
G-Store: High-Performance Graph Store for
Trillion-Edge Processing

Pradeep Kumar H. Howie Huang
Department of Electrical and Computer Engineering

George Washington University
Email: {pradeepk, howie}@gwu.edu

Abstract—High-performance graph processing brings great
benefits to a wide range of scientific applications, e.g., biology
networks, recommendation systems, and social networks, where
such graphs have grown to terabytes of data with billions of
vertices and trillions of edges. Subsequently, storage performance
plays a critical role in designing a high-performance computer
system for graph analytics. In this paper, we present G-Store, a
new graph store that incorporates three techniques to accelerate
the I/O and computation of graph algorithms. First, G-Store
develops a space-efficient tile format for graph data, which takes
advantage of the symmetry present in graphs as well as a new
smallest number of bits representation. Second, G-Store utilizes
tile-based physical grouping on disks so that multi-core CPUs can
achieve high cache and memory performance and fully utilize the
throughput from an array of solid-state disks. Third, G-Store
employs a novel slide-cache-rewind strategy to pipeline graph
I/O and computing. With a modest amount of memory, G-Store
utilizes a proactive caching strategy in the system so that all
fetched graph data are fully utilized before evicted from memory.
We evaluate G-Store on a number of graphs against two state-
of-the-art graph engines and show that G-Store achieves 2 to 8×
saving in storage and outperforms both by 2 to 32×. G-Store is
able to run different algorithms on trillion-edge graphs within
tens of minutes, setting a new milestone in semi-external graph
processing system.

I. INTRODUCTION

Graph processing has become increasingly important for
our society with broad applications such as health sci-
ences [18], web search [16], and social networks [6]. Tech-
nology advancements and its reach to masses have enabled
such networks to cross the level of billions of vertices and
trillions of edges, reaching terabytes of data [9].

A number of notable projects have developed cost-efficient
graph computing systems that run on a single machine,
e.g., GraphChi [20], X-Stream [28], TurboGraph [15], Flash-
Graph [39], GridGraph [40], and GraphQ [35], to name a
few. In these systems, the performance of graph algorithms is
closely tied to I/O throughput of the underlying storage system,
as big graphs cannot not fit entirely in the limited size of main
memory.

Unfortunately, while prior work provides a variety of I/O
optimizations to address the problem, much remains to be
desired, especially the ability of high-performance processing
of trillion-edge graphs. Such graphs pose new system level
challenges not only in storage cost but also in memory and

cache management. In this work, we find out that current
graph storage formats have several levels of redundancies that
incur high I/O cost and thus unnecessarily lower algorithm
performance. On the other hand, the main memory in existing
systems is utilized, often with simple LRU policy, which is far
from optimal for graph processing.

To address these challenges, we propose G-Store, a high-
performance graph store which delivers high throughput of
graph data I/Os from SSDs (solid-state drives), combined
with judicious use of main memory and cache. The main
contributions of G-Store are as follows:

First, G-Store utilizes the symmetry present in graph data
by storing only the upper triangle (half) of graph data for
undirected graphs. Similarly, it stores either in-edges or out-
edges for directed graphs. Thus G-Store saves 2× storage
and memory space for algorithm execution. More importantly,
extending the traditional 2D partitioning approach, we further
apply the technique of smallest number of bits (SNB) represen-
tation to store the graph in tiles, which eliminates redundant
bits in vertex IDs and achieves another 4× space saving. In
total, an 8× storage saving over traditional storage formats
enables faster I/Os of graph data from SSDs, greatly improving
the performance of graph algorithms.

Second, G-Store utilizes tile-based physical grouping on
disks so that higher cache hit ratio on multi-core CPUs can be
achieved for faster graph processing. In addition, G-Store uses
asynchronous I/O (AIO) to load tiles in order to fully utilize
the available bandwidth from an SSD array. This is done by
batching data reads in fewer system calls using Linux AIO
instead of direct and synchronous POSIX I/O.

Third, G-Store employs a slide-cache-rewind (SCR) strat-
egy to pipeline graph I/O and computing. We propose tile-
based in-memory proactive caching where G-Store is able to
predict which tile will be required in the next iteration of graph
processing with the help of algorithmic metadata. In addition,
G-Store rewinds the order of the processing at the beginning of
each iteration. These techniques utilize the data that is already
fetched in memory, eliminating the occurrence of redundant
I/Os in the future iterations.

We have conducted a number of experiments to show the
advantage of G-Store and the impacts of different optimization
techniques. G-Store outperforms X-Stream [28] and Flash-
Graph [39] by upto 32× and 2.4×, respectively. Further, G-

SC16; Salt Lake City, Utah, USA; November 2016
978-1-4673-8815-3/16/$31.00 c©2016 IEEE

(a) Example Graph
(e) 2D Partitioned Edge List

(b) Edge List
4 0 2 4 1 4 0 0 21 3 51 40 1 1 1 2 2 3 4 40 0 44 5 7 56 55 65 72

3
1

54
0

76

(d) Bitwise Matrix

67

0 1 1 00 1 1 0 1 01 0 0 0 1 00 1 0 0 0 01 0 1 0 0 11 1

0 1 2 3 4 5012345 0 0 1 00 0

0 00 00 00 00 01 10 0 0 10 0 0 0 0 10 0 0 00 0

6 7
(0,1),(0,3),(1,0),(1,2),(2,1),(3,0) (0,4),(1,4),(2,4)
partition[0,0] partition[0,1]
(4,0),(4,1),(4,2) (4,5),(5,4),(5,6),(5,7),(6,5),(7,5)
partition[1,1] partition[1,1]

vertex id

(c) CSR
4 0 2 4 1 4 0 0 21 3 51

0 1 2 3 4 5

4 7 56 5

6 76 8 4 5 6 70 3beg-pos
adj-list

Fig. 1: Sample graph and its various representation format

Store is able to run different algorithms on trillion-edge graphs
within tens of minutes.

The remainder of the paper is organized as follows. Section
II presents the background on graph storage format and graph
algorithms. Section III discusses the observations on which G-
Store is based and presents an overview of G-Store. Section
IV discusses our proposed graph representation techniques,
and Section V discusses the physical grouping and on-disk
layout of data. Section VI describes memory management,
caching policy and thread utilization. Experimental results are
presented in Section VII. It also presents the effect of various
techniques on performance improvement. Section VIII presents
related work and we conclude in Section IX.

II. BACKGROUND

A. Graph Representations

For a graph G = (V, E), where V represents the set of the
vertices and E the edges, there are a number of popular graph
representations as follows:

Edge List representation is defined as a collection of tuples of
vertices and each tuple represents a single edge. If two vertices
vi and vj are connected then the edge tuple is represented as
(vi, vj). The size of the edge list representation of a graph
equals to the product of the edge count and twice of the size
of a vertex. Figure 1 shows an example graph (a) and its edge
list representation (b) .

Compressed Sparse Row (CSR) groups the edges of a vertex
together and are stored in the adjacency list array (adj-list).
There is a separate data structure of the beginning position
array (beg-pos) that contains the index of the first edge for
each vertex. The size of CSR representation of a graph equals
the size of adjacency list (|E|), plus the size of beginning
position array (|V |). Figure 1(c) shows the CSR representation
of the example graph.

