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Abstract
As graphs continue to grow, external memory graph pro-
cessing systems serve as a promising alternative to in-
memory solutions for low cost and high scalability. Un-
fortunately, not only does this approach require consider-
able efforts in programming and IO management, but its
performance also lags behind, in some cases by an order
of magnitude. In this work, we strive to achieve an ambi-
tious goal of achieving ease of programming and high IO
performance (as in-memory processing) while maintain-
ing graph data on disks (as external memory processing).
To this end, we have designed and developed Graphene
that consists of four new techniques: an IO request cen-
tric programming model, bitmap based asynchronous IO,
direct hugepage support, and data and workload balanc-
ing. The evaluation shows that Graphene can not only
run several times faster than several external-memory
processing systems, but also performs comparably with
in-memory processing on large graphs.

1 Introduction
Graphs are powerful data structures that have been used
broadly to represent the relationships among various en-
tities (e.g., people, computers, and neurons). Analyzing
massive graph data and extracting valuable information
is of paramount value in social, biological, healthcare, in-
formation and cyber-physical systems [14,15,17,24,29].

Generally speaking, graph algorithms include read-
ing the graph data that consists of a list of neighbors
or edges, performing calculations on vertices and edges,
and updating the graph (algorithmic) metadata that rep-
resents the states of vertices and/or edges during graph
processing. For example, breadth-first search (BFS)
needs to access the adjacency lists (data) of the vertices
that have just been visited at the prior level, and mark the
statuses (metadata) of previously unvisited neighbors as
visited. Accesses of graph data and metadata come hand-
in-hand in many algorithms, that is, reading one vertex or

edge will be accompanied with access to the correspond-
ing metadata. It is important to note that in this paper
we use the term metadata to refer to the key data struc-
tures in graph computing (e.g., the statuses in BFS and
the ranks in PageRank).

To tackle the IO challenge in graph analytics, prior
research utilizes in-memory processing that stores the
whole graph data and metadata in DRAM to shorten
the latency of random accesses [20, 35, 40, 44, 47]. In-
memory processing brings a number of benefits includ-
ing easy programming and high-performance IOs. How-
ever, this approach is costly and difficult to scale, as big
graphs continue to grow drastically in size. On the other
hand, the alternative approach of external memory graph
processing focuses on accelerating data access on storage
devices. However, this approach suffers not only from
complexity in programming and IO management but also
slow IO and overall system performance [40, 62].

To close the gap between in-memory and exter-
nal memory graph processing, we design and develop
Graphene, a new semi-external memory processing sys-
tem that efficiently reads the graph data on SSDs while
managing the metadata in DRAM. Simply put, Graphene
incorporates graph data awareness in IO management be-
hind an IO centric programming model, and performs
fine-grained IOs on flash-based storage devices. This
is different from current practice of issuing large IOs
and relying on operating system (OS) for optimiza-
tion [40, 47, 62]. Figure 1 presents the system architec-
ture. The main contributions of Graphene are four-fold:
IO (request) centric graph processing. Graphene ad-
vocates a new paradigm where each step of graph pro-
cessing works on the data returned from an IO request.
This approach is unique from four types of existing
graph processing systems: (1) vertex-centric program-
ming model, e.g., Pregel [36], GraphLab [35], Power-
Graph [20], and Ligra [47]; (2) edge-centric, e.g., X-
stream [44] and Chaos [43]; (3) embedding-centric, e.g.,
Arabesque [50]; and (4) domain-specific language, e.g.,
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Galois [40], Green-Marl [27] and Trinity [46]. All
these models are designed to address the complexity
of the computation, including multi-threaded process-
ing [27, 40], workload balancing [10, 20], inter-thread
(node) communication [38] and synchronization [36].
However, in order to achieve good IO performance, these
models require a user to explicitly manage the IOs, which
is a challenging job by itself. For example, FlashGraph
needs user input to sort, merge, submit and poll IO re-
quests [62].

In Graphene, IO request centric processing (or IO cen-
tric for short) aims to simplify not only graph program-
ming but also the task of IO management. To this end,
we design a new IoIterator API that consists of a number
of system and user-defined functions. As a result, vari-
ous graph algorithms can be written in about 200 lines
of code. Behind the scenes, Graphene translates high-
level data accesses to fine-grained IO requests for better
optimization. In short, IO centric processing is able to
retain the benefit of easy programming while delivering
high-performance IO.
Bitmap based, asynchronous IO. Prior research aims
to read a large amount of graph data as quickly as pos-
sible, even when only a portion of it is needed. This
design is justified because small random accesses in
graph algorithms are not the strong suit of rotational hard
drives. Notable examples include GraphChi [32] and X-
stream [44], which read the entire graph data sequentially
from the beginning to the end during each iteration of
the graph calculation. In this case, the pursuit of high IO
bandwidth overshadows the usefulness of data accesses.
Besides this full IO model, the IO on-demand approach
loads only the required data in memory, but again re-
quires significant programming effort [25, 56, 62].

With the help of IO centric processing, Graphene
pushes the envelope of the IO on-demand approach.
Specifically, Graphene views graph data files as an ar-
ray of 512-byte blocks, a finer granularity than more
commonly used 4KB, and uses a Bitmap-based approach
to quickly reorder, deduplicate, and merge the requests.
While it incurs 3.4% overhead, the Bitmap approach im-
proves the IO utility by as much as 50%, and as a result
runs more than four times faster than a typical list based

