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ABSTRACT
The Breadth-First Search (BFS) algorithm serves as the
foundation for many graph-processing applications and ana-
lytics workloads. While Graphics Processing Unit (GPU) of-
fers massive parallelism, achieving high-performance BFS on
GPUs entails efficient scheduling of a large number of GPU
threads and effective utilization of GPU memory hierarchy.
In this paper, we present Enterprise, a new GPU-based BFS
system that combines three techniques to remove poten-
tial performance bottlenecks: (1) streamlined GPU threads
scheduling through constructing a frontier queue without
contention from concurrent threads, yet containing no dupli-
cated frontiers and optimized for both top-down and bottom-
up BFS. (2) GPU workload balancing that classifies the fron-
tiers based on different out-degrees to utilize the full spec-
trum of GPU parallel granularity, which significantly in-
creases thread-level parallelism; and (3) GPU based BFS
direction optimization quantifies the effect of hub vertices
on direction-switching and selectively caches a small set of
critical hub vertices in the limited GPU shared memory to
reduce expensive random data accesses. We have evaluated
Enterprise on a large variety of graphs with different GPU
devices. Enterprise achieves up to 76 billion traversed edges
per second (TEPS) on a single NVIDIA Kepler K40, and
up to 122 billion TEPS on two GPUs that ranks No. 45 in
the Graph 500 on November 2014. Enterprise is also very
energy-efficient as No. 1 in the GreenGraph 500 (small data
category), delivering 446 million TEPS per watt.

1. INTRODUCTION
Breadth-First Search (BFS) algorithm serves as a building
block for many analytics workloads, e.g., single source short-
est path, betweenness centrality [16, 31, 32, 42] and close-
ness centrality [37, 40]. Notably, the Graph 500 benchmark
uses BFS on power-law graph to evaluate high-performance
hardware architectures and software systems that are de-
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signed to run data-intensive applications [1]. In this work,
we are particularly interested in accelerating BFS traversal
on power-law graphs, which can be found in a wide spec-
trum of applications, e.g., biomedical cells [26], WWW [9,
25] and social network [17, 27].

The traditional (top-down) BFS algorithm starts at the root
of the graph and inspects the status of all of its adjacent
(or neighboring) vertices. If any adjacent vertex is unvis-
ited, the algorithm will identify it as a frontier, put it into
a queue that we refer to as the frontier queue in this paper,
and subsequently mark it visited. As the result of the in-
spection of the current level, the frontier queue consists of
all the vertices that have just been visited and will be used
for expansion at the next level. To do so, BFS iteratively
selects each vertex in the frontier queue, inspects its adja-
cent vertices, and marks this vertex visited. The process of
expansion and inspection is repeated level by level till no ver-
tex in this graph remains unvisited. For recently proposed
bottom-up BFS [10], the workflow is similar with different
vertices identified as frontiers. Clearly, the frontier queue is
at the heart of the BFS algorithm - at each level BFS starts
with the frontier queue prepared by the inspection of the
preceding level and ends with a new frontier queue that will
be used for the expansion of next level.

Graphics Processing Unit (GPU) provides not only mas-
sive parallelism (in 100Ks threads) but also fast I/O (with
100s GB/s memory bandwidth), which makes it an excellent
hardware platform for running the BFS algorithm. Unfortu-
nately, although recent attempts [21, 33, 36, 24] have made
remarkable progress, unleashing the full power of GPUs to
achieve high-performance BFS remains extremely challeng-
ing. In this paper, we advocate that a high-performance BFS
system shall carefully match the hardware aspects of GPUs
through efficient management of numerous GPU streaming
processors and unique memory hierarchy.

In this paper, we present Enterprise1, a new GPU-based
BFS system that tailors the BFS execution flow and data ac-
cess pattern to take full advantage of high thread count and
massive memory bandwidth of GPUs. Enterprise achieves
up to 76 billion traversed edges per second (TEPS) on a
single NVIDIA Kepler K40, and up to 122 billion TEPS
and 446 million TEPS per watt on two GPUs, which ranks
No. 45 and No. 1 in the Graph 500 and GreenGraph 500

1Enterprise is the name of the first space shuttle built for
NASA on 1976.
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Figure 1: (a) An example graph with its adjacency list and one valid BFS traversal tree (there may exist multiple valid
BFS trees). We use this example throughout the paper. Top-down BFS using (b) the frontier queue or (c) status array, vs.
(d) bottom-up BFS. The numbers in the status array represent at which level the vertex is visited. The labels of F and U
represent frontier and unvisited vertex, respectively. In (c) and (d), the gray threads that are assigned to non-frontier vertices
would idle with no work.

small data category in November 2014, respectively. This is
achieved through the design of three novel techniques:

First, streamlined GPU threads scheduling is achieved
through efficient frontier queue generation of two distinct
steps: the scan of the status array of the graph at the cur-
rent level, followed by prefix sum based frontier queue gen-
eration. When enqueueing a frontier, atomic operations are
needed to ensure the uniqueness of each frontier vertex in
the queue, however, for GPUs such operations can lead to
expensive overhead among a large quantity of GPU threads.
By breaking the queue generation into two steps, Enterprise
is able to not only eliminate the need of thread synchroniza-
tion by updating and accessing the status array in parallel,
but also remove duplicated frontiers from the queue that
avoids potentially useless work down the road. This is fur-
ther combined with memory optimization to accelerate both
top-down and bottom-up BFS. The evaluation shows that
although it may take a small amount of time for queue gener-
ation, our GPU threads scheduling can speed up the overall
BFS runtime by 37.5×.