Matrix format consists of rows that represent the IDs of
the source vertices of the edges and columns that represent
the destination vertices. This is generally represented as the
bitwise format where each row is a sequence of zeros and
ones. The value of one represents an edge from the source to
the destination vertex. Figure 1(d) shows the same graph in
the bitwise matrix format.

2D Partitioned Edge List is a 2-level classification of the edge
list format, where edge tuples are first partitioned using the
ID of the source vertex followed by the ID of the destination
vertex. Figure 1(e) shows the 2x2 partition of the sample graph,

where the edges are separated into different partitions based
on vertex ID range 0-3 and 4-7.

Formally, we refer to each partition in the format of
partition[i,j], where i represents the partitions along the row
major (X-axis) while j denotes those along the column major
(Y-axis). For example, partition [0,0] and [0,1] constitute
row[0] and partition [0,1] and [1,1] constitute column[0]. In
this work, we propose several optimizations to 2D partitioning
and use the term of tile1 to represent a partition with such
optimizations.

B. Graph Algorithms

In this paper we focus on three important graph algorithms
that involve a variety of different random and sequential I/Os
of the graph data. For each algorithm, we will also describe the
metadata that are defined as the algorithm specific information
maintained for a vertex or edge.

Breadth First Search (BFS) [5], [21], [22], is one of the most
important graph algorithms as highlighted in Graph500 [14].
The BFS traversal starts from the root vertex and traverses each
node by its depth thus covering vertices that are equidistant
from the root vertex. The final output generates a tree showing
how the vertices are connected in the original graph, so that
the vertices can be reached in the minimum connection (called
depth) from the root. The BFS graph traversal leads to random
I/Os of the graph data. For power-law and small diameter
graphs, BFS can be optimized for the explosion level when
most of vertices are visited in this iteration [5]. BFS can also
be implemented using the asynchronous method which reduces
the total number of iterations needed [26].

PageRank (PR) [6] is used to rank the vertices in a graph
by the order of their popularity. A vertex is more popular
if its followers (the vertices that affect this node through
incoming edges) are popular. In the iterative procedure of
determining the page rank, the popularity of each vertex is
transmitted to its neighbors, by dividing its popularity by the
out-degree of the vertex. The iteration continues till the rank
of each vertex stabilizes which is determined by the difference
between the old and new rank value falling within a small
range as decided by the programmers. The graph is accessed
sequentially in a shared-memory programming model. Note
that the metadata access can be random in this algorithm,
e.g., in the PageRank computation of each vertex, the page
rank values of its neighbors (randomly distributed) need to be
accessed.

1We use the name of tiles to emphasize the reduction of redundancy in
storage, while tiles and partitions can be used interchangeably in the paper.

2

0
0.5
1

1.5
2

2.5

16-Byte 8-Byte

Sp
eed

up

Size of edge-tuple
(a)

0
0.5
1

1.5

Sp
eed

up

Number of Partitions
(b)

0
0.2
0.4
0.6
0.8
1

1.2

8 16 32 64 128 256 368 512

Sp
eed

up

Streaming memory size (in MB)
(c)

Fig. 2: Effect on PageRank performance: (a) edge tuple size; (b) metadata access localization; and (c) streaming memory size

Connected Component (CC) is a subgraph of the original
graph where each vertex is connected to all other vertices of
the subgraph through a direct edge or a path spanning the
vertices of this subgraph. For the directed graph, the connected
component could be strongly connected component (SCC) if
a directed path or edge exists between all pairs of vertices
of the subgraph. Alternatively, it is called weakly connected
component (WCC) if replacing directed edges with undirected
edges changes the subgraph to connected. Prior work [31]
proposes an efficient parallel algorithm to identify different CC
and is extended in [4]. The advantage of using this method
is that all CCs are identified in very few iterations where
all iterations are run in the whole graph taking advantage of
sequential bandwidth.

It should be noted that the above three graph algorithms
can be categorized in two classes: algorithms that process
all the vertices in an iterative manner (PageRank, Connected
Components) and those that have one or multiple starting
points (anchored computations, e.g., BFS). In this paper, we
use these three algorithms to motivate and demonstrate the
effectiveness of G-Store.

III. G-STORE OVERVIEW

In this section, we present the architecture of G-Store,
a high-performance graph store optimized for semi-external
graph processing. To improve the performance of graph al-
gorithms, prior work mainly aims to leverage sequential I/Os
from the storage systems, e.g., GraphChi proposes a change
in the representation of graph data to enable sequential reads.
Similarly, X-Stream follows a scatter-gather-apply program-
ming model where updates are generated and stored in disk
first and then they are read and applied. Again, this pro-
gramming model enables sequential read of graph data and
updates, as well as sequential updates. On the other hand,
FlashGraph and TurboGraph allow parallel I/O requests to
saturate SSDs that provide a good support of random I/Os,
and also implement selective reads of graph data to reduce the
number of I/Os.

Different from prior approaches, G-Store not only focuses
on maximizing the I/O performance on the graph data but
also aims to improve the access to the metadata in the graph
algorithms. In particular, G-Store explores four key aspects of
I/O design: storage format, on-disk layout, I/O, and memory
management. Figure 3 presents the overview of G-Store.

In the following we present three observations that motivate
our design.

Tile-based Representation

Graph Algorithm

On-Disk GroupingAnd Tile-based I/O

Storage Devices

Memory Management
G-Store

Fig. 3: G-Store framework

Observation 1: There is a need for a space-efficient graph
storage format that can greatly reduce the I/O time, leading to
an improved algorithmic performance. This is because when
the graph data utilizes less disk storage, loading it to memory
naturally requires a small number of I/Os. To illustrate this
point, one may allocate 8 or 16 bytes to represent the edge
tuple for a Kronecker graph (scale 28 and edge factor 16, Kron-
28-16) [14]. When running X-Stream, the PageRank algorithm,
which loads the graph from disk to memory in each iteration,
doubles the performance when the storage space of the same
graph is halved, as shown in Figure 2(a).

In this paper, we propose a new 2D tile-based storage
format that leverages the symmetry and smallest number of
bits represenation for upto 8× storage saving compared to
traditional edge based graph data. This format will be utilized
to accelerate the I/O process for different graph algorithms.

Observation 2: Localization of the metadata access is desired
to scale the performance to multiple disks. As more disks
are available in a system, the processing must support the
increased throughput coming out of aggregation of disks. At
this point, it is critical that the working set can fit in the CPU
cache. Again, using PageRank as an example, calculating the
page rank of a vertex will need the ranks of its neighbors.
This task can be very fast if the ranks of its neighbors were
in cache, or much slower otherwise. Figure 2(b) shows the
variation of an in-memory PageRank algorithm, depending on
whether one may localize the access of the neighbors’ page
rank values. With a 2D partitioning of the graph data, the
performance of the PageRank algorithm improves when there
are around 128 to 256 partitions for a Kronecker graph.