IO. In this work, IO utility is defined as the ratio between
the amount of data that is loaded and useful for graph
computation, and that of all the data loaded from disk.
Furthermore, Graphene exploits Asynchronous IO (AIO)
to submit as many IO requests as possible to saturate the
IO bandwidth of flash devices.
Direct hugepage support. Instead of using 4KB mem-
ory pages, Graphene leverages the support of Direct
HugePage (DHP), which preallocates the (2MB and
1GB) hugepages at boot time and uses them for both
graph data and metadata structures, e.g., IO buffer and
Bitmap. For example, Graphene designs a hugepage
based memory buffer which enables multiple IO requests
to share one hugepage. This technique eliminates the
runtime uncertainty and high overhead in the transpar-
ent hugepage (THP) method [39], and significantly low-
ers the TLB miss ratio by 177×, leading to, on aver-
age, 12% performance improvement across different al-
gorithms and graph datasets.
Balanced data and workload partition. Compared to
existing 2D partitioning methods which divide vertices
into equal ranges, Graphene introduces a row-column
balanced 2D partitioning where each partition contains
an equal number of edges. This ensures that each SSD
holds a balanced data partition, especially in the cases of
highly skewed degree distribution in real-world graphs.
However, a balanced data partition does not guarantee
that the workload from graph processing is balanced. In
fact, the computation performed on each partition can
vary drastically depending on the specific algorithm. To
address this problem, Graphene utilizes dedicated IO and
computing threads per SSD and applies a work stealing
technique to mitigate the imbalance within the system.

We have implemented Graphene with different graph
algorithms and evaluated its performance on a number of
real world and synthetic graphs on up to 16 SSDs. Our
experiments show that Graphene outperforms several ex-
ternal memory graph systems by 4.3 to 20×. Further-
more, Graphene is able to achieve similar performance
to in-memory processing with the exception of BFS.

This paper is organized as follows: Section 2 presents
the IO centric programming model. Section 3 discusses
bitmap-based, asynchronous IO and Section 4 presents
data and workload balancing techniques, and Section 5
describes hugepage support. Section 6 describes a num-
ber of graph algorithms used in this work. Section 7
presents the experimental setup and results. Section 8
discusses the related work and Section 9 concludes.

2 IO Request Centric Graph Processing
Graphene allows the system to focus on the data, be it a
vertex, edge or subgraph, returned from an IO request at
a time. This new IO (request) centric processing aims to
provide the illusion that all graph data resides in mem-
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Table 1: IoIterator API
Type Name Return Value Description
System provided Iterator->Next() io block t Get the next in-memory data block

Iterator->HasMore() bool Check if there are more vertices available from IO
Iterator->Current() vertex Get the next available vertex v
Iterator->GetNeighbors(vertex v) vertex array Get the neighbors for the vertex v

User defined IsActive(vertex v) bool Check if the vertex v is active
Compute(vertex v) Perform algorithm specific computation

while true do
foreach vertex v do

if IsActive(v) then
handle = IO Submit(v);
IO Poll(handle);
Compute(the neighbors of v);

end
end
level++;

end
Algorithm 1: BFS with user-managed IO.

while true do
block = IoIterator→Next();
while block→HasMore() do

vertex v = block→Current();
if IsActive(v) then

Compute(block→GetNeighbors(v));
end

end
level++;

end
Algorithm 2: IoIterator-based BFS.

ory, and delivers high IO performance through applying
various techniques behind the scenes which will be de-
scribed in next three sections.

To this end, Graphene develops an IoIterator frame-
work, where a user only needs to call a simple Next()
function to retrieve the needed graph data for process-
ing. This allows the programmers to focus on graph al-
gorithms without worrying about the IO complexity in
semi-external graph processing. At the same time, by
taking care of graph IOs, the IoIterator framework al-
lows Graphene to perform disk IOs more efficiently in
the background and make them more cache friendly. It
is worth noting that the IO centric model can be eas-
ily integrated with other graph processing paradigms in-
cluding vertex or edge centric processing. For exam-
ple, Graphene has a user-defined Compute function that
works on vertices.

IoIteratorGraph
Processing

IO		Requests

Graph	Data
Physical

IO

Active	Vertices

GetNeighbors()

Figure 2: IoIterator programming model.

At a high level shown in Figure 2, we insert a new
IoIterator layer between the algorithm and physical IO.
In this architecture, the processing layer is responsible
for the control flow, e.g., computing what vertices of the
graph should be active, and working on the neighbors
of those active vertices. The IO layer is responsible for
serving the IO requests from storage devices. Graph pro-
cessing can start as soon as the IOs for the adjacency lists
of the active vertices are complete, i.e., when the data for
the neighbors become available. The new abstraction of
IoIterator is responsible for translating the requests for
the adjacency lists into the IO requests for data blocks.

Internally, Graphene applied a number of IO opti-

mizations behind the IoIterator, including utilizing a
Bitmap per device for sorting and merging, submit-
ting large amounts of non-blocking requests via asyn-
chronous IO, using hugepages to store graph data and
metadata, and resolving the mismatch between IO and
processing across devices.

The IoIterator layer consists of a set of APIs listed in
Table 1. There are four system-defined functions for the
IoIterator, Next, HasMore, Current, and GetNeighbors,
which work on the list of the vertices returned from the
underlying IO layer. In addition, two functions IsActive
and Compute should be defined by the users. For ex-
ample, in BFS, the IsActive function should return true
for any frontier if a vertex v has been visited in the pre-
ceding iteration, and Compute should check the status of
each neighbor of v, and mark any unvisited neighbors as
frontiers for the next iteration. Detailed description of
BFS and other algorithms can be found in Section 6.

An example of BFS pseudocode written with the cur-
rent approach of user-managed selective IO vs. the IoI-
terator API can be found in Algorithms 1 and 2. In the
first approach, the users are required to be familiar with
the Linux IO stack and explicitly manage the IO requests
such as IO submission, polling, and exception handling.
The main advantage of the IoIterator is that it completely
removes such a need. On the other hand, in both ap-
proaches, the users need to provide two similar functions,
IsActive and Compute.

It is important to note that the pseudocode will largely
stay the same for other algorithms, but with different Is-
Active and Compute. For example, in PageRank, IsAc-
tive returns true for vertices that have delta updates, and
Compute accumulates the updates from different source
vertices to the same destination vertex. Here, Compute
may be written in vertex or edge centric model.
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3 Bitmap Based, Asynchronous IO
Graphene achieves high-performance IO for graph pro-
cessing through a combination of techniques including
fine-grained IO blocks, bitmap, and asynchronous IO.
Specifically, Graphene favors small, 512-byte IO blocks
to minimize the alignment cost and improve the IO util-
ity, and utilizes a fast bitmap-based method to reorder
and produce larger IO requests, which will be submitted
to devices asynchronously. As a result, the performance
of graph processing improves as a higher fraction of use-
ful data are delivered to CPUs at high speed.

