
IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 1, MARCH 2015 15

Exploring Data-Level Error Tolerance
in High-Performance Solid-State Drives

Xin Xu and H. Howie Huang, Senior Member, IEEE

Abstract—Flash storage systems have exhibited great benefits
over magnetic hard drives such as low input-output (I-O) latency,
and high throughput. However, NAND flash based Solid-State
Drives (SSDs) are inherently prone to soft errors from various
sources, e.g., wear-out, program and read disturbance, and
hot-electron injections. To address this issue, flash devices employ
different error-correction codes (ECC) to detect and correct soft
errors. Using ECC induces non-trivial overhead costs in terms of
flash area, performance, and energy consumption. In this work, we
evaluate the feasibility of reducing the need for strong ECC while
maintaining the correct execution of the applications. Specifically,
we explore data-level error tolerance in various data-centric appli-
cations, and study the system implications for designing a low-cost
yet high performance flash storage system, SoftFlash. We explore
three key aspects of enabling SoftFlash. First, we design an error
modeling framework that can be used in runtime for monitoring
and estimating the error rates of real-world flash devices. Our
experiments show that the error rate of SSDs can be modeled
with reasonable accuracy (13%) using parameters accessible from
operating systems. Second, we carry out extensive fault-injection
experiments on a wide range of applications including multimedia,
scientific computation, and cloud computing to understand the
requirements and characteristics of data level error tolerance.
We find that the data from these applications show high error
resiliency, and can produce acceptable results even with high error
rates. Third, we conduct a case study to show the benefits of lever-
aging data-level error tolerance in flash devices. Our results show
that, for many data-centric applications, the proposed SoftFlash
system can achieve acceptable results (or better in certain cases),
with more than a 40% performance improvement, and a third of
the energy consumption.
Index Terms—Flash, solid-state drives, error correction codes.

ACRONYMS AND ABBREVIATIONS

SSD Solid-State Drive

ECC Error Correction Code

P-E cycles Program-Erase Cycles

BER Bit Error Rate

RBER Raw Bit Error Rate

UBER Uncorrectable Bit Error Rate

Manuscript received September 15, 2013; revised December 31, 2013 and
February 09, 2014; accepted February 10, 2014. Date of publication September
24, 2014; date of current version February 27, 2015. This work was supported
in part by NSF grants 1350766, 1124813, and 0937875. Associate Editor:
W.-T. K. Chien
The authors are with the Department of Electrical and Computer Engi-

neering, George Washington University, Washington, DC 20052 USA (e-mail:
xuxin@gwmail.gwu.edu; howie@gwu.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TR.2014.2354931

SLC Single-Level Cell

MLC Multi-Level Cell

TLC Triple-Level Cell

SECDEC Single-Error Correction and Double-Error
Detection

LDPC Low-Density Parity-Check code

AIC Akaike Information Criterion

MRE Mean Relative Error

RS Reed-Solomon ECC

BCH Bose-Chaudhuri-Hocquenghem ECC

PSNR Peak Signal to Noise Ratio

NAND flash Flash memory named after Negated-AND
logical gates

SMART Self-Monitoring, Analysis and Reporting
Technology

OOB Out Of Band

SCSI Small Computer System Interface

NOTATIONS

Coefficients

The modeled RBER

The measured RBER

The total number of bits in a codeword
including data and metadata

The codeword length in bits

The number of parity bits

The number of user data bits

The number of user data bits in a codeword

The horizontal and vertical positions of image
pixels

The pixel value at location in the fault
injection output

The pixel value at location in the
reference image

The length, and width of image in terms of
the number of pixels

0018-9529 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

16 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 1, MARCH 2015

I. INTRODUCTION

C URRENTLY, Solid-State Drives (SSDs) are used in a
broad range of computers from mobile devices, personal