In this work, G-Store utilizes the 2D partitioning a step
further and explores tile-based physical grouping in conjunc-
tion with the last-level cache (LLC) so that multi-core CPUs

3

(a) Upper-half of 2D Partitioned graph

(0x00, 0x01), (0x00, 0x11),(0x01, 0x10) (0x00, 0x00), (0x01, 0x00),(0x10, 0x00)
Tile[0x0, 0x0] Tile[0x0, 0x1]

(0x00, 0x01), (0x01, 0x10),(0x01, 0x11)
Tile[0x1, 0x1]

(b) SNB Representation shown in binary form

(0, 1), (0, 3),(1, 2) (0, 4), (1, 4),(2, 4)
Tile[0, 0] Tile[0, 1]

(4, 5), (5, 6),(5, 7)
Tile[1, 1]

Fig. 4: Graph data after different saving techniques for the example
graph in Figure 1.

can work in tandem with the increased throughput of the SSD
array. This idea is to group the smaller tiles into bigger groups
on disk so that the LLC can be utilized fully before the graph
data are evicted.

Observation 3: As streaming the graph data requires a small
memory footprint, there exists an opportunity for improv-
ing algorithmic performance through effective caching in the
main memory. Figure 2(c) shows that the amount of the
memory reserved for data streaming has very limited effect
on performance. Clearly, as the graph algorithm is disk-
bounded, allocating more memory will unlikely improve the
disk throughput or performance. Unfortunately, prior work has
paid little attention about caching the graph data. X-Stream
simply streams the graph data without any caching. Although
FlashGraph employs the LRU technique, the likelihood of the
same data being used in the same iteration is negligible after
the graph data has been used in this iteration.

In this paper, we explore how the graph data will be used
in the next iteration and define appropriate caching strategies.
This varies for different algorithms. In BFS, the cached data
may never be utilized in later iterations as the adjacency list
of a previously visited node will never need to be accessed
again. On the other hand, for PageRank, all of the graph
data would be utilized for the next iteration. Hence, G-Store
employs a dynamic approach of proactive caching where G-
Store is able to predict which tile will be required in the
next iteration. Furthermore, G-Store uses a slide-cache-rewind
(SCR) scheduler to pipeline I/O and processing, and to provide
judicious usage of the main memory. In particular, G-Store
rewinds at the end of each iteration and utilizes the data that
is present in the memory before eviction, avoiding expensive
redundant disk I/Os in the future.

IV. TILE-BASED STORAGE FOR GRAPHS

The proposed tile-based graph storage in G-Store is derived
from 2D partitioning of the graph data. Specifically, it consists
of two components: exploiting graph symmetry and leveraging
offsets in the 2D grid representation.

A. Symmetry-based Storage Saving

Undirected Graph: Generally, an undirected graph is repre-
sented by storing each edge twice. That is, an edge (v1, v2)
is stored twice as (v1, v2) and (v2, v1). In Figure 1(e), one
can see that in 2D partitioned graph data, partition[0,1] and
partition[1,0] are a duplicate of each other. Even the partitions
along the diagonal, i.e., partition[0,0] and [1,1], can be divided
into two parts, where one contains the mirror image of the
other.

To avoid the redundancy, G-Store stores and uses only
the upper triangle of the 2D partitioned graph instead of the

Algorithm 1 BFS on the partition[i,j] of undirected graph

1: edge← get edge ptr(i, j);
2: for k ← 1, edge count(i, j) do
3: src← edge[k].src;
4: dst← edge[k].dst;
5: if depth[src] == level & depth[dst] == INF then
6: depth[dst]← level + 1;
7: end if
8: // Added code for new storage format
9: if depth[dst] == level & depth[src] == INF then

10: depth[src]← level + 1;
11: end if
12: end for

complete data set. As shown in Figure 4(a), one only needs
three tiles, each of which has three edges. Tile[1,0] is no longer
required in this case.

With small modifications, the graph algorithms can easily
be adapted to work on only the upper triangle. Algorithm
1 shows the pseudocode for BFS on the partition[i,j] of 2D
partitioned undirected graph. Lines numbered 8-10 are the new
codes that have been added in BFS in order to work with the
half of the graph data. We have developed codes in G-Store
to support different graph algorithms.

Directed Graph: Each edge in directed graphs has a direction
associated with it. An edge is called in-edge for a vertex if the
edge is directed to this vertex otherwise it is called out-edge.
It should be noted that an out-edge of one vertex would be an
in-edge of another vertex. Correspondingly, each vertex also
has in-degree and out-degree. The number of edges directed
to a vertex is called its in-degree while the number of edges
coming from this vertex and directed to any other vertex called
out-degree. As a result, the implementation of graph algorithms
in directed graphs differ from their undirected counterparts.

In G-Store, we believe that storing and later loading both
the in-edges and out-edges are redundant and unnecessary for
graph processing in directed graph. Note that many existing
graph engines [20], [39] that store and load in-edges and out-
edges both for directed graphs. We will show that compared to
G-Store, these systems would require additional time to load
the data.

Clearly, the graph algorithms will require small modifi-
cations in order to work with either in-edges or out-edges of
directed graphs. Algorithm 2 shows the revised implementation
of label propagation for the CC algorithm [39], where G-Store
does not need to broadcast the label through out-edges. As
a result, G-Store is able to cut the cost of data access in
graph algorithm by half, while achieving the same results.
Alternatively, this algorithm can be implemented using just
out-edges as well.

In summary, for undirected graphs, enabling symmetry in
the CSR format would incur high I/O cost for some algorithms
(e.g., BFS) which is likely the reason why no existing graph
engine supports it, and for directed graphs, the utilization of
symmetry is not possible for many algorithms (e.g., SCC [10])
which need both in-edges and out-edges. The novelty of G-
Store lies in addressing both problems with tile-based storage.

4

Algorithm 2 Label Propagation Using In-Edges

1: procedure UPDATELABEL(V ertex)
2: min label← V ertex.label;
3: for e in V ertex.inEdges() do
4: min label← min(e.neighborLabel,min label);
5: end for
6: V ertex.label← min label;
7: // No need to broadcast
8: // for e in V ertex.outEdges();
9: // e.neighbourLabel← vertex.label

10: // end for
11: end procedure

B. Smallest Number of Bits Representation

This technique is based on the observation that another
type of redundancy exists in the graph data, that is, in a 2D
partitioned graph, for all the edge tuples within a partition, the
most-significant-bits (MSBs) of IDs of source and destination
vertices are identical and hence redundant.

For the example graph in Figure 1(a), normally a three-
bit storage would be required to represent any vertex whose
ID is from zero to seven, thus six bits in total for an edge
tuple. Interestingly, fewer number of bits will be required, if
one separates the representation of a partition and the edges
in this partition. For example, for each edge tuple in tile[1,1],
the MSBs of source and destination vertices are always [1,1].
Similarly, the MSBs of source and destination vertices of each
edge tuple in tile[1,0] are always [1,0]. In this example shown
in Figure 4(b), one may use two bits to represent one vertex
and thus four bits for an edge tuple, saving two bits per edge
tuple. Of course, there is additional storage (two bits in this
case) needed to represent the IDs of the tiles, but the total
storage cost is much smaller.

To calculate the original edge tuple from this compact
representation, one must know to which tile an edge tuple
belongs. This can be easily done by concatenating the tile ID
to the vertex ID. In the example, tile[1,1] has the offset of
(4,4), and the edge tuple (0,1) in this tile will represent the
edge (4,5) in the original graph data. In G-Store, we calculate
and cache the offset pointers of algorithmic metadata for each
tile, so that any accesses to the metadata for the whole tile
can be simply indexed with the compact vertex IDs. For each
metadata, two operations will be needed per tile: one serves
the compact source vertices and another compact destination
vertices.