In Graphene, graph data are stored on SSDs in Com-
pressed Sparse Row (CSR) format which consists of two
data structures: the adjacency list array that stores the
IDs of the destination vertices of all the edges ordered by
the IDs of the source vertices, and the beginning position
array that maintains the index of the first edge for each
vertex.

3.1 Block Size
One trend in modern operating systems is to issue IOs in
larger sizes, e.g., 4KB by default in some Linux distribu-
tions [8]. While this approach is used to achieve high se-
quential bandwidth from underlying storage devices like
hard drives, doing so as in prior work [62] would lead to
low IO utility because graph algorithms inherently issue
small data requests. In this work, we have studied the
IO request size when running graph algorithms on Twit-
ter [2] and Friendster [1]. Various graph datasets that are
used in this paper is summarized in Section 7. One can
see that most (99%) of IO requests are much smaller than
4KB as shown in Figure 3. Thus, issuing 4KB IOs would
waste a significant amount of IO bandwidth.
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Figure 3: Distribution of IO sizes.

In Graphene, we choose to use a small IO size of 512
bytes as the basic block for graph data IOs. Fortunately,
new SSDs are capable of delivering good IOPS for 512-
byte read requests for both random and sequential IOs.
For example, Samsung 850 SSD [49], which we use in
the experiments, can achieve more than 20,000 IOPS for
512-byte random read.

Another benefit of using 512-byte blocks is to lower
the cost of the alignment for multiple requests. Larger
block size like 4KB means the offset and size of each
IO request should be a multiple of 4KB. In the exam-
ple presented in Figure 4, requesting the same amount of

Adjacency	list

4KB

Page	0: Page	2:

Page	1:

HugePage enabled	I/O	buffer:

Adjacency	list

(a)	4KB	block	size

(b)	512-byte	block	size
Figure 4: IO alignment cost: 4KB vs. 512-byte blocks, where
one dotted box represents one 512-byte block.

data will lead to the different numbers of IOs when us-
ing 4KB (top) and 512-byte (bottom) block sizes. One
can see that the former will load 2.2× more data, i.e.,
12KB vs. 5KB in this case. In addition, combined with
hugepage support that will be presented shortly, 512-byte
block IO will need only one hugepage-based IO buffer,
compared to three 4KB pages required in the top case.

3.2 Bitmap-Based IO Management
At each iteration of graph processing, graph algorithms
compute and generate the requests for the adjacency lists
(i.e., the neighboring vertices) of all active vertices for
the following iteration. In particular, Graphene trans-
lates such requests into a number of 512-byte aligned
IO blocks, which are quickly identified in a new Bitmap
data structure. In other words, Graphene maintains a
Bitmap per SSD, one bit for each 512-byte block on the
disk. For each request, Graphene marks the bits for the
corresponding blocks, that is, should a block need to
be loaded, its bit is marked as “1”, and “0” otherwise.
Clearly, the Bitmap offers a global view of IO operations
and enables optimization opportunities which would not
otherwise be possible.

For a 500GB SSD as we have used in this work,
the size of the bitmap is merely around 128MB, which
we can easily cache in CPUs and store in DRAM with
a number of hugegages. Because Graphene combines
Bitmap-based management with asynchronous IO, it is
also able to utilize one IO thread per SSD. Therefore,
since there is only one thread managing the Bitmap for
each SSD, no lock is required on the Bitmap structures.
Issues with local IO optimization. Traditionally, the OS
takes a local view of the IO requests by immediately is-
suing the requests for the neighbors of one or a group of
active vertices. In addition, the OS performs several im-
portant tasks such as IO batching, reordering and merg-
ing at the block layer. Unfortunately, these techniques
have been applied only to IO requests that have been
buffered in certain data structures. For instance, Linux
exploits a linked list called pluglist to batch and submit
the IO requests [8], in particular, the most recent Linux
kernel 4.4.0 supports 16 requests in a batch.
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Figure 5: Pluglist vs. bitmap IO management, (a) Pluglist where sorting and merging are limited to IO requests in the pluglist. (b)
Bitmap where sorting and merging are applied to all IO requests.

Figure 5(a) presents the limitations of the pluglist
based approach. In this example, vertices {v5, v8, v1, v7,
v3} are all active and the algorithm needs to load their
neighbors from the adjacency list file. With a fixed-size
pluglist, some of the requests will be batched and en-
queued first, e.g., the requests for the first three vertices
{v5, v8, v1}. In the second step, sorting is applied across
the IO requests in the pluglist. Since the requests are al-
ready grouped, sorting happens within the boundary of
each group. In this case, the requests for the first three
vertices are reordered from {b7, b15, b16, b1, b2} to {b1,
b2, b7, b15, b16}. In the third step, if some IO blocks
present good spatial locality, merging will be applied to
form a larger IO request, e.g., blocks {b1, b2, b7} are
merged into one IO transaction. And later, a similar pro-
cess happens for the IOs on the rest of vertices {v7, v3}.