Second, GPU workload balancing via frontier clas-
sification. To mitigate inter-thread workload imbalance,
Enterprise classifies the frontiers based on the out-degrees
(the number of edges to adjacent vertices) into a number of
queues, and assigns a different number of threads to work
on each queue. Specifically, Enterprise creates four different
frontier queues corresponding to Thread, Warp, Coopera-
tive Thread Array (CTA), and Grid [4]. For example, En-
terprise may assign a single thread for the frontiers whose
out-degree is less than 32 and a warp for those less than
256. Enterprise may even assign all threads on one GPU
to a frontier in the case of extremely high out-degrees (e.g.,
106). Prior work utilizes a fixed number of threads (typ-
ically 32 or 256), where static assignments often result in
skewed workload among threads [21, 33, 23, 29]. The fron-
tier classification greatly mitigates this imbalance, leading to
additional speedup of 1.6× to 4.1× on top of the proposed
GPU threads scheduling technique.

Third, GPU-aware direction optimization is developed
in Enterprise to run bottom-up BFS efficiently on GPUs.
Specifically, we propose a new parameter that uses the ratio

of hub vertices in the frontier queue to determine the one-
time switch from top-down to bottom-up on GPUs. This
parameter is shown to be stable across different graphs, re-
moving the need for parameter tuning as in the prior ap-
proach [10]. More importantly, Enterprise selectively caches
the hub vertices in GPU shared memory to reduce the ex-
pensive random global memory access. Interestingly, this
shared memory based cache with a small size of 48 KB,
when caching a few thousand of critical hub vertices, can
help to reduce up to 95% of global memory transactions in
bottom-up BFS.

To the best of our knowledge, Enterprise is the first GPU-
based BFS system that not only leverages a variety of GPU
thread groups to balance irregular workloads but also em-
ploys different GPU memories to mitigate random accesses,
both of which are inherent characteristics of graph traversal
on power-law graph and especially challenging to optimize
on modern GPUs. Enterprise can be utilized to support
a number of graph algorithms such as single source short-
est path, diameter detection, strongly connected component,
and betweenness centrality.

The rest of the paper is organized as follows: Section 2 intro-
duces the background on GPUs, BFS, and the graphs used
in this paper. Section 3 presents the challenges of running
BFS algorithms on GPUs. Section 4 describes the three
techniques and their benefits. We present the overall per-
formance and energy efficiency of Enterprise in Section 5.
Section 6 discusses the related work and Section 7 concludes.

2. BACKGROUND

2.1 Breadth-First Search
Traditional (top-down) BFS algorithm performs expan-
sion and inspection at each level, that is, from each frontier
(last recently visited) vertex v, examining whether an ad-
jacent vertex w is first-time visited. If so, v becomes the
parent and w is also enqueued into the frontier queue.

The frontiers can be generated in two ways. In the first
approach of Figure 1(b), known as atomic operation based
frontier generation [30], two threads are dispatched at level 2
to check the adjacency lists of vertices 1 and 4 in the queue



Figure 2: Hybrid (direction-optimizing) BFS.

FQ2, and both would like to put vertex 2 into FQ3. In
this case, atomic operations (e.g., atomicCAS in CUDA [4])
are utilized to ensure that FQ3 has no duplicated frontiers,
where whichever thread that finishes first would become the
parent of vertex 2. Without atomic operations, vertex 2
would be enqueued twice, resulting in redundant work at
level 3.

Since inter-thread synchronization is costly on GPUs, a sec-
ond approach [24, 36] uses a data structure called the Status
Array (SA) to track the status of each vertex in the graph.
Status array is basically a byte array indexed by the vertex
ID. The status of a vertex can be unvisited, frontier or vis-
ited (represented by its BFS level). At every level, a thread
will be assigned to each vertex, whereas only those that are
working on the frontiers will perform expansion and inspec-
tion. Thus, as shown in Figure 1(c), while ten threads will
be used at level 2, only two will be working on vertices 1 and
4. The advantage of this approach is that atomic operation
is no longer needed - both vertices 1 and 4 can be the par-
ent of vertex 2, and the update of the status of vertex 2 can
be performed sequentially. Here, unlike the first approach
whoever finishes last becomes vertex 2’s parent.

Hybrid BFS is initialized with the top-down approach
and switches the direction between top-down and bottom-up
when the switching parameters satisfy the predefined thresh-
olds. Figure 2 presents the workflow of hybrid (direction-
optimizing) BFS. Top-down BFS aims to identify the edges
that connect the frontiers and unvisited vertices, while bottom-
up aims to identify those between the frontiers to visited
vertices. This paper formally defines a frontier as:

Definition (Frontier) Let v be a vertex of the graph G.
At level i, v becomes a frontier if

• Top-down BFS: v was visited at level i− 1; or
• Bottom-up BFS: v has not been visited between level

0 and i− 1.

Using the same example in Figure 1, at level 2, top-down se-
lects vertices {1, 4} as the frontiers. In comparison, bottom-
up uses unvisited vertices {3, 5, 6, 8, 9} as the frontiers at
level 3. When bottom-up discovers that vertices {3, 5} con-
nect to a visited vertex 2, they are marked as visited with 2
as the parent. Similarly, vertex 8 is marked as visited with
7 as the parent.

The goal of direction-switching is to reduce a potentially
large number of unnecessary edge checks. Hybrid BFS may
switch direction twice in the process, i.e., from top-down to

Figure 3: A simplified view of GPU architecture.

bottom-up and from bottom-up to top-down, each of which
is associated with a parameter. In Figure 2, α is calculated
as the ratio of mu and mf , where mu represents the un-
explored edge count, and mf the edges to be checked from
the top-down direction; and β is calculated as the ratio of
n and nf , where n represents the number of vertices in the
graph and nf the number of vertices in the frontier queue.
Currently the thresholds are heuristically determined.

Switching from bottom-up to top-down is done in the final
stages of BFS to avoid the long tail in the graphs, which we
find is neither necessary nor beneficial for Enterprise. In this
paper, we will show that building an efficient hybrid BFS
system will require a number of GPU-aware optimizations,
including a stable direction-switching parameter, hub vertex
cache, as well as streamlined GPU threads scheduling and
workload balancing.