Tile Sizes: In this work, we allocate two bytes to represent
each vertex and four bytes for an edge tuple. In tile[i,j], the
range of the source vertices is [i ∗ 216,(i + 1) ∗ 216) and the
destination vertices [j ∗ 216,(j + 1) ∗ 216). In another words,
each tile can have at most 232 edges and takes at most 16GB
storage on disks. Note that the size of tiles varies by the graphs,
and some are very sparse as small as a few bytes.

Figure 5 shows the variation in the edge count in individual
tiles for the Twitter graph. We will present all the graphs used
in this paper in Section VII. For Twitter, 40% of the tiles have
no edges, while 82% with less than 1,000 edges and only 0.2%
with more than 100,000 edges. The biggest tile has over 36
million edges. In contrast, most (98%) tiles for the synthetic

Fig. 5: Edge counts and size of Twitter tiles. Tile IDs are sorted by
edge counts.

Kron-28-16 graph have less than 1,000 edges, with 4,097 edges
in the biggest tile. On the other hand, the total number of the
tiles that a graph has depends upon the number of vertices.
For example, the Kron-28-16 graph (undirected) would have 8
million tiles with 256 million vertices, while Twitter (directed)
has 1 million tiles with over 52 million vertices.

By just allocating four bytes to represent an edge tuple, we
save a lot of space on memory and disk, which allows G-Store
to scale to big graphs. In comparison, the existing work using
edge tuple representation [28] and 2D partitioned graph [40],
allocates 8 bytes for graphs with less than 232 vertices, 16 for
graphs with more than 232 vertices, and so on.

Implementation: We store all the tiles in a single file. We
do not allocate individual files for each tile as the number
of files would be enormous and put unnecessary burden on
storage. To track the size of each tile, we store the starting
edge number of every tile in another array and store that as
a separate file called start-edge file. This file serves similar
purpose as does the beg-pos for the CSR format. For undirected
graphs, the start-edge file also stores the information of just a
half of the graph.

For conversion, we need two passes over the traditional
edge tuple format in order to convert it to the tile. In the first
pass, the start-edge array is calculated. In the second pass, edge
tuples are converted to the space-efficient tile representation
and stored at the right location. The method is similar to CSR
conversion process. To this end, we find that conversion to G-
Store format is faster than CSR in most cases. For example,
the tile-based format needs 57 seconds for a Kron-28-16 graph,
compared to 89 seconds for the CSR format. Table I shows the
conversion time. Twitter conversion is slower because there is
more skewness in the edge distribution in tiles in this case. For
the Twitter graph, 40% tiles are empty, and 36 million edges
are in one tile where the largest degree of a vertex is 779,958.

TABLE I: Conversion Time (in seconds)
Graph Kron-28-16 Twitter Friendster Subdomain
CSR 89 16 26 17
G-Store 57 25 9 3

C. Additional Storage Saving on Degrees

Many graph algorithms need data on vertex degrees. For
a power-law graph, the degrees of the majority of vertices

5

0 q 2*q
g = p/q

0
q
2*q

PageRankArray

PhysicalGroup

p
Disk-layout of tiles in a physical group

p

Fig. 6: On-disk Layout and algorithmic metadata (PageRank) access-
localization for a physical group of tiles

are very small while some vertices have very high degree.
Consequently, allocating the same number of bytes to store
the degree would waste lots of space, yet another type of
redundancy in storage.

In G-Store, we allocate two bytes to represent the degree
(upto 32,767) of each vertices with the MSB set to zero. For
vertices whose degree is greater than 32,767, the MSB bit is
set one and the rest of the bit contains an index into another
array which stores the degree. This additional optimization can
further reduce the storage requirement of the most power-law
graph, e.g., the size of degree array comes down from 4GB to
2GB for the Kron-30-16 graph. This space optimization can
only be applied when the number of large degree vertices are
less than 32,767.

In summary, graph symmetry provides 2× storage saving
while tile-based storage format offers additional 2 to 4×
saving. For instance, a 33-scale Kronecker file with edge factor
16 would require 4TB disk space in traditional 2D partition or
edge tuple list, while G-Store needs only 512GB disk space
for graph data, with additional 65GB for the start-edge file.

V. TILE GROUPING AND ASYNCHRONOUS I/O

A. On-Disk Grouping

As the graph size increases, the algorithmic metadata may
not fit in CPU caches. The net effect is a drop in performance
due to many cache misses. Prior work [39] shows that not
all graph algorithms can saturate the disk I/O in a multi-
SSD system. To address this problem, it is imperative that
we utilize the last-level cache efficiently in order to sustain the
maximum I/O throughput of the SSD array. This provides great
opportunity for performance optimization for graph processing.

When a tile is processed in G-Store, the access to the
corresponding metadata will be limited to the vertices within
the range of the tile. For the Twitter graph, the metadata sizes
of one tile are 64KB, 256KB, and 256KB for BFS (depth
array), WCC (component id array), and PageRank (pagerank
array), respectively. Though these data structures can fit within
the available L2 cache, the LLCs have become much bigger in
recent years, e.g., the latest Intel processors have up to 40MB

4E+05
4E+06
4E+07
4E+08
4E+09
4E+10

1E+05

1E+06

1E+07

1E+08

1E+09

1E+10

0 2 4 6 8 10 12 14 16

Size
 (lo

g sc
ale)

Edg
e C

oun
t (lo

g sc
ale)

Group ID

4GB
400MB
40MB
4MB

1010

109

108

107

106

105

Fig. 7: Range of edge counts in Twitter physical groups. Group IDs
are sorted by edge counts.

LLCs [17]. To take advantage of this feature, G-Store pushes
the idea of tile-based partition one step further, by grouping
tiles into physical groups as shown in Figure 6. This grouping
is done at the disk storage level, i.e., the graph data is laid out
in the disk in a way such that all the data of one physical group
can be read sequentially. Moreover, the algorithmic metadata
for one physical group fits in LLC for fast access.

Assuming a graph has p2 tiles, each group takes q2 tiles,
depending on the size of LLC. Thus, there will be g = p/q
number of such groups. With physical groups, we can fetch the
data and metadata for each group, process it and remove it at
the end of the process. Next, we will proceed to the next group
and load its data and metadata and process it. All this happens
in a pipelined fashion as we will present in next section.

Figure 7 shows the edge count and size of of a physical-
group for the Twitter graph when q is equal to 256. There
are 364,227 edges in the smallest group while over a billion
edges are present in the largest group, that is, mostly tens to
hundreds of MBs in size.

B. Tile-based I/O

We choose individual tile as a unit to manage the graph
data, hence we do not fetch, process or cache partial data from
any tile.

As tiles are grouped together sequentially in a physical-
group, I/O happens for all the tiles in physical group before
going to the second group, i.e, starting from the first physical
group [0, 0] fetching all the tiles from this group, followed
by the physical group [0,1], and so on. Within each group, G-
Store starts fetching the data from the first tile and proceeds
towards the last tile. Tiles from consecutive groups can be
fetched together if the streaming memory size allows it.

