.09E+07 1.01E+08 1.84E+08 3.30E+08
graph500-scale19-ef16 335,319 7,729,675 186,288,972 1.03E-01 8.29E-02 3.24E-02 1.29E-02 7.52E+07 9.32E+07 2.39E+08 6.01E+08
graph500-scale20-ef16 645,821 15,680,861 419,349,784 2.32E-01 2.01E-01 6.85E-02 2.91E-02 6.75E+07 7.79E+07 2.29E+08 5.38E+08
graph500-scale21-ef16 1,243,073 31,731,650 935,100,883 5.65E-01 5.04E-01 1.45E-01 6.73E-02 5.62E+07 6.30E+07 2.19E+08 4.71E+08
loc-brightkite edges 58,229 214,078 494,728 2.27E-03 8.04E-04 1.78E-03 3.85E-04 9.43E+07 2.66E+08 1.21E+08 5.56E+08
loc-gowalla edges 196,592 950,327 2,273,138 4.86E-03 2.03E-03 3.90E-03 1.17E-03 1.96E+08 4.68E+08 2.44E+08 8.09E+08
oregon1 010331 10,671 22,002 17,144 8.90E-04 6.62E-05 9.24E-04 7.57E-05 2.47E+07 3.32E+08 2.38E+07 2.91E+08
oregon1 010407 10,730 21,999 15,834 8.11E-04 6.55E-05 8.81E-04 7.49E-05 2.71E+07 3.36E+08 2.50E+07 2.94E+08
oregon1 010414 10,791 22,469 18,237 8.78E-04 1.21E-04 8.91E-04 7.18E-05 2.56E+07 1.86E+08 2.52E+07 3.13E+08
oregon1 010421 10,860 22,747 19,108 8.15E-04 6.90E-05 8.83E-04 6.86E-05 2.79E+07 3.30E+08 2.58E+07 3.32E+08
oregon1 010428 10,887 22,493 17,645 8.21E-04 6.71E-05 8.81E-04 7.49E-05 2.74E+07 3.35E+08 2.55E+07 3.00E+08
oregon1 010505 10,944 22,607 17,597 9.02E-04 6.79E-05 8.78E-04 7.48E-05 2.51E+07 3.33E+08 2.58E+07 3.02E+08
oregon1 010512 11,012 22,677 17,598 8.16E-04 6.82E-05 8.97E-04 7.62E-05 2.78E+07 3.33E+08 2.53E+07 2.98E+08
oregon1 010519 11,052 22,724 17,677 8.16E-04 6.88E-05 8.84E-04 5.81E-05 2.78E+07 3.30E+08 2.57E+07 3.91E+08
oregon1 010526 11,175 23,409 19,894 8.18E-04 6.91E-05 8.97E-04 7.62E-05 2.86E+07 3.39E+08 2.61E+07 3.07E+08
oregon2 010331 10,901 31,180 82,856 9.40E-04 9.08E-05 9.32E-04 9.68E-05 3.32E+07 3.43E+08 3.34E+07 3.22E+08
oregon2 010407 10,982 30,855 78,138 9.37E-04 1.68E-04 9.24E-04 1.01E-04 3.29E+07 1.83E+08 3.34E+07 3.06E+08
oregon2 010414 11,020 31,761 88,905 8.51E-04 9.24E-05 9.25E-04 9.96E-05 3.73E+07 3.44E+08 3.43E+07 3.19E+08
oregon2 010421 11,081 31,538 82,129 8.51E-04 9.14E-05 8.92E-04 7.99E-05 3.71E+07 3.45E+08 3.54E+07 3.94E+08
oregon2 010428 11,114 31,434 78,000 8.60E-04 9.10E-05 9.24E-04 9.78E-05 3.65E+07 3.45E+08 3.40E+07 3.21E+08
oregon2 010505 11,158 30,943 72,182 8.49E-04 8.81E-05 9.19E-04 9.54E-05 3.64E+07 3.51E+08 3.37E+07 3.24E+08
oregon2 010512 11,261 31,303 72,866 9.21E-04 9.02E-05 9.16E-04 9.75E-05 3.40E+07 3.47E+08 3.42E+07 3.21E+08
oregon2 010519 11,376 32,287 83,709 8.52E-04 9.19E-05 9.15E-04 1.02E-04 3.79E+07 3.51E+08 3.53E+07 3.18E+08
oregon2 010526 11,462 32,730 89,541 8.55E-04 9.34E-05 9.35E-04 1.02E-04 3.83E+07 3.50E+08 3.50E+07 3.21E+08
p2p-Gnutella04 10,877 39,994 934 1.18E-03 1.09E-04 1.23E-03 1.10E-04 3.40E+07 3.67E+08 3.26E+07 3.64E+08
p2p-Gnutella05 8,847 31,839 1,112 8.41E-04 8.62E-05 9.02E-04 7.45E-05 3.79E+07 3.69E+08 3.53E+07 4.27E+08
p2p-Gnutella06 8,718 31,525 1,142 8.44E-04 8.60E-05 9.16E-04 8.99E-05 3.74E+07 3.67E+08 3.44E+07 3.51E+08
p2p-Gnutella08 6,302 20,777 2,383 1.10E-03 6.48E-05 1.16E-03 7.25E-05 1.88E+07 3.21E+08 1.79E+07 2.86E+08
p2p-Gnutella09 8,115 26,013 2,354 1.21E-03 7.40E-05 1.18E-03 7.95E-05 2.15E+07 3.51E+08 2.20E+07 3.27E+08
p2p-Gnutella24 26,519 65,369 986 1.30E-03 1.54E-04 1.29E-03 1.46E-04 5.01E+07 4.25E+08 5.08E+07 4.47E+08
p2p-Gnutella25 22,688 54,705 806 1.52E-03 2.17E-04 1.27E-03 1.26E-04 3.61E+07 2.52E+08 4.30E+07 4.35E+08
p2p-Gnutella30 36,683 88,328 1,590 1.06E-03 1.88E-04 1.10E-03 1.71E-04 8.36E+07 4.69E+08 8.01E+07 5.15E+08
p2p-Gnutella31 62,587 147,892 2,024 1.97E-03 5.18E-04 1.57E-03 2.62E-04 7.52E+07 2.85E+08 9.41E+07 5.65E+08
roadNet-CA 1,965,207 2,766,607 120,676 1.39E-02 3.51E-03 1.09E-02 5.92E-04 1.99E+08 7.87E+08 2.53E+08 4.67E+09
roadNet-PA 1,088,093 1,541,898 67,150 6.96E-03 1.78E-03 5.77E-03 8.92E-04 2.22E+08 8.67E+08 2.67E+08 1.73E+09
roadNet-TX 1,379,918 1,921,660 82,869 8.61E-03 2.16E-03 7.48E-03 9.46E-04 2.23E+08 8.88E+08 2.57E+08 2.03E+09
soc-Epinions1 75,880 405,740 1,624,481 3.11E-03 1.20E-03 2.77E-03 8.13E-04 1.30E+08 3.38E+08 1.47E+08 4.99E+08
soc-Slashdot0811 77,361 469,180 551,724 4.70E-03 2.33E-03 2.71E-03 7.18E-04 9.97E+07 2.02E+08 1.73E+08 6.54E+08
soc-Slashdot0902 82,169 504,230 602,592 3.34E-03 1.24E-03 2.86E-03 6.36E-04 1.51E+08 4.06E+08 1.77E+08 7.93E+08