2.2 General-Purpose GPUs
In this section, we will mainly explain GPU hardware, using
NVIDIA Kepler K40 as an example [8]. The K40 consists
of 15 Streaming Processors (SMX) each of which has 192
single-precision CUDA cores and 64 double-precision units.
Each GPU thread runs on one CUDA core and an SMX
schedules the threads in a group of 32 that is called a Warp.
Figure 3 presents an overview of GPU architecture.

An SMX can support up to 64 warps. All the threads in a
warp are executed in the single-instruction, multiple-thread
fashion. But if the threads in a warp have different control
paths, the warp executes all the taken branches sequentially
and disables each individual thread that is not on the taken
path. This so called branch divergence problem, if exists,
could largely reduce SMX utilization.

Each SMX features four Warp Schedulers which select
four warps in round-robin and issue the instructions from
those that are ready for execution. The warps that are not
ready due to long latency data accesses are skipped. By
oversubscribing threads in each SMX, data access can be
overlapped with execution.

Cooperative Thread Array (CTA), thread block, con-
sists of multiple warps, typically 1 to 64, which can be used
to run a large number of threads. And the set of all the CTAs
on a GPU is referred to as aGrid. The number of CTAs and



Table 1: Graph Specification

Name Abbr. Description # Vertices (M) # Edges (M) BFS Depth Directed
Facebook FB Facebook user to friend connection 16.8 421 10 Y
Friendster FR Friendster online social network 16.8 439.2 25 Y
Gowalla GO Gowalla location based online social network 0.2 1.9 – N
Hollywood HW Hollywood movie actor network 1.1 115 10 N
Kron-20-512 KR0 Kronecker generator 1 1073.7 6 N
Kron-21-256 KR1 Kronecker generator 2.1 1073.7 7 N
Kron-22-128 KR2 Kronecker generator 4.2 1073.7 7 N
Kron-23-64 KR3 Kronecker generator 8.4 1073.7 7 N
Kron-24-32 KR4 Kronecker generator 16.8 1073.7 8 N
LiveJournal LJ LiveJournal online social network 4.8 69.4 15 N
Orkut OR Orkut online social network 3.1 234.4 9 N
Pokec PK Pokec online social network 1.6 30.1 11 Y
R-MAT RM GTgraph: R-mat generator 2 256 6 Y
Twitter TW Twitter follower connection 16.8 186.4 17 Y
Wikipedia WK Links between Wikipedia pages in 2007 3.6 45 12 Y
Wiki-Talk WT Wikipedia talk network 2.4 5.0 – Y
YouTube YT YouTube online social network 1.1 6.0 – N

the number of threads in each CTA are configurable. Each
thread in a CTA has a unique Thread ID and each CTA has
its own CTA ID. With these built-in variables, one is able to
identify each thread in a grid and schedule different threads
to work on different data.

A Kernel is defined as any function that runs on GPUs.
Typically, one kernel can use different parallel granularity
(i.e., a thread, warp, CTA, or grid) by employing a certain
quantity of threads. Kepler introduces Hyper-Q to support
concurrent kernel execution, in other words, when several
kernels are executed on the same GPU, Hyper-Q is able to
schedule them to run on different SMXs in parallel to fully
utilize all GPU resources.

GPU Memory Hierarchy. Each SMX has a large number
of registers, e.g., 65,536 for each K40 SMX. Each thread
can use up to 255 registers and perform four register ac-
cess for each clock cycle. In addition, each SMX provides
software configurable shared memory (L1 cache) for intra-
warp and intra-CTA data communication. Each K40 SMX
has 64 KB of shared memory. Different from the L1 cache
on CPUs, one can allocate 16, 32, or 48 KB of the shared
memory at the program runtime. Once loaded, the data
in the shared memory is readable and writable to all the
threads in one CTA.

GPU also has the L2 cache and global memory that are
shared by all SMXs. The K40 has 1.5 MB L2 and 12 GB
global memory. Each global memory access is replied with
a data block that contains 32, 64 or 128 bytes based on
the type. If a warp of threads happen to access the data
in the same block, only one hardware access transaction
is performed. By coalescing global memory accesses into

Table 2: CPU (Xeon E7-4860) vs. GPU (K40) memory: size
and access latency (in CPU and GPU cycles) [28, 4]

Memory
CPU GPU

Size Lat Size Lat BFS Data Structures

Register 12 1 65,536 - Status Array

L1 cache 64KB 4 64KB - Hub Cache

L2 cache 256KB 10 1.5MB - -

L3 cache 24MB 40 - - -

DRAM up to 55 12GB 200 - Status Array, Frontier

2TB 400 Queue, Adjacency List

fewer transactions in this way, K40 is able to achieve close
to 300GB/s DRAM bandwidth.

Table 2 summarizes the CPU and GPU memory hierarchies.
Note that K40 has no L3 cache. We cannot find official la-
tency numbers for register and shared memory, but our tests
show that they are at least an order of magnitude faster
than the global memory. In this work, we leverage the GPU
support of concurrent kernels and different parallel granular-
ity to match dynamic BFS workloads, and utilizes different
GPU memory for various BFS data structures, e.g., using
shared memory for hub vertices.

GPU Hardware Performance Counters. GPUs today
can support more than 100 hardware metrics [5]. In this
work, we aim to understand the kernel performance, GPU
I/O throughput, and energy efficiency of our system, in-
cluding the timeline of different kernels, utilization of mem-
ory load/store function unit (ldst fu utilization), percentage
of stalls caused by data requests (stall data request), global
memory load transactions (gld transactions), IPC and power.
We use two NVIDIA tools, i.e., nvprof and nvvp.