G-Store uses Linux Asynchronous I/O (AIO) to fetch the
graph data from disk, which consists of two steps, submitting
the request to an I/O context and polling the context for
completed I/O events. However, as the size of I/O increases,
Linux AIO may not always show the asynchronous behavior
if submitting the I/O blocks would take longer than polling.
To this end, we use another property of Linux AIO to simplify
the I/O interface. Linux AIO APIs (libaio) provides a single
system call which can be used to batch many I/Os. At the
runtime, G-Store identifies which tiles should be loaded based
on the algorithmic metadata and does selective fetching. For
example, in some of the last iterations of BFS very few vertices
are frontiers, thus only few tiles may be required to fetch. In

6

Processing I/O Free Memory

Cache Pool (useful data) I/O (seg1) Processing (seg2)
Proactive Caching

Cache Pool Processing I/O

Cache Pool Processing I/O Free Memory

T1

T3

Ti

Ti+1I/O Free MemoryT0

Cache Pool (useful data) Processing ProcessedTn

Cache Pool (processing) Processing Unprocessed

Cache Pool I/O (seg1) Processing (seg2)

(T+1)0

(T+1)1
Proactive Caching

Rewind

Tim
e

-------------------------------- Iteration T -------------------------------------

---------------------------------- Iteration (T+1) ---Slide

Fig. 8: SCR and memory management for streaming and caching the graph data. At time T0 of the current iteration, G-Store fetches the first
segment for the first iteration. At T1, the second segment is getting data from disk while the first segment is getting processed. At T2, the first
segment is preserved, the second segment is getting processed while the third segment is fetching data from disk. At Ti, all memory is about
to get exhausted, and at Ti+1, cache pool data is analyzed to free space. The last two segment will alternately be used for I/O and processing
and useful data will be copied to the cache pool. At Tn, there is no I/O at the end of the current iteration. At time (T + 1)0 of the next
iteration, there is the Rewind processing - the cache pool and the first segment are processed. At (T + 1)1, the second segment is processed,
while the first segment is used for I/O. The cache pool is analyzed. Similar steps of I/O and processing will continue.

this case, these I/Os would be merged into a single AIO system
call, which makes the management of I/O very easy.

In addition, G-Store uses Linux AIO for fetching the data
in association with direct I/O to avoid the double copy, where
the data is directly copied from disk to the userspace buffer
skipping the kernel buffer. We will discuss the management of
the userspace memory buffers in the next section.

VI. SCR: MEMORY AND I/O MANAGEMENT

In this section we will present how G-Store manages graph
data and metadata in memory and the SCR technique that
consists of three steps, slide, cache, and rewind.

A. Memory Layout

G-Store divides the whole memory into two parts: one
for graph metadata (e.g., pagerank array) and the other for
streaming and caching the graph data. Recall our observation
that extra memory dedicated for streaming the graph data pro-
vides limited benefit, G-Store allocates the minimal memory
for data streaming while the rest is used for caching data in
an intelligent way.

There are two ways to manage the memory for caching.
First, one can manage memory in terms of pages such as in
Linux page cache. Linux AIO is aligned at 512 bytes, so the
page size could be any multiple of this size. However, doing
so requires lots of memory in page management metadata such
as page header, while a large page size may lead to waste of
memory in fragmentation as different tiles may not be exactly
a multiplier of the page size.

Alternatively, G-Store utilizes copy-based memory man-
agement. The idea is to provide the optimum use of avail-
able memory without wasting a lot of memory in page-
management, similar to [29]. In this method, available memory
for graph data is dedicated for two fixed sized chunks called
segment. The rest of the memory is allocated to the cache pool
for graph data caching. Two segments are used for overlapping
the graph I/O and processing, that is, one segment is used for

loading the data while the other is used for processing the
previously loaded data.

Once I/O and processing finish the segment, the naive
approach is to switch the role of them, that is, processing the
I/O segment with most recently loaded data, and fetching data
into the other segment. In this work, when the processing is
done, G-Store instead puts the recently processed segment into
the cache pool and allocates a new segment for I/O. This way,
G-Store is able to save the data in the pool that most likely
will be needed in the next iteration of graph processing.

B. Slide: Overlapping I/O and Processing

G-Store manages the thread scheduling, I/O and processing
efficiently. It fetches the data on one segment and executes the
program on the other segment which has been just fetched.
These two operations are done in parallel using different
threads available in a multi-core system. There will be many
I/O and process phases in any iteration as the segment size is
generally very small compared to graph data.

G-Store ”slides” down the segments and memory, and alter-
nates between I/O and processing. We achieve the parallelism
in graph processing by assigning different rows to different
threads. We use dynamic scheduling of OpenMP for workload
balancing as there are many rows and the size of each row
varies a lot.

Figure 8 shows an example of memory and I/O process for
two consecutive iterations T and T+1, each of which consists
of multiple steps represented by subscripts. Let us start with the
free memory allocated for streaming and caching to understand
the G-Store operation. At the first time interval T0 of the
iteration T, the first memory segment is allocated for I/O. At
the next time interval T1, I/O is complete and the segment
is sent for processing, and at the same time, another memory
segment is allocated for I/O. At T2, when the processing of
the first segment finishes, G-Store will manage it as the cache
pool, while the same steps of I/O and processing are repeated
as in previous time intervals.

7

The slide process goes on till G-Store runs out of the
memory, which is illustrated as the time interval Ti. At this
point, there are one contiguous cache pool and two segments
(seg1 and seg2) for I/O and processing, while no new unused
segments are available. Because not everything in the cache
pool is useful, G-Store uses proactive caching policy to decide
which tiles to keep in the pool. This step reclaims memory
from the pool and will be discussed shortly. The freed memory
at the end of cache pool is used for caching additional
graph data that would be fetched in later phases as shown
in phase Ti+1. Moving tiles between memory segments are
implemented with memcpy and memmove instructions.

The current iteration ends at the time interval Tn when
G-Store does not fetch any data and just processes the last
fetched segment. Also, G-Store does not analyze the segments
for caching as they will be used shortly in next iteration when
G-Store rewinds.

C. Proactive Caching

For many graph algorithms, data fetched in any iteration
may not to be used in the same or future iteration. In a 2D
partitioned graph data, a tile may be needed again in the next
iteration, e.g., when the tile generates new frontiers during the
current processing of the BFS algorithm. Instead of simple
LRU-like caching, G-Store designs a set of proactive caching
rules based on algorithmic metadata to calculate which tiles
need to be processed in the next iteration. This way, G-Store
is able to fully utilize in-memory data and avoid redundant
I/Os for the same data in the future. The proactive caching
rules are slightly different for undirected and directed graphs.
We summarize them for undirected graphs as follows:

Rule 1: At the end of the processing of any row[i], one shall
know whether row[i] would be processed in the next iteration
or not. For example, in Figure 1(c), vertices in the range 0-
3 are processed only in row[0] (i.e., tile[0,0] and tile[0,1]),
while vertices in the range 4-7 are processed in row[1] plus
column[1]. Thus any frontier in the range 0-3 can only be
generated during the processing of row[0] and no new frontiers
in this range can be generated in later processing.

Rule 2: If row[i] is not needed for the next iteration, then
one shall know that tile[i,i] will not be needed. There exists
partial information on whether other individual tiles, i.e., from
tile [i, i+1] to tile[i, p-1] would be required or not for the
next iteration. This knowledge about tile[i, i+k] would be
completely available only when we process row[i+k]. For
example, if row[0] is not needed in the next iteration then
one will know whether there is a need for tile[0,1] when we
process row[1].