In this case, there are four independent IO requests to
the disk, (a) blocks b1 - b7, (b) blocks b15 - b16, (c) block
b5, and (d) blocks b13 - b15. The first request loads seven
sequential blocks in one batch, which takes advantage of
prefetching and caching and is preferred by the disks and
OS. As a result, the third request for block b5 will likely
hit in the cache. On the other hand, although the second
and fourth requests have overlapping blocks, they will be
handled as two separate IO requests.
Bitmap and global IO optimization. Graphene chooses
to carry out IO management optimizations, including IO
deduplication, sorting and merging, on a global scale.
This is motivated by the observation that although graph
algorithms tend to present little or no locality in a short
time period, there still exists a good amount of locality
within the entire processing window. Bitmap-based IO
management is shown in Figure 5(b). Upon receiving
the requests for all active vertices, Graphene will convert
the needed adjacency lists into the block addresses and
mark those blocks in the Bitmap.
Sorting. The process of marking active blocks in the
corresponding locations in the Bitmap naturally sorts the
requests in the order of physical addresses on disks. In
other words, the order of the requests is simply that of
the marked bits in the Bitmap.
IO deduplication is also easily achieved in the process.
Bitmap-based IO ensures that only one IO request will
be sent even when the data block is requested multiple

times, achieving the effect of IO deduplication. This is
common in graph computation. For example, in the sin-
gle source shortest path algorithm, one vertex may have
many neighboring vertices, and if more than one neigh-
bors need to update the distance of this vertex, it will
need to be enqueued multiple times for the next itera-
tion. In addition, different parts of the same IO block
may need to be loaded at the same time. In the prior
example, as the block b15 is shared by the requests from
vertices v7 and v8, it will be marked and loaded once. Our
study shows that the deduplication enabled from Bitmap
can save up to 3× IO requests for BFS, compared to a
pluglist based method.
IO merging. Bitmap is very easy to use for merging the
requests in the vicinity of each other into a larger request,
which reduces the total number of IO requests submitted
to disks. For example, as shown in Figure 5(b), IO re-
quests for vertices v1, v3, v5 (and similarly for vertices
v7 and v8) are merged into one. As a result, there are
only two non-overlapping requests instead of four as in
the pluglist case.

How to merge IO requests is guided by a num-
ber of rules. It is straightforward that consecutive re-
quests should be merged. When there are multiple
non-consecutive requests, we can merge them when the
blocks to be loaded are within a pre-defined maximum
gap, which determines the largest distance between two
requests. Note that this rule directly evaluates the Bitmap
by bytes to determine whether eight consecutive blocks
are needed to be merged.

This approach favors larger IO sizes and has proven to
be effective in achieving high IO performance. Figure 6
shows the performance when running BFS on the Twitter
and UK graphs. Interestingly, the performance peaks for
both graphs when the maximum gap is set to 16 blocks
(i.e., 8KB). Graphene also imposes an upper bound for
IO size, so that the benefit of IO merging would not be
dwarfed by handling of large IO requests. We will dis-
cuss this upper bound shortly.

In conclusion, Bitmap provides a very efficient
method to manage IO requests for graph processing. We
will show later that while the OS already provides sim-
ilar functionality, this approach is more beneficial for
dealing with random IOs to a large amount of data.
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Besides Bitmap-based IO, we have also implemented a
Pluglist based approach that extends the pluglist to sup-
port sorting, deduplication and merging in a global scale.
As shown in Section 7, compared to a list, the Bitmap
approach incurs smaller overhead and runs four times
faster. It is important to note that although we focus on
using Bitmap for graph processing in this work, it can
also be applied to other applications. We will demon-
strate this potential in Section 7.

3.3 Asynchronous IO
Asynchronous IO (AIO) is often used to enable a user-
mode thread to read or write a file, while simultane-
ously carrying out the computation [8]. The initial design
goal is to overlap the computation with non-blocking IO
calls. However, because graph processing is IO bound,
Graphene exploits AIO for a different goal of submitting
as many IO requests as possible to saturate the IO band-
width of flash devices.

There are two popular AIO implementations, i.e.,
user-level POSIX AIO and kernel-level Linux AIO. We
prefer the latter in this work, because POSIX AIO forks
child threads to submit and wait for the IO completion,
which in turn has scalability issues while submitting too
many IO requests [8]. In addition, Graphene leverages
direct IO to avoid the OS-level page cache during AIO,
and the possible blocks introduced by the kernel [19].
Upper bound for IO request. Although disks favor
large IO sizes in tens or hundreds of MBs, it is not always
advantageous to do so, especially for AIO. Typically, an
AIO consists of two steps, submitting the IO request to
an IO context and polling the context for completion.
If IO request sizes are too big, the time for IO submis-
sion would take longer than polling, at which point AIO
would essentially become blocking IO. Figure 7(a) stud-
ies the AIO submission and polling time. As the size
goes beyond 1MB, submission time increases quickly.
And once it reaches 128MB, it becomes blocked IO as
submission time eventually becomes longer then polling
time. In this work, we find that a modest IO size, such as
8, 16, and 32 KB, is able to deliver good performance for
various graph algorithms. Therefore, we set the default
upper bound of IO merging as 16KB.
IO context. In AIO, each IO context loads the IO re-
quests sequentially. Graphene uses multiple contexts to
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Figure 7: AIO performance w.r.t. IO size and IO context

handle the concurrent requests and overlap the IO with
the computation. For example, while a thread is work-
ing on the request returned from one IO context, another
IO context can be used to serve other requests from the
same SSD. Given its intensive IO demand, graph compu-
tation would normally need to create a large number of
IO contexts. However, without any constraints, too many
IO contexts would hurt the performance because every
context needs to register in the kernel and may lead to
excessive overhead from polling and management.

Figure 7(b) evaluates the disk throughput with respect
to the number of total IO contexts. As one can see that
each SSD could achieve the peak performance with 16
contexts but the performance drops once the total IO con-
text goes beyond 1,024 contexts. In this work, depend-
ing on the number of available SSDs, we utilize different
numbers of IO contexts, by default using 512 contexts
for 16 SSDs.

3.4 Conclusion
In summary, combining 512-byte block and Bitmap-
based IO management allows Graphene to load a smaller
amount of data from SSDs, about 21% less than the tra-
ditional approach. Together with AIO, Graphene is able
to achieve high IO throughput of upto 5GB/s for different
algorithms on an array of SSDs.

4 Balancing Data and Workload
Taking care of graph data IO only solves half of the prob-
lem. In this section, we present data partitioning and
workload balancing in Graphene.