computers, workstations, to supercomputers. Enterprise SSDs
have been widely used in many data centers [1]. Compared to
magnetic hard drives, SSDs built upon NAND flash memories
have significant advantages in input-output (I-O) throughput
and bandwidth [2], [3]. These flash drives are often considered
to be rugged storage systems because they are shock and
vibration resistant, and can work in a wider temperature range,
thanks to the fact that SSDs do not contain any moving com-
ponents like rotating platters and seeking arms as in magnetic
hard drives.
Unfortunately, flash drives are error prone. Their lifetimes

are usually limited by a certain number of program-erase (P-E)
cycles. They are also subject to soft errors, which can be induced
by various sources such as read or program disturbance, data
retention, etc. The resultant raw bit error rates (RBER) can be as
high as for multi-level cell (MLC), or for single-level
cell (SLC) [4]. In contrast, the RBER for magnetic hard drives
can be much lower at less than [5].
The common practice to address the problem of high error

rates is to employ error correcting codes (ECC) with the goal
of ensuring 100% correctness on the data level [6]. For ex-
ample, one well-known ECC is the Hamming code [7] that is
designed for single-error correction and double-error detection
(SECDEC) for cache or main memory. Unfortunately, flash
memory has very high bit error rates, and requires stronger
ECC, which leads to a higher overhead in area, performance,
and energy. For example, the area overhead for parity bits in an
8 KB page can go from 5% to 12% [8]. Some ECC algorithms
(e.g., low-density parity-check code (LDPC)) may incur even
higher area overhead (e.g., up to 100% in [9]). The performance
overhead for ECC decoding, a procedure required by every
read operation, contributes to 38% of the overall access time
[10]. The NAND flash memory with ECC can consume seven
times more energy in read access, and four times more energy
in write access, compared with ones without ECC [11].
In traditional storage systems that consist of magnetic hard

drives, these overheads are less of a problem. A read operation
in magnetic hard drives may have a long seek latency, which
mitigates the performance degradation from the ECC decoding.
However, this is not the case for SSDs. The read performance is
critical for flash memory, as it is one of the major driving-forces
for their wide adoption. Any performance degradation would
not be desirable. Also, given the high price of flash chips, one
would want to limit the areas that are used to store the error
correction data. Furthermore, as technology scales, the recent
trends have pointed to the need for more powerful ECCs in the
future generations of flashmemories [12], [13], resulting in even
more significant overheads.
In this work, instead of proposing more powerful ECC algo-

rithms, we take a different route to investigate the possibility
of data-level error tolerance in flash memories. The key obser-
vation that has motivated this research is that the requirement
for data integrity of storage systems may be too strict for cer-
tain types of applications (e.g., artificial intelligence, and multi-
media processing). Errors in these applications do not neces-
sarily affect software output at the user perceivable level. In

this case, applications can be considered as correctly executed
on the application level, even with errors. Based on this obser-
vation, applications with inherent error tolerance may not need
very strong ECC to maintain reliability. For those applications,
ECC strength can be lowered to reduce the overhead in perfor-
mance, energy, and area. A new SSD architecture can be de-
signed towards this goal. To effectively utilize this capability,
the approach should be able to adjust ECC strength according
to the error rate of the underlying SSD, and the error rate re-
quired by applications. To do so, there are three fundamental
issues that must be understood thoroughly.
For the first issue, the new architecture should be able to ac-

curately estimate actual error rates of SSDs after the systems
have been deployed. This estimation is the basis for making de-
cisions on adjusting ECC strength. However, this is a difficult
task. There is no available model that allows us to estimate error
rates after SSDs are deployed in systems. Current research usu-
ally focuses on measuring the RBERs of flash chips in labo-
ratory environments. These RBERs cannot be used to estimate
error rates of SSDs that are visible to applications. This limit
is mainly because of two reasons. First, the error rates of in-
dividual chips may vary due to manufacturing process varia-
tions [14], and it is difficult to derive an accurate estimation of
SSD error rate based on existing measurements on flash chips.
Second, the SSD error rate is affected by the frequency of read,
write, and erase operations.
This information must be collected at runtime.
For the second issue, the error tolerance capability of applica-