For directed graphs, we store only out-edges. The rule
is simple: at the end of processing any row[i], we partially
know which of the row would be processed again in the
next iteration. So, if row[i] is potentially needed in the next
iteration, it will be cached.

As a result, at the end of the processing of row[i], we know
either fully or partially if this row is needed for next iteration.
However, the cache analysis happens only when the cache pool
is full, i.e., at time Ti in the Figure 8. This means that we have
accumulated more data in cache pool, and more information in

the form of algorithmic metadata before any tiles are evicted.
This helps us in utilizing the cache capacity to cache only the
required tiles. Even if some tiles are evicted because of partial
information available till now, the free space in the cache pool
is again utilized for future reads of this iteration as shown at
time Ti+1 in the Figure 8.

D. Rewind

In the beginning of each iteration, G-Store holds a large
amount of graph data in the cache pool that has been fetched
and processed in the prior iteration. Interestingly, for many
graph algorithms from PageRank to WCC, almost 100% of
these data will be utilized in the current iterations, which G-
Store manages to save thanks to the proactive caching policy.

To take advantage of cached data, G-Store ”rewinds” the
processing in between two iterations to process the data in the
cache pool, as well as the data present in two segments that
have been fetched in the last two phases of previous iteration.
An example can be found at the first time interval (T +1)0 in
Figure 8, when G-Store rewinds and processes the entire data
in the cache pool. At this time, no I/O is performed. In the
next interval (T +1)1, G-Store starts to load data into the free
segment and continues to slide and cache.

The handling of the last two segments, seg1 and seg2,
is slightly complicated. Specifically, in the beginning of the
iteration T +1, G-Store processes seg1 first and does not fetch
any data during this time. Note that it also processes the cache
pool at the same time. In the next interval, it processes the
second segment seg2 while starting to load seg1 with graph
data.

The rewind process not only reduces the number of I/Os
by reusing the data that is already cached in the memory,
but also reveals the hints for future caching. Specifically, new
information (such as new frontiers in BFS) are available during
the beginning of an iteration after processing the cache pool
and two segments. Using this information to cache the data
would be more beneficial for the next iteration. In addition,
since the cache is also analyzed, G-Store will evict the data
that may not be needed in the next iteration after processing,
thus freeing up some space for further caching.

VII. EXPERIMENTS

The machine used for the experiments has a dual-socket of
Intel Xeon CPU E5-2683 2GHz, each having 14 cores (total
56 threads with hyper-threading). The CPU has 32K data and
instruction L1 cache, 256K L2 and 16M L3 (LLC) cache.
For storage, the machine uses eight SAMSUNG 850 EVO
512GB SSDs connected to LSI SAS9300-8i HBA configured
in software RAID-0. The OS is Centos 7.1 with Linux kernel
3.10. The collection of graphs is shown in Table II. We will
use these graphs to demonstrate the effectiveness of the design
choices that we have made and to compare the performance
against the existing work. In the tests, we use 8GB memory for
streaming and caching data (4GB for the Twitter, Friendster
and Subdomain graphs due to their smaller data sizes). The
segment size is set to 256MB.

8

TABLE II: Different graphs and their sizes

Graph Graph Vertex Edge Edge List CSR G-Store Space Saving Space Saving
Name Type Count Count Size Size Size w.r.t. Edge List w.r.t. CSR
Twitter [2] (Un-)Directed 52579682 1963263821 14.6GB 14.6GB 7.3GB 2x 2x
Friendster [1] (Un-)Directed 68349466 2586147869 19.26GB 19.26GB 9.63GB 2x 2x
Subdomain [3] (Un-)Directed 101717775 2043203933 15.22GB 15.22GB 7.6 GB 2x 2x
Rmat-28-16 Undirected 228 233 64GB 32GB 16GB 4x 2x
Random-27-32 Undirected 227 233 64GB 32GB 16GB 4x 2x
Kron-28-16 Undirected 228 233 64GB 32GB 16GB 4x 2x
Kron-30-16 Undirected 230 235 256GB 128GB 64GB 4x 2x
Kron-33-16 Undirected 233 238 4TB 2TB 512GB 8x 4x
Kron-31-256 Undirected 231 240 8TB 4TB 2TB 4x 2x

00.51
1.52
2.53

Spe
edu

p

BFS Pagerank CC/WCC

FlashGraph G-Store

Fig. 9: Speedup comparison of G-Store with FlashGraph. The symbol -u stands for undirected graphs and -d directed graphs.

A. Trillion-Edge Processing

We are able to achieve fast graph processing in minutes for
Kron-31-256 which has two billion vertices and one trillion
edges. The total memory usage including all the metadata is
about 14GB for BFS, 36GB for PageRank and 20GB for WCC,
which also accounts for the 8GB memory reserved for data
streaming and caching.

The runtime for this graph is presented in Table III. G-
Store calculates WCC in 32 minutes and traverses this large
graph under 43 minutes. That is, G-Store achieves external
BFS performance of 432 MTEPS (million traversed edges per
second). Also, G-Store is able to perform one iteration of
PageRank in this graph in 14 minutes using only one machine.
In contrast, for such an iteration, prior work [9] needs about
3 minutes on 200 machines on a trillion-edge graph with less
number of vertices (1.39 billion vertices).

TABLE III: Runtime (in seconds) of trillion-edge graphs

Graph BFS PageRank WCC
Kron-31-256 2548.546 4214.543 1925.134
Kron-33-16 1509.13 1882.88 849.046

We also process Kron-33-16 graph which has 8 billion
vertices and 256 billion edges where a vertex ID needs 8 bytes
of storage. In this case, G-Store needs no extra tuning for
processing while other solutions, e.g., [39] [28] [40], would
require to change the definition of vertex ID from 32-bit to
64-bit, doubling the cost on memory and storage.

B. G-Store vs External Memory Graph Systems

We compare G-Store with FlashGraph and X-Stream for
all three graph algorithms and various undirected and directed
graphs. Like G-Store, FlashGraph is a semi-external graph
engine while X-Stream is fully external platform. Besides
using memory for data streaming, FlashGraph and G-Store
need to allocate additional memory for graph and algorith-
mic metadata. FlashGraph implements a different flavor of
PageRank [38] where they send only the delta of most recent
PageRank update to neighbors. It should be noted that Flash-
Graph runs BFS and PageRank only on out-edges in the CSR
format (no symmetry advantage) and hence, G-Store does not
have any space saving for directed graphs (with less than 232

vertices) for BFS and PageRank. FlashGraph do not provide a
PageRank implementation for undirected graphs.

Overall, compared to X-Stream, G-Store achieves more
than 17×, 21× and 32× improvement in BFS, Pagerank and
CC respectively for the Kron-28-16 graph. The speedup for the
Twitter graph are 12× (BFS), 9× (PageRank) and 17× (CC).
We have also observed similar speedups for other graphs.

Figure 9 shows the relative speedup of G-Store over Flash-
Graph performance. G-Store achieves 2× and 1.5× speedup
for PageRank and CC. In particular, for CC, G-Store is
more than twice as fast as FlashGraph on both Twitter and
Friendster, regardless of directed or undirected edges. For
BFS, it outperforms (average 1.4×) on undirected graphs, with
the only exception of Friendster graph where G-Store reads
slightly more data in last several iterations. For directed graphs,
G-Store is slightly worse (20% for Twitter) due to no space
saving benefit.