4.1 Row-Column Balanced 2D Partition

Given highly skewed degree distribution in power-
law graphs, existing graph systems, such as Grid-
Graph [63], TurboGraph [25], FlashGraph [62], and
PowerGraph [20], typically apply a simple 2D parti-
tioning method [9] to split the neighbors of each vertex
across multiple partitions. The method is presented in
Figure 8(a), where each partition accounts for an equal
range of vertices, P number of vertices in this case, on
both row and column-wise. This approach needs to scan
the graph data once to generate the partitions. The main
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drawback of this approach is that an equal range of ver-
tices in each data partition do not necessarily lead to an
equal amount of edges, which can result in workload im-
balance for many systems.

To this end, Graphene introduces a row-column bal-
anced 2D partitioning method, as shown in Figure 8(b-c),
which ensures each partition contains an equal number
of edges. In this case, each partition may have different
numbers of rows and columns. This is achieved through
three steps: (1) the graph is divided by the row major into
R number of partitions, each of which has the same num-
bers of edges with potentially different number of rows;
(2) Each row-wise partition is further divided by the col-
umn major into C number of (smaller) partitions, each
of which again has the equal amount of edges. As a re-
sult, each partition may contain different number of rows
and columns. Although it needs to read the graph one
more time, it produces “perfect” partitions with the equal
amount of graph data, which can be easily distributed to
a number of SSDs.

Figure 9 presents the benefits of row-column balanced
2D partition for two social graphs, Twitter and Friend-
ster. On average, the improvements are 2.7× and 50%
on Twitter and Friendster, respectively. The maximum
and minimum benefits for Twitter are achieved on SpMV
for 5× and k-Core 12%. The speedups are similar for
Friendster. While each SSD holds a balanced data par-
tition, the workload from graph processing is not guar-
anteed to be balanced. Rather, the computation per-
formed on each partition can vary drastically depending
on the specific algorithm. In the following, we present
the workflow of Graphene and how it balances the IO
and processing.
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Figure 9: Benefit of row-column balanced 2D partition.

4.2 Balancing IO and Processing
Although AIO, to some extent, enables the overlapping
between IO and computation, we have observed that a
single thread doing both tasks would fail to fully saturate
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Figure 10: Graphene scheduling management.

the bandwidth of an SSD. To address this problem, one
can assign multiple threads to work on a single SSD in
parallel. However, if each thread would need to juggle IO
and processing, this can lead to contention in the block
layer, resulting in a lower performance.

In Graphene, we assign two threads to collaboratively
handle the IO and computation on each SSD. Figure 10
presents an overview of the workflow. Initially upon re-
ceiving updates to the Bitmap, a dedicated IO thread for-
mulates and submits IO requests to the SSD. Once the
data is loaded in memory, the computing thread retrieves
the data from the IO buffer and works on the correspond-
ing metadata. Using PageRank as an example, for cur-
rently active vertices, the IO thread would load their in-
neighbors (i.e., the vertices with a directed edge to active
vertices) in the IO buffer, further store them in the ring
buffer. Subsequently, the computing thread uses the rank
values of those in-neighbors to update the ranks of active
vertices. The metadata of interest here is the rank array.

Graphene pins IO and computing threads to the CPU
socket that is close to the SSD they are working on. This
NUMA-aware arrangement reduces the communication
overhead between IO thread and SSD, as well as IO and
computing threads. Our test shows that this can improve
the performance by 5% for various graphs.

Graphene utilizes a work stealing technique to miti-
gate computational imbalance issue. As shown in Fig-
ure 10, each computing thread first works on the data in
its own IO buffer ring. Once it finishes processing its
own data, this thread will check the IO buffer of other
computing threads. As long as other computing threads
have unprocessed data in IO buffers, this thread is al-
lowed to help process them. This procedure repeats until
all data have been consumed.

Figure 11 presents the performance benefit from work
stealing. On average, PageRank, SpMV, WCC and APSP
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Figure 11: Benefit of workload stealing.
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achieve various speedup of 20%, 11%, 8% and 4%, re-
spectively, compared to the baseline of not using work-
load stealing. On the other hand, BFS and k-Core suffer
slowdown of 1% and 3%. This is mostly because the first
four applications are more computation intensive while
BFS and k-Core are not. One drawback of workload
stealing is lock contention at the IO buffer ring, which
can potentially lead to performance degradation, e.g., 8%
for APSP on Friendster and k-Core on Twitter.

5 HugePage Support
Graphene leverages the support of Direct HugePages
(DHP), which preallocates hugepages at boot time, to
store and manage graph data and metadata structures,
e.g., IO buffer and Bitmap, shown as blue boxes in Fig-
ure 10. This is motivated by our observation of high TLB
misses, as the number of memory pages continues to
grow for large-scale graph processing. Because a TLB
miss typically requires hundreds of CPU cycles for the
OS to go through the page table to figure out the physical
address of the page, this would greatly lower the graph
algorithm performance.

In Graphene, the OS creates and maintains a pool of
hugepages at machine boot time when memory fragmen-
tation is at the minimum. This is because any memory
fragmentation would break physical space into pieces
and disrupt the allocation of hugepages. We choose this
approach over transparent hugepage (THP) in Linux [39]
for a couple of reasons. First, we find that THP intro-
duces undesirable uncertainty at runtime, because such
a hugepage could be swapped out from memory [42].
Second, THP does not always guarantee successful al-
location and may incur high CPU overhead. For exam-
ple, when there were a shortage, the OS would need to
aggressively compress the memory in order to provide
more hugepages [54].
Data IO. Clearly, if each IO request were to consume
one hugepage, a large portion of memory space would be
wasted, because Graphene, even with IO merging, rarely
issues large (2MB) IO requests. Alternatively, Graphene
allows multiple IO requests to share hugepages. This
consolidation is done through IO buffers in the IO Ring
Buffer. Given a batch of IO requests, Graphene first
claims a buffer that contains a varied number of contin-
uous 2MB hugepages. As the IO thread works exclu-
sively with a buffer, all IO requests can in turn use any
portion of it to store the data. Also, consecutive IO re-
quests will use continuous memory space in the IO buffer
so that there is no fragmentation. Note that the system
needs to record the begin position and length of each re-
quest within the memory buffer, which is later parsed and
shared with the user-defined Compute function in the IoI-
terator. In addition, direct IO is utilized for loading disk
blocks directly into hugepages. Comparing to buffered
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Figure 12: TLB misses reduced by hugepage-enabled buffer.