tions must be evaluated quantitatively, i.e., the target error rates
required by applications must be obtained. This information,
combined with estimated SSD error rates, can then be used for
adjusting ECC strength. Applications may have different error
tolerance capabilities. Even if some applications (e.g., multi-
media applications) are known as error resilient, the capability
of such resiliency must be quantitatively evaluated to confi-
dently adjust ECC capabilities. This evaluation requires exten-
sive experiments based on various representative applications.
For the third issue, it is important to quantitatively understand

the potential benefits of utilizing the data-level error tolerance
of applications. This quantification requires an evaluation of the
impact of various ECC algorithms on performance, area, and en-
ergy. This information is the key to making the tradeoff between
ECC capability and overhead.
Therefore, before implementing a new architecture, we need

to carry out three critical tasks: 1) modeling RBERs for SSDs,
2) analyzing the error resiliency of applications, and 3) quanti-
tatively studying the benefits and overhead of ECC algorithms
in SSDs. We summarize our solutions to these tasks as follows.
• We model RBERs at the disk level to quantitatively an-
alyze unique error behaviors in SSDs. This model can be
used by operating systems to estimate the current error rate
of the underlying SSD on-the-fly. To our knowledge, this
is the first attempt to construct statistically accurate RBER
models on real-world SSDs, extending prior works on an-
alyzing RBERs at the flash chip level [15]–[17].

• We investigate data-level error tolerance for various ap-
plications under different error rates estimated by RBER
models at the disk level. We identify the correctness re-
quirements for different application data by analyzing fault

XU AND HUANG: EXPLORING DATA-LEVEL ERROR TOLERANCE IN HIGH-PERFORMANCE SOLID-STATE DRIVES 17

Fig. 1. Bitmap images with different error rates. Fig. (b) contains about 100 errors, but only one is visible as highlighted by the red circle. Figs. (a) and (c) have
no visible distinctions. (a) Original image with no error, (b) Error rate , (c) Error rate .

injection results. We find that, for some data, it is possible
to achieve the data-level error tolerance at the raw error rate
of SSDs without using any ECC protections. Thus, one can
potentially relax the correctness requirements of non-crit-
ical data for high-performance flash storage systems. These
findings are essential for utilizing data level error tolerance
capabilities.

• We explore the potential benefits of relaxing the require-
ments of data-level error tolerance. We conduct experi-
ments by extending an SSD simulator [18] to quantify the
overheads of various ECCs with different strengths. The
results show that, for a number of benchmarks, ECC in
flash storage can impose over 120% access latency, and up
to 6 times the amount of energy consumption.

In this paper, we focus on studying the above three issues
based on quantitative models and evaluation. The models and
results can help to evaluate the feasibility and potential bene-
fits of leveraging the error resiliency of applications. We dis-
cuss a new SSD architecture, SoftFlash, that takes advantage
of the error resiliency of applications based on the results of
our study. We discuss the major issues of designing and imple-
menting SoftFlash.
This paper is organized as follows. Section II explains the

data-level correctness in SSDs, and the proposed framework.
Section III presents our approach for RBER modeling at
the disk level. Section IV discusses various ECC codes and
their overheads in terms of area, performance, and energy.
Section V presents the data-level error tolerance, and the ex-
perimental results for a number of data-intensive applications
in flash storage. We conclude in Section VII.

II. SOFTFLASH ARCHITECTURE

A. Data-Level Error Tolerance
Ideally, data correctness should be preserved at all cost. How-

ever, some data are not as important as others. Different files
such as binary executables, text files, multimedia, virtual ma-
chine images, backup and log files, etc., have different levels of
importance when they are used in applications. Even within a
file, not every bit is important. Some soft errors that occur in