9

C. Impact of Different Optimizations

Space Saving: The space saving from Symmetry and SNB
representation can be observed in Table II. For graphs with
less than 4 billion vertices we achieve 4× space saving with
respect to X-Stream and 2× compared to FlashGraph. For
larger graphs, we achieve 8× space saving compared to X-
Stream and 4× with respect to FlashGraph. In this case, G-
Store uses two bytes for a vertex ID, compared to eight bytes
in prior approaches. The space-saving helps in achieving huge
performance improvement and enables some graph data to fit
within the available memory.

We compare the performance when we store all the graph
data without any space saving, using symmetry, and when
using symmetry and SNB both for the Kron-28-16 graph. We
allocate 8GB of memory in the above three cases. Figure 10
shows the speedup. Utilizing the symmetry in the Kron-28-16
graph doubles the speed, while SNB improves the performance
further to 4.9× for BFS and 4.8× for PageRank. The speedup
is more than 4× (the space-saving factor) because G-Store is
able to cache more data and process at a faster speed.

0
2
4
6

BFS Pagerank

Spe
edu

p

Base Symmetry Symmetry+SNB

Fig. 10: Speedup due to space saving

Physical Group: We choose PageRank to evaluate the effec-
tiveness of physical grouping because it is compute intensive
and any optimization related to hardware cache utilization
would be most visible. Figure 11 shows the relative in-memory
performance when different number of tiles are grouped
together for the Kron-30-16 graph. We find that grouping
256x256 tiles performs 57% better compared to 32x32 group-
ing. In this case, one can see that LLC transaction (Load/Store)
and miss count are both at the minimum. Figure 12 shows
that there are upto 21% reduction in number of transactions
and 35% in misses over other scenarios. This combination is
ideal for the best performance and can give us best scaling to
multiple disks.

0
0.5

1
1.5

2

32*32 64*64 128*128 256*256 512*512 1024*1024

Spe
edu

p

Group Composition (Tiles Count)
Fig. 11: In-memory speedup from grouping

Slide-Cache-Rewind: We study the effectiveness of SCR
technique with respect to a base policy where we have just two
segments of memory to fetch and overlap it with processing.
We allocate 8GB of memory and use 256MB for each segment
while the remaining 7.5GB is used for caching. In the baseline
case, we allocate two segments for 4GB size each. The fetching
and processing of segments are completely overlapped for

0
50

100
150
200
250
300

LLC Operations LLC Misses

Bill
ion

s

32*32 64*64 128*128 256*256 512*512 1024*1024

Fig. 12: LLC operations and misses for various grouping sizes

PageRank. But for BFS, we fetch for the next iteration only
when we finish processing the current iteration, because at
this point the full information about which tiles to fetch is
not completely available. Figure 13 shows the speedup in
performance of BFS and PageRank for the Kron-28-16 graph.
The design choice is able to provide over 60% performance
improvement for BFS and over 35% for PageRank and WCC.

0
0.5

1
1.5

2

BFS Pagerank WCC
Spe

edu
p

Base Policy Cache+Rewind Policy

Fig. 13: Speedup from caching and scheduling policy

Cache Size: In this experiment, 256MB is allocated to each
segment while the total memory size is varied from 1GB
to 8GB in steps for the Kron-28-16 graph. For the Twitter
graph, the memory size is varied from 1GB to 4GB. Further
increasing memory size will make the graph fit completely
in memory. Figure 14 shows the speedup in both cases. Over
30% performance improvement is achieved for the Kron-28-
16 graph with 8GB memory. For Twitter, we observe the
maximum 46% improvement for BFS, 39% for PageRank, and
37% for WCC, respectively.

0
0.5

1
1.5

2

BFS Pagerank WCC BFS Pagerank WCC

Spe
edu

p

Kron-28-16 Twitter

1GB 2GB 4GB 8GB

Fig. 14: Effect of different cache sizes

D. Scalability on SSDs

We use Linux software RAID0 to bundle the disks together
with the stripe size set to 64KB. Figure 15 shows that G-
Store is able to achieve close to ideal 4× speedup on 4 disks
and around 6× on 8 disks for the Kron-30-16 graph. This
shows that G-Store can deliver graph data at a high throughput
that saturates the CPU cores. This is in particular clear for
PageRank as it saturates the CPU well before it can saturate
the combined I/O throughput of 8 SSDs.

10

0
2
4
6
8

BFS Pagerank WCC

Spe
edu

p 1 SSD 2 SSDs 4 SSDs 8 SSDs

Fig. 15: Scalability on SSDs

VIII. RELATED WORK

There have been a number of external graph engines such
as GraphChi [20] and X-Stream [28], which are optimized
for sequential performance of hard drives, as well as Turbo-
Graph [15], which is an external graph system designed for
SSDs. The most related project is FlashGraph [39], which also
processes graph on SSDs in the semi-external manner. Our key
improvements come from utilizing space-efficient tile-based
storage, on-disk layout, and slide-cache-rewind I/O technique.
Further, GridGraph [40] also uses a 2D partitioning scheme
to achieve better performance and selective I/O in a single
machine setup. While GridGraph depends upon Linux page-
cache for caching, G-Store exploits the properties of 2D tiles
to cache data that are most likely to be needed in the next
iteration.

PathGraph [37] is another semi-external graph engine and
Ligra+ [33] is an in-memory graph engine. Both propose to use
delta based compression, which requires that the data must be
sorted. Gbase [19] is a map-reduce based graph management
system that also uses compression techniques. In G-Store,
the smallest number of bits represenation provides an space
efficient way to represent graph in a 2D partition. Compression
can be applied to the data present in tiles to provide further
space saving, which we leave as future work. On the other
hand, Galois [25] and Ligra [32] are highly optimized in-
memory graph processing engine. G-Store can take advantage
of such algorithmic techniques to have an efficient in-memory
processing.

Physical grouping of G-Store is inspired from locality-
aware data placement [34], [40] to utilize the LLC fully. Our
tiles representation helps in utilizing the smaller L2 caches
too. In addition, a number of graph engines such as Power-
Graph [12], GraphLab [23], Pregel [24], Giraph [11], Power-
Lyra [8], GBase [19], Trinity [30], and GraphX [13] have been
proposed to process the graph in a distributed environment.
For example, PowerGraph shows that an efficient partitioning
can reduce the communication between different distributed
machines. Chaos [27], an scale-out graph processing engine
points out that the scale-36 RMAT graph with a trillion of
edges would need 16TB of storage space. Prior work [7], [36]
uses 2D partitioning to divide the data among many nodes in
supercomputers. In contrast, G-Store utilizes 2D partitioning
with the new tile-based storage for space efficiency, which we
envision can be easily extended to a distributed system.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have shown that an space-efficient repre-
sentation provides a better I/O performance in a external graph

engine. In G-Store, complete overlapping of I/O and compute,
and optimum utilization of hardware cache further help in
scaling the solution to multiple disks. We have also shown
how the available memory can be utilized in a better way for
caching the graph data. In summary, G-Store leverages these
techniques to run different graph algorithms very efficiently on
an array of SSDs and is able to quickly process trillion-edge
graphs. For future work, we plan to extend G-Store to support
even larger graphs on a tiered storage, where SSDs can be
utilized with a set of hard drives, and deploy in large-scale
computing systems.