IO, this method skips the step of copying data to system
pagecache and further to user buffer, i.e., double copy.
Metadata has been the focus of several prior works [9,
12, 59] to improve the cache performance of various
graph algorithms. As a first attempt, we have inves-
tigated the use of page coloring [16, 60] to resolve
cache contention, that is, to avoid multiple vertices be-
ing mapped to the same cache line. With 4KB pages,
we are able to achieve around 5% improvement across
various graphs. However, this approach becomes incom-
patible when we use 2MB hugepages for metadata, as the
number of colors is determined by the LLC size (15MB),
associativity (20) and page size.

To address this challenge, we decide to use hugepages
for the metadata whose size is at the order of O(|V |). In
this work, we use 1GB hugepages, e.g., for PageRank, a
graph with one billion vertices will need 4GB memory
for metadata, that is, four 1GB hugepages.

This approach brings several benefits. Figure 12 illus-
trates the reduction in TLB miss introduced by this tech-
nique when running on a Kronecker graph. Across six
algorithms, we observe an average 177× improvement
with the maximum of 309× for PageRank. In addition,
as prefetching is constrained by the page size, hugepages
also enables more aggressive hardware prefetching in
LLC, now that the pages are orders of magnitude bigger
(1GB vs. 4KB). The test shows that this technique pro-
vides around 10% speedup for these graph algorithms.

6 Graph Algorithms
Graphene implements a variety of graph algorithms to
understand different graph data and metadata, and their
IO patterns. For all the algorithms, the sizes of data and
metadata are O(|E|) (total count of edges) and O(|V |)
(total count of vertices), respectively.
Breadth First Search (BFS) [4, 33] performs random
reads of the graph data, determined by the set of most
recently visited vertices in the preceding level. The sta-
tuses (visited or unvisited) of the vertices are maintained
in the status array, a key metadata in BFS. It is worthy to
note that status array may experience more random IOs,
because the neighbors for a vertex tend to have different
IDs, some of which are far apart.
PageRank (PR) [26,41] can calculate the popularity of a
vertex by either pulling the updates from its in neighbors
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or pushing its rank to out neighbors. The former per-
forms random IO on the rank array (metadata), whereas
the latter requires sequential IO for graph data but needs
locks while updating the metadata. In this work, we
adapt delta-step PageRank [61], where only vertices with
updated ranks should push their delta values to the neigh-
bors, yet again requiring random IOs.
Weakly Connected Component (WCC) is a special
type of subgraph whose vertices are connected to each
other. For directed graphs, a strongly connected com-
ponent exists if a directed path can be found between all
pairs of vertices in the subgraph [28]. In contrast, a WCC
exists if such a path can be found regardless of the edge
direction. We implement the hybrid WCC detection al-
gorithm presented in [48], that is, it uses BFS to detect
the largest WCC then uses label propagation to compute
remaining smaller WCCs. In this algorithm, the label ar-
ray serves as the metadata.
k-Core (KC) [37, 45] is another type of subgraph where
each vertex has the degree of at least k. Iteratively, a k-
Core subgraph is found by removing the vertices from
the graph whose degree is less than k. As the vertices are
removed, their neighbors are affected, where the meta-
data – degree array – will need to be updated. Similar to
aforementioned algorithms, since the degree array is in-
dexed by the vertex IDs, the metadata IO in k-Core also
tends to be random. k-Core is chosen in this work as it
presents alternating graph data IO patterns across differ-
ent iterations. Specifically, in the initial iterations, lots
of vertices would be affected when a vertex is removed,
thus the graph data is retrieved likely in the sequential
order. However at the later iterations, fewer vertices will
be affected, resulting in random graph data access.
All Pairs Shortest Path (APSP) calculates the shortest
paths from all the vertices in the graph. With APSP, one
can further compute Closeness Centrality and Reachabil-
ity problems. Graphene combines multi-source traver-
sals together, to reduce the total number of IOs needed
during processing and the randomness exposed during
the metadata access [34, 51]. Similar to FlashGraph, we
randomly select 32 source vertices for evaluation to re-
duce APSP execution time on large graphs.
Sparse Matrix Vector (SpMV) multiplication exhibits
sequential access when loading the matrix data, and ran-
dom access for the vector. In this algorithm, the matrix
and vector serve the role as graph data and metadata, re-
spectively. As a comparison to BFS, SpMV is more IO
friendly but equally challenging on cache efficiency.

7 Evaluations
We have implemented a prototype of Graphene in 3,300
lines of C++ code, where the IoIterator accounts for
1,300 lines and IO functions 800 lines. Six graph algo-

Table 2: Graph Datasets.
Name # Vertices # Edges Size Preprocess (seconds)
Clueweb 978M 42.6B 336GB 334
EU 1071M 92B 683GB 691
Friendster 68M 2.6B 20GB 3
Gsh 988M 33.8B 252GB 146
Twitter 53M 2.0B 15GB 2
UK 788M 48B 270GB 240
Kron30 1B 32B 256GB 141
Kron31 2B 1T 8TB 916

rithms are implemented with average 200 lines of code.
We perform our experiments on a server with a dual-
socket Intel Xeon E5-2620 processor (total 12 cores and
24 threads with hyperthreading), 128GB memory, 16
500GB Samsung 850 SSDs connected with two LSI SAS
9300-8i host bus adapters, and Linux kernel 4.4.0.