2.3 Graph Benchmarks
We use a total of 17 graphs in this paper, as summarized in
Table 1, which have vertices ranging from 1 to 17 million and
edges from 30 million to over 1 billion. For an undirected
graph, we count each edge as two directed edges. Eleven
real world graphs are included such as Facebook [19], Twit-
ter [27], Wikipedia [7], as well as the LiveJournal, Orkut,
Friendster, Pokec, YouTube, Wiki-Talk and Gowalla social
network graphs from the Stanford Large Network Dataset
Collection [6]. In addition, we utilize two widely used graph
generators, Kronecker [1] and Recursive MATrix (R-MAT)
algorithm [13] [3]. Both generators take four possibilities A,
B, C and D = 1.0 − A − B − C. The Kronecker generator
produces the Kron-Scale-EdgeFactor graphs that have 2scale

number of vertices with the average out-degree of EdgeFac-
tor. In this work, we use (A, B, C) of (0.57, 0.19, 0.19)
for Kronecker, and (0.45, 0.15, 0.15) for R-MAT graphs. It
is worthy to point out that both real-world and synthetic
graphs exhibit small-world characteristics - as the majority
of the vertices have small out-degree and account for the
small percentage of the total number of edges, there exist a
number of hub vertices with high out-degree.
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Figure 4: Boxplot of percentage of frontiers (a) for per-level average and (b) for top-down, direction-switching, and bottom-up.

3. DESIGN CHALLENGES

Challenge #1: Putting GPU Threads to Good
Use
Eliminating the need of atomic operations on GPUs for the
frontier queue generation which has been the focus of prior
work [24, 33, 29, 36, 35, 30] solves only half of the prob-
lem - the queue shall consist of only the frontiers, that is,
the vertices that need to be explored in next level. Using
the status array for next level traversal, although avoiding
atomic operations, would assign one GPU thread for each
vertex, regardless whether it is a frontier [36, 24]. This ineffi-
cient approach would over-commit GPU threads because at
most levels the majority of the vertices would not be a fron-
tier. Alternatively, another work [33] generates the frontier
queue with warp and historical culling, but again this ap-
proach could not completely avoid duplicated vertices across
warps being enqueued. Figure 4(a) shows the boxplot of
the percentage of the frontiers at each level across different
graphs, where the mean and maximum percentage, as well
as standard deviation, are presented. Note that the numbers
here include the frontiers for both top-down and bottom-up
directions. It turns out that the graphs have on average 9%
frontiers per level with standard deviation of 15%. In par-
ticular, the R-MAT graph has the largest average ratio of
11% and maximum of 57%, while Twitter has the smallest
average of 1% and maximum of 10.2%. If a thread were as-
signed to each vertex at every level, on average at least 31%
of the threads would idle. Therefore, it is critical to have a
queue that consists of the frontiers only, instead of wasting
valuable GPU threads on those with no work to perform.

This challenge is further exacerbated by the need of direction
switching between top-down and bottom-up, which gener-
ates the frontiers by focusing on two distinct sets of vertices
(visited in top-down vs. unvisited in bottom-up). To illus-
trate this problem, we present the percentage of the fron-
tiers by BFS traversal directions in Figure 4(b). In general,
bottom-up levels have more frontiers than top-down, i.e.,
1.5% vs 0.4%. In particular, the queue for the level when
switching from top-down to bottom-up has most frontiers at
52% on average. Using the status array alone at this level
would remain inefficient. The above observation leads us to
develop Enterprise with new GPU threads scheduling that
aims to prepare a frontier queue that is direction optimized
for GPU memory hierarchy.

Challenge #2: Balancing Workloads Among GPU
Threads

This challenge stems from that fact that large variance exists
in the frontiers’ out-degrees. If a frontier has more edges, the
GPU thread assigned to it would naturally need to carry out
more expansion and inspection. To illustrate this imbalance,
we plot the CDF of the edge counts for two social networks
in Figure 5, where the average out-degrees for Gowalla and
Orkut are 19 and 72 respectively. In Gowalla, 86.7% and
99.5% of the vertices have fewer than 32 and 256 edges. In
contrast, while Orkut has a smaller portion (37.5%) of the
vertices with fewer than 32 edges, it has more (58.2%) with
out-degree between 32 and 256. Furthermore, a fraction
(0.5% and 4.2%) of vertices have more than 256 edges in
Gowalla and Orkut with a long tail to around 30K edges.
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Figure 5: Cumulative Distribution Function (CDF) of out-
degrees of vertices sorted by out-degree: (a) Gowalla (b)
Orkut.

Statically assigning one fixed number of threads (e.g., a warp
or CTA) is inefficient because the per-level runtime would be
dominated by the threads with heavy workload. Another in-
efficiency may also arise from the mismatch from the thread
count and the workload. For example, if one CTA were as-
signed to work on a frontier with fewer than 32 adjacent
vertices, more than 200 threads in this CTA would have no
work to do. On the other extreme, some frontiers with very
high out-degrees will require more than one CTA, e.g., some
graphs we examine have vertices with up to 106 edges. To
address this challenge, Enterprise introduces a new approach
of classifying frontiers based on the out-degrees and assign-
ing an appropriate GPU parallel granularity at runtime.

Challenge #3: Making Bottom-Up BFS GPU-
Aware
Implementing direction-optimizing BFS on GPUs is chal-
lenging by itself. Direction-optimizing BFS has first been
proposed and implemented on multi-core CPUs in [10], but
without further optimizations would not run efficiently on
GPUs that can run thousands of threads but with a rela-
tively smaller (e.g., 12GB) and slower (e.g., 200-400 cycles)
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Figure 7: Streamlined GPU threads scheduling using the graph example from Figure 1, with three workflows: (a) top-down,
(b) direction-switching at the explosion level, and (c) bottom-up. Sequential access means two threads access consecutive
adjacent elements at each iteration. Stride access means two threads access elements in stride manner at each iteration.
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Figure 6: CDF of total edges in Youtube, Wiki-Talk and
Kron-24-32 graphs. The vertices are sorted by out-degrees:
(a) Vertices of all range (b) Zoom in range [0.9995, 1].

global memory. In contrast, as previously shown in Table 2,
modern CPUs have tens of cores and threads with large L3
cache and main memory with short access latency. Fortu-
nately, what GPU lacks on global memory is compensated
by a massive number of registers and software-configurable
shared memory (L1 cache), which can be utilized to accel-
erate memory intensive algorithms like BFS.