a certain portion of a file may not become visible to users. If
one carefully examines the requirements of the data correctness
within the context of applications, there aremany potential cases
where data are not required to be very accurate. Image storage
is one of these examples. Fig. 1 shows the bitmap images with
no error, as well as with an error rate of , and respec-
tively. These two error rates usually represent the error rates at
the end of the lifetimes of two major types of flash memory.
The single-bit flip errors are randomly injected into those im-
ages with the specified error rates. Compared with the original
image, the one with the error rate of has a barely noticeable
difference, a very small blue dot as marked by the red circle. The
other one with the error rate of does not have any visible
difference from the original image because the bitmap image
consists of many small pixels, and errors in just a few of the
pixels may not change their color significantly. Even in the case
that an error changes the color of some pixels, a user may not
notice the differences because pixels are small. Clearly, in this
example, the error rate can be as high as without signifi-
cantly affecting the correctness of an image, at least as long as
the errors are not clustered. In comparison, the current standard
for the acceptable error rate is . This strict requirement
significantly underestimates the inherent error tolerance capa-
bility in many applications. However we must note that there
are applications involving image storage under which very high
standards may be critical, such as legal matters.
This concept is related to soft computing, which applies to a

wide range of applications, including artificial intelligence al-
gorithms that are tolerant of approximate data or computations
[19], multimedia applications [20], [21], and data mining [22].
Previous research investigated low cost error protection and de-
tection mechanisms in microprocessor architecture, memory,
and programming languages [23]–[26]. In this work, we focus
on the data error tolerance in flash storage systems.
To make our discussion clear, we define the data-level error

tolerance as the data in storage systems being sufficiently cor-
rect to ensure that applications can produce acceptable results.
That is, although the errors may have occurred in the data in
storage systems, the data will be deemed to be correct as long

18 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 1, MARCH 2015

Fig. 2. Two SSD Architectures; the dotted rectangles highlight new SoftFlash components. (a) Traditional SSD. (b) SoftFlash.

as the application outputs are acceptable to users. The data-level
error tolerance can be leveraged to achieve a high reliability of
flash storage systems without using strong ECCs. Therefore, the
ECC overhead in terms of performance and energy can be re-
duced. Note that the data-level error tolerance is not simply low-
ering the requirements of the application reliability. It is a tun-
able specification that can be adjusted by users according to their
specific reliability requirements. It cannot be easily achieved. To
allow users to make the tradeoff, systematic studies are required
to understand the data-level error tolerance. The details of the
study are described in Section V.

B. Solid-State Drives, and Soft Errors in Flash

As shown in Fig. 2(a), a traditional SSD is composed of flash
memory packages, a flash controller, RAM, and interface logic.
Note that each flash page has an out-of-band (OOB) area,

e.g., 256 bytes for a 2 KB page, or 512 bytes for a 4 KB page.
The OOB area is used to hold metadata such as error-correcting
coding (ECC) bits.
NAND flash can be categorized by the number of bits stored

in each cell: single-level cell (SLC) flash that holds one bit per
cell, multi-level cell (MLC) that holds two bits per cell, and
triple-level cell (TLC) that holds three bits per cell. The specifi-
cations of SLC, MLC, TLC [27], [28], and magnetic hard drives
[29] are shown in Table I. TLC has not been widely used in SSD
products, and therefore their data are limited. The erase latency
of TLC is estimated based on the read andwrite latencies of TLC
andMLC. SLC is often used in high-end products, because of its
better performance and longer lifetime. MLC and TLC, on the
other hand, is mostly used for low-end and middle-level SSDs.
In this paper, we focus onMLCNAND, as it is the most popular
flash memory in the current market.