TABLE IV: Time consumption (second) and computing rate (TEPS) for various small graphs on one and eight GPUs.

knowledge, this is the first GPU-based triangle counting that
can tackle graphs with > 1010 edges, and more importantly,
achieve a performance of > 108 TEPS.

IV. CONCLUSION

This work breaks the billion TEPS performance ceiling for
the triangle counting algorithm. In particular, we use the CPU
memory to buffer the graph data in order to rapidly move data
from CPU to GPU, thereby, achieving fast triangle counting
on GPUs. To the best of our knowledge, this is the first
work which advances triangle counting beyond 109 TEPS.

Furthermore, this is also the first GPU work that achieves
> 108 TEPS rate for large graphs (> 1010 edges).

V. ACKNOWLEDGMENT

This work was partially supported by National Science
Foundation CAREER award 1350766 and grants 1618706 and
1717774 at George Washington University. This research used
resources from XSEDE and Amazon AWS research credits at
University of Massachusetts Lowell.

REFERENCES

[1] NVIDIA TESLA V100 GPU ACCELERATOR,
http://www.nvidia.com/content/pdf/volta-datasheet.pdf.

[2] Paolo Boldi, Andrea Marino, Massimo Santini, and Sebastiano Vigna.
BUbiNG: Massive crawling for the masses. In Proceedings of the
Companion Publication of the 23rd International Conference on World
Wide Web, pages 227–228. International World Wide Web Conferences
Steering Committee, 2014.

[3] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A
recursive model for graph mining. In SDM, 2004.

[4] Comet Supercomputer at SDSC. http://www.sdsc.edu/support/user
guides/comet.html, 2018.

[5] Gsh dataset from WebGraph. http://law.di.unimi.it/webdata/gsh-2015/,
2015.

[6] Yang Hu, Pradeep Kumar, Guy Swope, and H Howie Huang. Trix:
Triangle counting at extreme scale. In High Performance Extreme
Computing Conference (HPEC), 2017 IEEE, pages 1–7. IEEE, 2017.

[7] Yang Hu, Hang Liu, and H Howie Huang. Tricore: Parallel triangle
counting on gpus. In High Performance Computing, Networking, Storage
and Analysis, 2018 SC-International Conference for. IEEE, 2018.

[8] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What
is twitter, a social network or a news media? In WWW, 2010.

[9] Hang Liu and H Howie Huang. Graphene: Fine-grained io management
for graph computing. In FAST, pages 285–300, 2017.

[10] Roger Pearce. Triangle counting for scale-free graphs at scale in dis-
tributed memory. In High Performance Extreme Computing Conference
(HPEC), 2017 IEEE, pages 1–4. IEEE, 2017.

[11] Siddharth Samsi, Vijay Gadepally, Michael Hurley, Michael Jones,
Edward Kao, Sanjeev Mohindra, Paul Monticciolo, Albert Reuther,
Steven Smith, William Song, et al. Graphchallenge. org: Raising the
bar on graph analytic performance. arXiv preprint arXiv:1805.09675,
2018.

[12] Julian Shun and Kanat Tangwongsan. Multicore triangle computations
without tuning. In Proceedings of the IEEE International Conference
on Data Engineering (ICDE), 2015.

[13] SNAP: Stanford Large Network Dataset Collection. http://snap.stanford.
edu/data/.

[14] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly
Gaither, Andrew Grimshaw, Victor Hazlewood, Scott Lathrop, Dave
Lifka, Gregory D Peterson, et al. Xsede: accelerating scientific dis-
covery. Computing in Science & Engineering, 16(5):62–74, 2014.

[15] Chad Voegele, Yi-Shan Lu, Sreepathi Pai, and Keshav Pingali. Parallel
triangle counting and k-truss identification using graph-centric methods.
In High Performance Extreme Computing Conference (HPEC), 2017
IEEE, pages 1–7. IEEE, 2017.