The CPU-based bottom-up BFS uses the status array to
supply the unvisited vertices for inspection, and direction
switching between top-down and bottom-up depends on the
numbers of unexplored edges. In Enterprise, the GPU-based
bottom-up BFS leverages a small set of highly connected
vertices called hub vertices. Formally, we define a hub vertex
as follows.

Definition (Hub Vertex) Let v be a vertex of the graph
G. Consider v be a hub vertex if its out-degree is greater
than a threshold τ .

Here τ is graph specific, e.g., in the order of 100Ks for
Twitter. It is common that a few hub vertices in power-
law graphs connect to a great number of vertices. Figure 6
presents both the CDF of total edges and a zoom-in view for
the range of [99.95%, 100%] of the vertices. For the YouTube
graph, one can see that 330 hub vertices (i.e., 0.03% of the
total vertices) contribute to 10% of the total edges. Simi-
larly, 770 hub vertices (0.005%) in Kron-24-32 produce 10%
of the total edges, and 96 hub vertices (0.004%) in Wiki-Talk
account for 20% of the total edges.

The most unique features of our GPU-based bottom-up BFS

are: 1) Enterprise switches the direction at what we refer in
this paper as the explosion level where a large quantity of
hub vertices need to be visited. In this work, we have found
that the number of hub vertices in the frontier queue can
serve as a better indicator for direction switching, which
can easily implemented on GPUs. And more importantly,
2) caching hub vertices turns out to be very beneficial for
bottom-up BFS.

4. ENTERPRISE: GPU-BASED BFS
4.1 Streamlined GPU Threads Scheduling
Combining the power of the status array and frontier queue,
Enterprise is able to produce streamlined scheduling of GPU
threads through generating the frontier queue at each level
with a scan of the status array. At each level, Enterprise
starts with identifying the frontiers and updating the sta-
tus array in a manner similar to [36, 24]. Once this step
completes, Enterprise dispatches GPU threads to scan the
vertices in the status array. When a frontier is found, the
thread will store this vertex in its own thread bin. All the
thread bins are stored in the global memory. Next, prefix
sum is used to calculate the offset of each bin in the frontier
queue [34, 22]. Lastly, the frontiers in each bin are copied to
the queue in parallel. In all, the benefits are clear in avoiding
thread synchronization (from using the array) and reducing
idle threads at the next level (from using the queue). How-
ever, as we have shown, BFS direction can lead to a large
disparity in the number of frontiers at each level.

To this end, Enterprise schedules GPU threads using three
queue generation workflows for top-down, direction-switching,
and bottom-up, to optimize the memory accesses in all cases.
The status array, frontier queue and adjacency list reside in
GPU global memory, and accessing the global memory ran-
domly would only achieve a meager 3% of sequential read
bandwidth. To maximize the overall performance, it is crit-
ical that we optimize the access patterns at different stages
of BFS.

Top-down workflow. In this direction, Enterprise uses
the GPU threads to scan the status array in an interleaved
manner. For the example in Figure 7(a), two threads are
dispatched at level 1: thread 0 checks the status of five ver-
tices {0, 2, 4, 6, 8}, while thread 1 checks the others {1, 3, 5,
7, 9}. This division of work performs a sequential memory



Figure 8: Execution timeline before and after streamlined GPU threads scheduling and workload balancing for the explosion
level of Facebook.

access of the status array. When prefix sum is completed,
threads 0 and 1 will copy their own thread bins into FQ2

concurrently. In this case, FQ2 stores two frontiers out-of-
order as {4, 1}, which will introduce nonsequential memory
access at level 2, that is, BFS accesses the adjacency list
of vertex 4 before vertex 1. Fortunately, the benefit of se-
quential access of the status array outweighs the potential
drawback of random access of the adjacency list. For top-
down, adjacent vertices in the status array are unlikely to
become frontiers at the same level, as there are only a small
number (average 0.4%) of frontiers, as shown in Figure 4(b).

Direction-switching (explosion-level) workflow. The
situation is different in this case. Here the GPU threads
are allocated a certain portion of the status array to scan.
Using the same example, at level 2, again two threads will
be used: this time thread 0 checks the status of five vertices
{0, 1, 2, 3, 4} while thread 1 checks five vertices {5, 6, 7,
8, 9}. Unlike the top-down workflow, this approach would
incur strided memory access during the scan. Next, prefix
sum is performed on thread bins and in this example FQ3

consists of {3, 5, 6, 8, 9}. The performance benefit comes
from that the (bottom-up) frontiers may appear in order in
the queue, which in turn leads to sequential memory access
at the next level. At the explosion level, chances are that
adjacent vertices are all unvisited, because most are as we
have shown in Figure 4(b). This workflow takes advantage
of this fact to accelerate the next level traversal, e.g., at level
4, loading the adjacent list of vertices 5 and 6 are sequential
adjacent memory access, and so are vertices 8 and 9.

At the explosion level, this approach will spend average 2.4×
more time to scan the status array, as compared to the
top-down workflow. For example, using top-down workflow
would take 0.57 ms for the explosion level on Hollywood.
In contrast, using direction-switching workflow will take a
longer time of 0.86 ms. But this approach will improve
the performance of next level traversal by average 37.6%,
e.g., Hollywood runtime at the level right after the explo-
sion decreases from 2.7 to 2 ms. When combined, because
the latter step takes longer wall clock time, the overall per-
formance achieves an average speedup of over 16% across all
the graphs, with the best improvement of 33% on Facebook.