TABLE I
SSD AND MAGNETIC HARD DRIVES

There are three types of operations in flash memory: read,
write, and erase. The read operation fetches data from flash
memory, the write operation stores new data to clean memory
cells, and the erase operation resets the cells to the clean state.
Different from direct overwriting in magnetic hard drives, orig-
inal dirty data must be erased before new data can be written
into flash memory. This unique operation is strongly correlated
to high error rates in flash memory.
Flash memory usually has two types of errors: hard errors,

and soft errors. Hard errors are permanently damaged memory
cells that are more likely to occur at the end of the lifetime. Usu-
ally, when they occur, the flash chip has to be replaced. The life-
time of flash memory is defined by the number of program-erase
cycles. As shown in Table I, the MLC's lifetime is usually only a
tenth of the SLC's lifetime. Soft errors are transient faults that do
not permanently damage memory cells. Soft errors occur during
the entire lifetime. They are caused by a variety of factors such
as disturbances from read, write, or erase operations, and charge
loss during data retention. Research [16] also shows that, as the
P-E cycle increases, the soft error rate in the flash memory in-
creases exponentially. In particular, MLC devices have the raw
bit-error rate at , which is orders of magnitude worse

XU AND HUANG: EXPLORING DATA-LEVEL ERROR TOLERANCE IN HIGH-PERFORMANCE SOLID-STATE DRIVES 19

than SLC devices. Note that TLC has recently been developed
to store three bits of data per cell, and is expected to have fewer
P-E cycles (only about 1 K) and higher error rates than
MLC. Comparatively, magnetic hard disks usually have lower
error rates . Currently, SSD manufacturers usually aim
to achieve a uncorrectable BER (UBER) for enterprise
SSDs, as an industry standard [30]–[33]. Because the raw bit
error rates of flash memory are much higher, ECCs are em-
ployed to achieve this target error rate .

C. SoftFlash Architecture
In SSDs, various ECC algorithms are implemented in the con-

trollers to detect and recover soft errors. When there is a write
access to an SSD, the ECC information will be encoded and
stored in OOB. When there is a read access to an SSD, the ECC
information in OOB will be decoded and verified. If the ECC
detects an error, error correction procedures will be enabled to
correct error bits. If the number of error bits is beyond the ECC
correction capability, the operating system will be notified that
these data are corrupted.
For many data-centric applications that are inherently error

tolerant, we can relax the reliability requirements for SSDs, and
take advantages of this opportunity to reduce the overhead costs
imposed by the ECC mechanisms. Current operating systems
and SSD architectures do not provide such support. To achieve
this change, during the program execution, we need to obtain
1) the requirements of data-level error tolerance for data being
used in applications, and 2) the current raw bit error rate of the
underlying flash storage system. With this information, the op-
erating system can instruct the flash storage system to provide
adequate ECC protections.
Towards this goal, we proposed a new type of solid-state

drive, SoftFlash, which tolerates soft errors up to a threshold
with no or less powerful ECC, while maintaining the correct ex-
ecution of the application. The architecture is shown in Fig. 2(b),
while the traditional SSD is shown in Fig. 2(a). In traditional
systems, operating systems and SSDs do not differentiate the
data-level correctness requirements; all data are sent to flash
memory with the same ECC protection. In comparison, the new
architecture will process and send the data to SoftFlash in three
steps: 1) the current error rate of the SSD is estimated by the
operating system using an error model (Section III); 2) the oper-
ating system identifies the requirements of the data correctness,
and provides this information to the SSD as a part of SCSI com-
mands or hints (Section V); and 3) the underlying data manager
in the SSD controller dispatches these data with adequate ECC
protection based on the correctness requirements.
To keep the design and production cost low, the implemen-

tation of SoftFlash can be done within operating systems and
firmware in SSD controllers without modifying current hard-
ware. The system designers need to integrate the RBER model
into the operating systems, and to specify the targeted error rate
and ECC strength for application data. This integration can be
done by developing a kernel module, and modifying the file
system functions related to meta-data operations. Then, this
information in meta-data should be sent to SSDs with write or
read requests. This communication between operating systems
and underlying SSDs is done by modified SCSI commands.