Table 2 lists all the graphs used in this paper. Specif-
ically, Twitter [2] and Friendster [1] are real-world so-
cial graphs. In particular, Twitter contains 52,579,682
vertices and 1,963,263,821 edges, and Friendster is
an online gaming network with 68,349,466 vertices
and 2,586,147,869 edges. In addition, Clueweb [13],
EU [18], Gsh [23] and UK [55] are webpage based
graphs provided by webgraph [5–7]. Among them, EU is
the largest with over one billion of vertices and 90 billion
of edges. On the other hand, two Kronecker graphs are
generated with the Graph500 generator [22] with scale
30 and 31, which represent the number of vertices as 1
billion (230) and 2 billion (231), with number of edges
of 32 billion and 1 trillion. This paper, by default uses
8 bytes to represent a vertex ID unless explicitly noted.
We run the tests five times and report the average values.

In addition, Table 2 presents the time consumption of
the preprocessing step of the row-column balanced 2D
partition. On average, our partition method takes 50%
longer time than the conventional 2D partition method,
e.g., preprocessing the largest Kron31 graph takes 916
seconds. Note that except X-Stream, many graph sys-
tems, including FlashGraph, GridGraph, PowerGraph,
Galois and Ligra, also require similar or longer prepro-
cessing to prepare the datasets. In the following, we re-
port the runtime of graph algorithms, excluding the pre-
processing time for all graph systems.

7.1 Comparison with the State of the Art
We compare Graphene against FlashGraph (semi-
external memory), X-Stream (external memory), Grid-
Graph (external memory), PowerGraph (in-memory),
Galois (in-memory), and Ligra (in-memory) when run-
ning various algorithms. Figure 13 reports the speedup of
Graphene over different systems for all five algorithms.
SpMV is currently not supported in other systems ex-
cept our Graphene, and k-Core is only provided by Flash-
Graph, PowerGraph and Graphene. In the figure the label
“NA” indicates lack of support in the system. In this test,
we choose one real graph (Gsh) and one synthetic graph
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Figure 13: Graphene vs. state-of-the-art.
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Figure 14: Overall performance benefits of IO techniques.

(Kron30). Note that Gsh is the largest graph that is sup-
ported by in-memory systems. We have observed similar
performance on other graphs.

In general, Graphene outperforms external memory
systems FlashGraph, GridGraph and X-Stream by 4.3×,
7.8× and 20×, respectively. Compared to in-memory
systems PowerGraph, Galois and Ligra where all graph
data are stored in DRAM, Graphene keeps the data on
SSDs and reads on-demand, outperforming PowerGraph
by 21× and achieving a comparable performance with
the other two (90% for Galois and 1.1× for Ligra). Ex-
cluding BFS which is the most IO intensive and fa-
vors in-memory data, Graphene outperforms Galois and
Ligra by 10% and 45%, respectively. We also compare
Graphene with an emerging Differential Dataflow sys-
tem [53] and Graphene is able to deliver an order of mag-
nitude speedup on BFS, PageRank and WCC.

For the Gsh graph, as shown in Figure 13, Graphene
achieves better performance than other graph systems
for different algorithms with exceptions for BFS and
WCC. For example, for APSP, Graphene outperforms
PowerGraph by 29×, Galois by 35%, Ligra by 50%,
FlashGraph by 7.2× and X-Stream by 14×. For BFS
and WCC, Graphene runs faster than GridGraph, Power-
Graph, FlashGraph and X-Stream, but is slower than the
two in-memory systems, mostly due to relatively long ac-
cess latency on SSDs compared to DRAM. Similar per-
formance benefits can also be observed on the syntheic
Kron30 graph.

Table 3: Graphene runtime on Kron31 (seconds).
Name APSP BFS k-Core PageRank WCC SpMV

Kron31 7,233 2,630 318 25,023 3,023 5,706

Trillion-edge graph. We further evaluate the perfor-
mance of Graphene on Kron31 as presented in Table 3.

On average, all algorithms take around one hour to finish,
with the maximum from PageRank of 6.9 hours while k-
Core can be completed in 5.3 minutes. To the best of
our knowledge, this is among the first attempts to evalu-
ate trillion-edge graphs on a external-memory graph pro-
cessing system.

7.2 Benefits of IO Techniques
This section examines the impacts on the overall sys-
tem performance brought by different techniques inde-
pendently, including Bitmap, hugepage, and dedicated
IO and computing threads. We run all six algorithms on
all six real-world graphs.

The Bitmap provides an average 27% improvement
over using the pluglist as presented in Figure 14(a).
Clearly, Bitmap favors the algorithms with massive ran-
dom IOs such as WCC and BFS and low diameter graphs
such as Gsh, EU, and Friendster. For example, Bitmap
achieves about 70% speedup on Gsh on both BFS and
WCC, and 30% for other algorithms.

Figure 14(b) compares the performance of hugepages
and 4KB pages. Hugepages provides average 12% im-
provement and the speedup varies from 17% for WCC
to 6% for k-Core. Again, two largest improvements are
achieved on the (largest) Gsh graph for SpMV and WCC.

The benefit introduced by dedicated IO and computing
threads is presented in Figure 14(c), where the baseline is
using one thread for both IO and computing. In this case,
Graphene achieves an average speedup of 54%. Particu-
larly, PageRank and SpMV enjoy significant higher im-
provement (about 2×) than the other algorithms.

7.3 Analysis of Bitmap-based IO
We study how Bitmap-based IO affects the IO and com-
puting ratio of different algorithms in Figure 15. Without
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Figure 15: Runtime breakdown of IO and computing with
Bitmap-based IO.

bitmap, all four algorithms spend about 60% on IO and
40% on computation. In comparison, the distribution of
runtime reverses with bitmap, where computation takes
average 60% of the time and IO 40%. Because the IO
time is significantly reduced, faster IO as a result accel-
erates the execution of the algorithms. In particular, the
biggest change comes from k-Core where IO accounts
for 87% and 34% before and after bitmap.