Bottom-up workflow. The key insight is that for bottom-

up, the queue for the current level is always a subset of the
previous queue, as the frontiers are always unvisited vertices.
Instead of continuing to use the status array, we directly
use the frontier queue from the preceding level to generate
the queue for current level shown in Figure 7(c). This is
done by simply removing the vertices that belong to current
level. This approach eliminates the need of scanning the
whole status array. Only a small (and fast shrinking) subset
is inspected at each level. For example, at level 3, FQ4 is
created by removing vertices {3, 5, 8} from FQ3. Our tests
show this approach delivers 3% improvement across various
graphs.

To summarize, this technique increases the number of GPU
threads that actively work on frontiers and issue memory
load/store requests, which we will see in the experiments
that the utilization of memory load/store function unit in-
creases dramatically. Using this design, the queue can still
be generated very quickly from 2.2 to 53.7 ms for different
graphs, which accounts for about 11% of the overall BFS
traversal time, yet delivers 2× to 37.5× speedup. Figure 8
presents an execution trace of BFS execution for the ex-
plosion level of Facebook. Clearly, despite generating the
frontier queue takes 23.6 ms, because a good workqueue is
prepared, new threads scheduling reduces the runtime of ex-
pansion and inspection from 490 ms to 419 ms, a net saving
of 46 ms.

4.2 GPU Workload Balancing
Now that Enterprise can generate a good frontier queue
quickly, but the benefit would be minimal if the queue would
lead to imbalanced workload. In this work, we believe that
parallel granularity of GPU shall be leveraged when schedul-
ing work from the frontier queue to ensure high thread-level
parallelism. Ideally, each thread, regardless of standalone,
within a warp or CTA, shall have an equal amount of work
(expansion and inspection) at each level. To achieve this
goal, Enterprise classifies the frontiers based on their out-
degrees (potential workload) and allocates a matching par-
allel granularity. Enterprise focuses on the use of threads
over warps or CTAs, different from prior work [23, 33]. This
is motivated by the fact that the majority of the vertices in
a graph have small out-degrees. For the graphs studied, the
average percentage of the vertices with fewer than 32 edges
is 68% and may go as high as 96% in Twitter.



Figure 9: GPU workload balancing.

Enterprise classifies the frontiers that are generated with the
previous technique into four queues, SmallQueue, Middle-
Queue, LargeQueue and ExtremeQueue, based on the out-
degrees of each frontier. Specifically, the frontiers in Small-
Queue have fewer than 32 edges, MiddleQueue between 32
and 256, LargeQueue between 256 and 65,536 and Extreme-
Queue more than 65,536. During frontier queue generation,
each thread puts the discovered frontiers into one of four
thread bins according to their out-degrees. At the next level,
four kernels (Thread, Warp, CTA and Grid) with different
number of threads will be assigned to work on different fron-
tier queues in order to balance the workloads among the
threads, as shown in Figure 9. All kernels are executed con-
currently with Hyper-Q support.

We maintain an ExtremeQueue for dealing with vertices
with extremely high out-degrees. For instance, one vertex in
KR2 has over 2.5 million edges. If one CTA were assigned to
inspect this vertex, it would require more than 10,000 itera-
tions. This type of vertex exists for many graphs as we have
seen as long tails in Figure 5 and 6. Subsequently, expanding
from these vertices would require rather long runtime, which
without special handling may greatly prolong the traversal
of the whole level. Using the whole grid here can consider-
ably speed up the execution, e.g., 1.6× speedup is achieved
on KR0.

In Figure 8(b) and (c), one can see the changes in runtime
before and after workload balancing. Again, although this
optimization adds another 5 ms of overhead to classify the
frontiers, we are able to shorten the overall runtime dras-
tically, from 419 ms to 76.5 ms. In particular, the Thread
kernel takes 63.5 ms, Warp 17.8 ms, and CTA kernel 10.5 ms,
where there is significant overlapping among the three ker-
nels. In short, this technique further removes idling threads
in each CTA and warp compared to prior methods, which
similar to the first technique will lead to higher utilization
on GPU memory units.

4.3 Hub Vertex Based Optimization
Direction-switching parameter. In this work, we have
found that it is cumbersome to tune the parameter α to
determine when to switch from top-down to bottom-up. In-
stead, as hub vertices make up a good portion at the explo-
sion level, we propose to use the ratio of hub vertices in the
frontier queue as an indicator for direction switching. We
define the parameter γ formally as:

γ =
Fh

Th
× 100% (1)

where Fh is the number of hub vertices in the frontier queue
(collected per level) and Th represents the total number of
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Figure 10: Comparison of direction-switching parameters.

hub vertices, which can be calculated very quickly at the
first level. Our experiment shows that γ is stable without
the need for manual tuning. Figure 10 shows that all graphs
should switch direction when γ ∈ (30, 40)%, a very small
range compared to α that fluctuates between 2 and 200.
In this work, we set the direction-switching condition as γ
being larger than 30.

Enterprise traverses on average 4 levels top-down and 8 lev-
els bottom-up across various graphs, about one level sooner
than prior method [10]. For the Kronecker graphs, using α
would inspect 4% and 17% of the edges in top-down and
bottom-up respectively, avoiding to visit the remaining 79%
edges. Using our hub vertex based parameter γ would in-
spect 1% and 36% edges in top-down and bottom-up. At
first glance, Enterprise would inspect more edges in total,
hurting the performance. Fortunately, as we have shown,
direction switching happens at the explosion level that is
dominated by hub vertices, and bottom-up traversal focuses
on identifying the edges connecting the frontiers to recently
visited hub vertices. As a result, a good cache of hub vertices
lends itself nicely for both scenarios.