Next, SSD manufacturers need to modify the firmware of SSD
controllers to integrate a function that sends data to chips with
proper ECC depending on the information sent through SCSI
commands. These implementations do not require hardware
modifications to current systems, and therefore can be deployed
with relatively low cost. The details are discussed in Section VI.
SoftFlash mainly leverages the data-level error tolerance

from applications to relax the reliability requirement for flash
memory. Our work is related to two projects that also studied
ECC overheads in flash memory: Kgil et al. [13] propose the
hardware supports to accelerate the decoding procedures by
parallelizing the computations, and Wu et al. [10] propose
a BCH code with an adjustable code length. Their research
is orthogonal to this study, and can be easily integrated into
SoftFlash. In addition to the improvement in read performance,
SoftFlash also aims to achieve significant savings in storage
area and energy consumption.

III. ERROR RATE MODELS FOR FLASH STORAGE

Before we go into data-level error tolerance in flash storage
systems, we first need to understand the error characteristics of
flash memory. Here we will use the bit error rate (BER) as a
major metric. The raw bit error rate (RBER) is the ratio between
the number of bits with errors and the total number of bits that
have been checked by ECC. The uncorrectable bit error rate
(UBER) is the ratio between the number of bits with errors that
cannot be corrected by ECC and the total number of bits that
have been checked by ECC. While prior research works have
started the efforts of measuring and modeling flash error rates,
they are mostly limited to individual flash chips [16]. In this
section, we will begin with the discussion on RBERs at the chip
level, and propose a black-box modeling approach for RBER at
the disk level. The unique feature of our approach is that our
method aims at bit error rates at the disk level, and leverages
self-reported statistics from real-world SSDs, namely SMART
attributes, to build a realistic, accurate estimation.
S.M.A.R.T. or SMART stands for Self-Monitoring, Anal-

ysis, and Reporting Technology [34], which is developed to
monitor the health of magnetic hard drives, and to alert users
when faults occur or a failure is imminent. In the event that
a catastrophic failure is predicated, users can take necessary
actions to avoid data loss, e.g., copying data to another storage,
and replacing the indicated drive. For magnetic hard drive
reliability, SMART attributes can be used for statistics (e.g.,
power cycle count), environmental monitoring (e.g., temper-
ature, shock and vibration), drive performance measurement
(e.g., spin up time), and error reporting (e.g., read-write error
rate, and reallocated sections count). For each attribute, the
raw, and normalized values are reported, and compared against
pre-defined thresholds. If a threshold is exceeded, chances are
high that the drive may encounter a failure in the future. Note
that different manufacturers may define a slightly different set
of attributes and interpretations.
For SSDs, a few SMART attributes are added tomeasure flash

specific characteristics, including average, minimum, and max-
imum P-E counts; read, program, and erase errors; and the re-
maining lifetime with regard to the maximum P-E cycle in the

20 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 1, MARCH 2015

TABLE II
SMART ATTRIBUTES

specification. Table II lists a number of common SMART at-
tributes for magnetic hard drives and SSDs. In this work, we
collect the SMART attributes on OCZVertex SSDs [35] to build
error rate models at the disk level.
RBER at the chip level:At the flash chip level, soft errors are

mostly caused by three factors: wear-out, disturbance, and data
retention. Wear-out is a well-known failure mode that affects
the lifetime of flash memory. P-E cycle can be used for a good
indicator for wear-out. Chimenton et al. [15], and Sun et al. [17]
measured the effect of P-E cycles on the raw bit error rate of
flash memory, and showed that RBER can be modeled using an
exponential function of P-E cycles.
RBERs at the chip level gradually change through the chips