ACKNOWLEDGMENTS

We would like to thank the SC reviewers for their helpful
suggestions. This work is supported in part by NSF CAREER
award 1350766 and grants 1124813 and 1618706.

REFERENCES

[1] Friendster Network Dataset – KONECT. http://konect.uni-koblenz.de/
networks/friendster.

[2] Twitter (MPI) Network Dataset – KONECT. http://konect.uni-koblenz.
de/networks/twitter mpi.

[3] Web Graphs. http://webdatacommons.org/hyperlinkgraph/2012-08/
download.html.

[4] D. A. Bader, G. Cong, and J. Feo. On the Architectural Requirements
for Efficient Execution of Graph Algorithms. In Proceedings of the
2005 International Conference on Parallel Processing, 2005.

[5] S. Beamer, K. Asanovic, and D. Patterson. Direction-Optimizing
Breadth-First Search. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2012.

[6] S. Brin and L. Page. The Anatomy of a Large-scale Hypertextual Web
Search Engine. In Proceedings of the Seventh International Conference
on World Wide Web 7, Amsterdam, The Netherlands, 1998.

[7] F. Checconi and F. Petrini. Traversing Trillions of Edges in Real Time:
Graph Exploration on Large-Scale Parallel Machines. In Proceedings
of the 28th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), May 2014.

[8] R. Chen, J. Shi, Y. Chen, and H. Chen. PowerLyra: Differentiated Graph
Computation and Partitioning on Skewed Graphs. In Proceedings of the
Tenth European Conference on Computer Systems, 2015.

[9] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan.
One Trillion Edges: Graph Processing at Facebook-scale. Proceedings
of the 41st International Conference on Very Large Data Bases (VLDB),
Aug. 2015.

[10] L. K. Fleischer, B. Hendrickson, and A. Pınar. On identifying strongly
connected components in parallel. In Proceedings of the 15 IPDPS
2000 Workshops on Parallel and Distributed Processing. 2000.

[11] Giraph. http://giraph.apache.org.
[12] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Power-

Graph: Distributed Graph-Parallel Computation on Natural Graphs. In
Proceedings of the USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2012.

[13] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica. GraphX: Graph Processing in a Distributed Dataflow
Framework. In Proceedings of the 11th USENIX conference on
Operating Systems Design and Implementation (OSDI), 2014.

[14] Graph500. http://www.graph500.org/.
[15] W.-S. Han, S. Lee, K. Park, J.-H. Lee, M.-S. Kim, J. Kim, and

H. Yu. TurboGraph: A Fast Parallel Graph Engine Handling Billion-
scale Graphs in a Single PC. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2013.

[16] B. A. Huberman and L. A. Adamic. Internet: Growth dynamics of the
World-Wide Web. Nature, 1999.

[17] Intel Haswell. https://en.wikipedia.org/wiki/Haswell
(microarchitecture).

11

[18] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabási. The
large-scale organization of metabolic networks. Nature, 2000.

[19] U. Kang, H. Tong, J. Sun, C.-Y. Lin, and C. Faloutsos. GBASE: A
Scalable and General Graph Management System. In Proceedings of the
17th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2011.

[20] A. Kyrola, G. E. Blelloch, and C. Guestrin. GraphChi: Large-Scale
Graph Computation on Just a PC. In Proceedings of the USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2012.

[21] H. Liu and H. H. Huang. Enterprise: Breadth-First Graph Traversal
on GPUs. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2015.

[22] H. Liu, H. H. Huang, and Y. Hu. iBFS: Concurrent Breadth-First Search
on GPUs. In Proceedings of the SIGMOD International Conference on
Management of Data, 2016.

[23] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein. Distributed GraphLab: A Framework for Machine Learning
and Data Mining in the Cloud. Proceedings of the VLDB Endowment
(VLDB), 2012.

[24] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski. Pregel: A System for Large-Scale Graph
Processing. In Proceedings of the SIGMOD International Conference
on Management of data, 2010.

[25] D. Nguyen, A. Lenharth, and K. Pingali. A Lightweight Infrastructure
for Graph Analytics. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2013.

[26] R. Pearce, M. Gokhale, and N. M. Amato. Multithreaded Asyn-
chronous Graph Traversal for In-Memory and Semi-External Memory.
In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis(SC), 2010.

[27] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel. Chaos:
Scale-out Graph Processing from Secondary Storage. In Proceedings
of the 25th Symposium on Operating Systems Principles, 2015.

[28] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream: Edge-centric
Graph Processing using Streaming Partitions. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP), 2013.

[29] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-structured Memory
for DRAM-based Storage. In Proceedings of the 12th USENIX
Conference on File and Storage Technologies (FAST), 2014.

[30] B. Shao, H. Wang, and Y. Li. Trinity: A Distributed Graph Engine
on a Memory Cloud. In Proceedings of the SIGMOD International
Conference on Management of Data, 2013.

[31] Y. Shiloach and U. Vishkin. An O(log n) Parallel Connectivity
Algorithm. Journal of Algorithms, 1982.

[32] J. Shun and G. E. Blelloch. Ligra: A Lightweight Graph Processing
Framework for Shared Memory. In Proceedings of the 18th ACM SIG-
PLAN symposium on Principles and practice of parallel programming
(PPoPP), 2013.

[33] J. Shun, L. Dhulipala, and G. E. Blelloch. Smaller and Faster: Parallel
Processing of Compressed Graphs with Ligra+. In Proceedings of the
2015 Data Compression Conference (DCC), 2015.

[34] J. Wang, Q. Xiao, J. Yin, and P. Shang. DRAW: A New Data-gRouping-
AWare Data Placement Scheme for Data Intensive Applications With
Interest Locality. IEEE Transactions on Magnetics, June 2013.

[35] K. Wang, G. Xu, Z. Su, and Y. D. Liu. GraphQ: Graph Query Processing
with Abstraction Refinement—Scalable and Programmable Analytics
over Very Large Graphs on a Single PC. In Proceedings of the Usenix
Annual Technical Conference, 2015.

[36] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and
U. Catalyurek. A Scalable Distributed Parallel Breadth-First Search
Algorithm on BlueGene/L. In Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, Nov 2005.

[37] P. Yuan, W. Zhang, C. Xie, H. Jin, L. Liu, and K. Lee. Fast
Iterative Graph Computation: A Path Centric Approach. In Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2014.

[38] Y. Zhang, Q. Gao, L. Gao, and C. Wang. Maiter: An Asynchronous
Graph Processing Framework for Delta-Based Accumulative Iterative
Computation. IEEE Transactions on Parallel and Distributed Systems,
Aug 2014.

[39] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe, and A. S.
Szalay. FlashGraph: Processing Billion-Node Graphs on an Array of
Commodity SSDs. In Proceedings of the 13th USENIX Conference on
File and Storage Technologies (FAST), 2015.

[40] X. Zhu, W. Han, and W. Chen. GridGraph: Large-scale Graph
Processing on a Single Machine Using 2-level Hierarchical Partitioning.
In Proceedings of the USENIX Conference on Usenix Annual Technical
Conference, 2015.

12