Hub vertex cache. In this work, we propose to cache hub
vertices in GPU shared memory during direction switching
and bottom-up, which can greatly reduce the overhead of
random global memory accesses. This benefit is achieved
because large amount of frontiers in bottom-up are very
likely to connect to hub vertices. However, as GPU shared
memory is small (64 KB), we need to carefully balance the
number of hub vertices cached and the occupancy of the
GPU that is defined as the ratio of active warps running on
one SMX and the maximum number of warps that one SMX
can support theoretically (64). If a grid contains 256 × 256
threads, the full occupancy of K40 means 8 CTAs running
on one streaming processor and thus each CTA only has
6 KB shared memory to construct a cache holding around
1,000 hub vertices.

Hub vertex cache (HC) is implemented in two steps. First,
during the frontier queue generation, Enterprise caches the
vertice IDs of those have just been visited at the preced-
ing level and also with high out-degrees. We use a hash
function to figure out which index to store each vertex ID,
that is, HC[hash(ID)] = ID. Second, during the frontier
identification, Enterprise will load the frontier’s neighbors,
and check whether the vertex ID of any neighbor is cached.
If so, the inspection will terminate early with the cached
neighbor identified as the parent for this frontier. In this
case, the cache avoids accessing this neighbor’s status in the
global memory.



Figure 11: Hub vertex cache design, using the level 4 traver-
sal in example graph from Figure 1.

Figure 11 presents the workflow of the hub vertex cache.
In this example, Enterprise puts vertice IDs {2,7} in the
hub vertex cache because these two vertices are visited in
the preceding level and with the high out-degrees. At the
current level, Enterprise will load the neighbors {2, 5, 6} of
vertex 3 for inspection. As vertex 2 is cached, Enterprise
will mark vertex 2 as the parent of vertex 3 and terminate
the inspection. On the other side, if a frontier like vertex 6
does not have a cached neighbor, Enterprise will continue to
inspect the statuses of its neighbors that reside in the global
memory. As shown in Figure 12, the hub vertex cache is
very effective on various graphs, saving 10% to 95% of global
memory accesses. It is worthy to point out that caching hub
vertices has limited benefit for top-down BFS, as it likely
encounters very few hub vertices.
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Figure 12: Global memory accesses reduced by hub cache.

4.4 Multi-GPU Enterprise
Enterprise exploits 1-D matrix partition method [11] to dis-
tribute the graphs across multiple GPUs. Specifically, each
GPU is responsible for an equal number of vertices from the
graph, and thus a similar number of edges. We leave the
study of 2-D partition as future work. During traversal, En-
terprise proceeds in three steps: (1) Each GPU identifies the
current level vertices in a private status array by expanding
from a private frontier queue. (2) All the GPUs commu-
nicate their private status arrays to get the global view of
most recently visited vertices. In this step, each GPU uses a
CUDA instruction __ballot() to compress the private sta-
tus array into a bitwise array where a single bit is used to
indicate whether one vertex is just visited. This compression
reduces the size of communication data by 90%. (3) Each
GPU scans the updated private status array to generate its
own private frontier queue.

5. EXPERIMENTS
We have implemented Enterprise in 3,000 lines of code in
C++ and CUDA. The source code is compiled with NVIDIA
nvcc 5.5 and GCC 4.4.7 with the optimization flag of O3.
In this work, we use three GPUs: NVIDIA Kepler K40,
K20 and Fermi C2070. We perform our tests on the graphs

described in Table 1. All the graphs are represented by com-
pressed sparse row (CSR) format. The datasets that provide
edge tuples are transformed into the CSR format, with the
sequence of the edge tuples preserved. The majority of the
graphs are sorted, e.g., Twitter and Facebook. We do not
perform pre-processing such as removing duplicate edges or
self-loops. All the data is represented by uint64 type, loaded
into GPU’s global memory. The timing starts when the
search key is given to the GPU kernel and ends when the
search is completed and written into the GPU memory. For
each experiment, we run BFS 64 times on pseudo-randomly
selected vertices and calculate the mean. The metric tra-
versed edges per second (TEPS) is computed as follows: Let
m be the number of directed edges traversed by the search,
counting any multiple edges and self-loops, and t be the time
elapsed during BFS search mentioned above. Then, TEPS
is calculated by m/t.

5.1 Enterprise Performance
We implement direction-optimizing BFS with the status ar-
ray approach as the baseline (BL) since atomic operation
based frontier queue would be much slower. Here we use
CTA to work on each vertex in the status array, which is
much faster than assigning a thread or warp. Figure 13 plots
the performance improvement contributed by each optimiza-
tion including streamlined GPU threads scheduling (TS),
GPU workload balancing (WB), hub vertex cache (HC).

The streamlined GPU threads scheduling outperforms the
baseline by 2× to 37.5× across all graphs. In particular,
Twitter (TW) obtains the biggest speedup from 0.04 to 1.5
billion TEPS. The reason is that the maximum frontier ratio
in Twitter is only 10.2%, and on average it only has 1% fron-
tiers at each level. Kron-20-512 (KR0) gains 2× speedup,
reaching 34 billion TEPS. In general, generating the frontier
queue consumes on average 11% of the BFS run time.

The GPU workload balancing technique more than doubles
the traversal rate for all graphs, 2.8× on average beyond the
first technique. For example, LiveJournal (LJ) achieves the
biggest improvement of 4.1×, from 0.9 to 3.7 billion TEPS.
For this graph, the total workload is distributed evenly so
that SmallQueue contains 78% frontiers (or 22% workload),
MiddleQueue has 21% frontiers (or 58% workload), Large-
Queue 1% frontiers (20% workload).

The hub vertex caching technique helps improve the per-
formance up to 55%. Both Facebook (FB) and Friendster
(FR) see a small gain as they do not contain vertices with
extremely high out-degree, e.g., the maximum out-degree
in Facebook is 9,170. For other graphs, the improvement is
more than 10%, as high as 30% to 50% for Kronecker graphs
that have thousands of vertices with more than 105 edges.
This shows that caching these hub vertices is very beneficial.

In all, Enterprise improves the TEPS of the BFS algorithm
by 3.3× to 105.5×. The highest TEPS is achieved at KR0
with over 76 billion TEPS and the smallest at FR with 3.1
billion TEPS.