As shown in Figure 16, when compared to a pluglist-
based approach, the Bitmap-based IO runs 5.5×, 2.6×,
5.6×, 5.7× and 2.5× faster on APSP, BFS, k-Core,
PageRank, and WCC, respectively. Note that here we
only evaluate the time consumption of preparing the
bitmap and pluglist, which is different from overall sys-
tem performance presented in Figure 14. On the other
hand, in most cases, adding Bitmap incurs a small in-
crease of about 3.4% of total IO time. However, for a
few cases with relatively high overhead, it is most likely
caused by the small size of the graph data (e.g., Friend-
ster and Twitter), as well as random IOs of the algorithms
(e.g., BFS). The time spent on Bitmap varies from about
60 milliseconds for PR and SpMV (less than 1% of total
IO time), to 100 seconds for APSP (2.3% of IO time).
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Figure 16: Bitmap performance and overhead.

Bitmap-based IO can be applied to other applications
beyond graph processing. Figure 17 examines the time
consumption differences between Bitmap based IO and
Linux IO. Here we replay the reads in five IO traces
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Figure 17: Bitmap-based IO performance on traces.

as quickly as possible, namely Financial 1-2 and Web-
Search 1-3 from UMass Trace Repository [3]. On av-
erage, the Bitmap is 38× faster than Linux IO, with the
maximum speedup of 74× obtained on Financial2 (from
94.2 to 1.26 seconds). The improvement comes mostly
from more (9.3×) deduplicated IOs and more aggressive
IO merging.

Figure 18 further studies the impacts of bitmap based
IO on hard disk (HDD), NVMe and Ramdisk. In this
test, we use five Seagate 7200RPM SATA III hard drives
in a Raid-0 configuration, and one Samsung 950 Pro
NVMe device. One can see that compared to the pluglist
based method, although bitmap improves hard disk per-
formance only marginally (1% on average), faster stor-
age devices such as NVMe and Ramdisk are able to
achieve about 70% improvement in IO performance.
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Figure 18: Bitmap performance on HDD, NVMe and Ramdisk.

7.4 Scalability, Utility, and Throughput
This section studies the scalability of Graphene with re-
spect to the number of SSDs. Recall that Graphene uses
two threads per SSD, one IO and another compute. Using
a single thread would fail to fully utilize the bandwidth
of an SSD. As shown in Figure 19, Graphene achieves an
average 3.3× speedup on the Kron30 graph when scal-
ing from a single SSD (two threads) to eight SSDs (16
threads). Across different applications, SpMV enjoys the
biggest 3.7× speedup and PageRank the smallest 2.6×.
The small performance gain from 8 to 16 SSDs is due to
the shift of the bottleneck from IO to CPU.
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Recall that IO utility is defined as the ratio of use-
ful data and total data loaded, we evaluate the IO utility
when using 512-byte IO vs. 4KB IO on various algo-
rithms and graph datasets. As presented in Figure 20,
Graphene achieves 20% improvement on average. For
APSP and BFS, one can see about 30% improvement
with the best benefit of 50% on UK. Similar speedups
can also be observed for K-Core and WCC. In contrast,
PageRank and SpMV present minimal benefit because
the majority of their iterations load the whole graph.
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Figure 20: Utility of 512-byte vs. 4KB IO.

To demonstrate the IO loads of different disks in
Graphene, we further examine the throughput of 16
SSDs for two applications, BFS and PageRank. Fig-
ure 21 show the throughput for the fastest (max) and
slowest (min) SSDs, as well as the median throughput.
Clearly, the 16 SSDs are able to deliver similar IO per-
formance for most of run, with an average difference of
6 to 15 MB/s (5-7% for PageRank and BFS). For both
algorithms, the slowest disk does require extra time to
complete the processing, which we leave for future re-
search to close the gap.

8 Related Work
Recent years have seen incredible advances in graph
computation, to name a few, in-memory systems [27,40,
47], distributed systems [10, 11, 20, 38, 46, 61], external-
memory processing [21, 25, 31, 32, 35, 36, 43, 44, 57, 62,
63], and accelerator-based systems [30, 33, 58]. In this
section, we compare Graphene with existing projects
from three aspects: programming, IO, and partitioning.

Programming. Prior projects, regardless of Think like
a vertex [10, 32, 36, 58], Think like an edge [31, 43, 44],
Think like an embedding [50], or Think like a graph [52],
center around simplifying computation related program-
ming efforts. In comparison, Graphene aims for ease of
IO management with the new IO iterator API.

IO optimization is the main challenge for external
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Figure 21: Throughputs of the fastest (max) and slowest (min)
SSDs, and median throughput out of 16 SSDs.

memory graph engines, for which Graphene develops
a set of fine-grained IO management techniques, in-
cluding using 512-byte IO block and bitmap-based se-
lective IO. Our approach achieves high efficiency com-
pared to full IO [32, 36, 43, 44]. Compared to Grid-
Graph [63] and FlashGraph [62], Graphene introduces
a finer grained method that supports global range IO ad-
justment and reduces IO requests by 3×. Also, Graphene
shows that asynchronous IOs, when carefully man-
aged, are very beneficial for external memory systems.
While hugepages are not new to graph systems [40, 62],
Graphene addresses the issue of potentially low memory
utilization by constructing IO buffers to share hugepages.

Partition optimization. A variety of existing
projects [12,20,62,63] rely on conventional 2D partition-
ing [9] to balance the workload. In contrast, Graphene
advocates that it is the amount of edges, rather than ver-
tices, in a partition that determines the workload. The
new row-column balanced partition can help achieve up
to 2.7× speedup on a number of graph algorithms.

9 Conclusion and Future work
In this paper, we have designed and developed Graphene
that consists of a number of novel techniques including
IO centric processing, Bitmap-based asynchronous IO,
hugepage support, data and workload balancing. It al-
lows the users to treat the data as in-memory, while deliv-
ering high-performance on SSDs. The experiments show
that Graphene is able to perform comparably against
in-memory processing systems on large-scale graphs,
and also runs several times faster than existing external-
memory processing systems.
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Jacques-Silva, Kun-Lung Wu, and Ümit V
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