Comparison. Figure 14 compares Enterprise with sev-
eral GPU based BFS implementations, including B40C [33],
Gunrock [44], MapGraph [18] and GraphBIG [2]. We evalu-
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Figure 13: Enterprise performance on various graphs. Direction-optimizing BFS on GPU using the status array method serves
as the baseline (BL). Three techniques are represented as TS for streamlined GPU Threads Scheduling, WB for Workload
Balancing, and HC for Hub vertex Cache.

ate power-law graphs such as FB, TW, and KR-21-128 which
has 2 million vertices with average out-degree of 128, as well
as high-diameter graphs such as audikw1 [7], roadCA [6] and
europe.osm [7].

For power-law graphs, Enterprise performs 4×, 5×, 9× and
74× better than B40C, Gunrock, MapGraph and Graph-
BIG, respectively. For high diameter graphs, Enterprise
achieves 1.41 billion TEPS on average and outperforms Gun-
rock (0.72) 1.95×, MapGraph (0.25) 5.56×, GraphBIG (0.03)
42×. On these graphs, Enterprise delivers similar perform
as B40C. It runs slightly slower on europe.osm because this
graph has very small out-degrees, with the maximum out-
degree of 12 and the mean 2.1.
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Figure 14: Performance comparison.

5.2 Enterprise Scalability
Figure 15 shows both strong and weak scalability of Enter-
prise. We use the largest graph from Table 1, i.e., KR4 to
test the strong scalability. On 2, 4 and 8 GPUs, Enterprise
achieves 15, 18 and 18.4 billion TEPS, respectively, that is,
a speedup of 43%, 71% and 75%.

We evaluate weak scalability in two ways, edge scale and
vertex scale. When the GPU count increases, we increase
the edgeFactor – the average out-degree – with fixed vertex
count, or increase the number of vertices with the constant
edgeFactor. As shown in Figure 15, we achieve better scala-
bility for edge scale, where we obtain super linear speedup,
that is, 9.1×, 96 billion TEPS with 8 GPU. This is because
when edgeFactor increases, the number of hub vertices in-
creases in the graph too and the hub vertex cache will reduce
more global memory accesses. On the other hand, direction-
switching can possibly avoid more unnecessary edge checks.
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Figure 15: Strong and weak scalability of Enterprise.

5.3 Analysis of GPU Counters
As BFS is an I/O-intensive algorithm, it is critical that GPU
threads are able to access data quickly. As shown in Fig-
ure 16(a), our frontier techniques (TS and WB) significantly
improve the utilization of GPU load/store function units by
average 8% and 24% respectively, reaching as high as 68%.
Furthermore, our hub vertex caching (HC) presented in Fig-
ure 16(b), reduces the stalls of data requests by 40%, the
occurring of such events drops from 4.8% to 2.9%. This
also explains the double of IPC observed on GPUs in Fig-
ure 16(c).

For comparison, we also profile [33] on Hollywood graph,
which delivers 2.7 billion TEPS while consumes 40 Watts
power, achieves 40% utilization of load/store unit and 0.68
IPC. On the same graph, Enterprise achieves 50% load/store
unit utilization and 1.32 IPC, with 12 billion TEPS and 76
Watts power consumption.

Figure 16(d) plots GPU’s power consumption corresponding
to different techniques. Here we only report GPU’s power
to understand the impact of each technique. On average,
the power consumption drops from 86 to 81 Watts with our
GPU threads scheduling, the biggest saving of 14.5 Watts
on the Twitter graph. This comes mostly from better IO
performance and fewer idle GPU threads in the system. The
other two techniques (WB and HC) further reduce the power
to 78 Watts.

6. RELATED WORK
Our system Enterprise advances the state of the art in the
design and implementation of graph traversal. Prior work
uses either the frontier queue [30, 33] or status array [24].
Even when using both data structures, existing solutions use
them at different directions, e.g., [36, 29] use the status ar-
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Figure 16: Microarchitecture profiling statistics of Enterprise: (a) Load/store function unit utilization (b) Stall caused by
data request (c) IPC (d) GPU power consumption.

ray at the explosion level and the frontier queue method at
other levels, and [10] uses the frontier queue for top-down
and the status array for bottom-up. Enterprise utilizes both
data structures throughout and delivers unprecedented per-
formance on GPUs.

Recently several workload balance techniques have been pro-
posed for GPUs such as task stealing [15, 12] and workload
donation [41, 14]. However, this type of technique is often
used in a small group of threads, and is extremely challeng-
ing to coordinate among thousands of threads as we have in
this work. Instead, Enterprise targets the root of BFS work-
load imbalance and classifies different frontiers to mitigate
the problem.

There are a number of projects [39, 20, 38] that leverage hub
vertices to reduce the communication overhead, especially
for distributed BFS. For example, [39] duplicate the status
of hub vertices across all the machines at every level, and
[20] and [38] divide hub vertices into multiple partitions and
communicate in a tree-based manner. In contrast, Enter-
prise only enables the hub vertex cache for bottom-up levels
when expansion and inspection center around hub vertices.
Additionally, as GPU shared memory is limited, Enterprise
updates the cache at each level with those who most likely
will be visited in the following level.

Power efficiency [45] is of great importance to system de-
sign, e.g., [43] shuts down GPU streaming processors predic-
tively to save power. Our work has shown that GPU-based
graph algorithms have huge potential in delivering high per-
formance and energy-efficiency.

7. CONCLUSION
In this work, we develop Enterprise, a new GPU-based BFS
system, that produces over 70 billion TEPS on a single GPU
and 122 billion TEPS on two GPUs, delivering 446 million
TEPS per Watt. This is achieved by efficient management
of numerous GPU streaming processors and unique mem-
ory hierarchy. As part of future work, we plan to integrate
Enterprise with high-speed storage and networking devices
and run on even larger graphs.
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