lifetime. Previous studies have measured RBERs of flash chips
from several manufacturers [16]. Flash chips are repeatedly
written till P-E cycles reach 10 000. Results show that RBERs
gradually increase from about to . We measure
RBERs in SSDs, and compare them with chip-level data. As
shown in Fig. 3, for a relatively new SSD with a P-E cycle of
under 1 000, the measured RBERs at the disk level show a range
of to . For flash chips with the same P-E cycles,
RBERs are from to . Because all chips and SSDs are
in their early lifetimes, their measured RBERs are significantly
lower than , which is the maximum RBER for MLC,
as shown in Table I. However, there is a clear difference (four
orders of magnitude) between RBERs at the disk level and the
chip level. We believe several factors contribute to the large
disparity in RBERs at the disk and chip levels. First, RBERs at
the chip level may be closely tied to the specific chip types and
manufacturers. Second, due to process variance [14], RBERs
of flash chips may vary even if they are from the same product
line. This variation further limits the applicability of prior
RBER models. Furthermore, the mechanisms causing errors
are more complicated in SSDs than in flash chips after being
deployed in real systems. Error rates of flash chips are affected
by a combination of dynamic factors (e.g., read, write, and erase
operations). SSDs contain a number of flash chips managed by
SSD controllers using various techniques (e.g., wear-leveling).
This variability further complicates the relationship between
these factors and error rates. Therefore, a wide-scope approach
at the SSD level is needed to accurately model RBERs.

Fig. 3. RBERs at the chip level and the disk level.

RBERmodeling at the disk level:Here we study error char-
acteristics at the disk level, and propose to utilize the black-box
approach to build a model of RBER at the disk level. This ap-
proach is particularly suitable for SSDs because their internal
designs are kept confidential. Such an approach makes it pos-
sible to model the error behaviors of the SSDs, and to mathemat-
ically capture the interactions among internal drive components.
There are many factors that may cause errors in flashmemory,

such as wear-out, and read disturbance. To balance the model
accuracy and the complexity, we choose the P-E cycles, and the
total number of read sectors as the model parameters. Because
RBERs of SSDs vary upon the SSD utilization, these factors
must be dynamically captured to accurately estimate RBERs
in real systems. Clearly, the P-E cycle is a major indicator for
wear-out that causes errors, and therefore shall be included in
our model. Because the number of P-E cycles already counts
the program operations, we do not have to explicitly model the
program disturbance. We also include the read count to charac-
terize SSD utilization that cannot be directly captured by P-E
cycles. It is another factor that may cause errors (e.g., read dis-
turbance). Because data retention is closely related to the usage
of users and applications, this effect can be modeled implicitly
using P-E cycle and read count.
Note that there are some other factors such as temperature that

are also related to error rates. We do not include the temperature

XU AND HUANG: EXPLORING DATA-LEVEL ERROR TOLERANCE IN HIGH-PERFORMANCE SOLID-STATE DRIVES 21

in the current model for the following reason. In most common
circumstances, unless the change in temperature is extreme, the
effect of temperature on error rates would not be observed in the
short time interval. Previous works on measuring the tempera-
ture effect on retention error rates usually conduct experiments
for weeks or months. In contrast, our model can be updated in
a much shorter interval (minutes or hours) to capture dynamic
changes. To adapt to dynamic changes in RBERs that are caused
by other factors that are not included in our model, we periodi-
cally monitor RBERs, and measure the accuracy of the model.
If the accuracy decreases to a certain level due to changes in
these factors, the model can be re-built to reflect these changes.
In this paper, we use the black-box modeling approach to

evaluate different functions to build a model. In particular, we
construct and evaluate three types of models: a linear model, a
quadratic model, and an exponential model. In the following
models, represents the number of P-E operations
that have been performed, represents the total
number of sectors that have been read so far, and RBER is the
estimated raw bit error rate and the model output.
To evaluate the model fitness, we utilize the stepwise algo-

rithm [36] that iteratively evaluates all possible combinations
of given items in the model, and identifies the most suitable
model configuration. The metric for comparison between dif-
ferent models is Akaike information criterion (AIC) [37]. AIC
is based on information theory to quantitatively describe the
model quality that is defined as

. A lower AIC value indicates a
better fit. The stepwise algorithm iteratively calculates the AIC
value for each model configuration to help choose a suitable
configuration.
The Linear model assumes a linear relationship between the

observed variables, and , and the esti-
mated variable, RBER. This model uses a first-order polynomial
function that can be represented as

(1)

The Quadratic model uses a second-order polynomial func-
tion to better model the error behaviors that cannot be fully cap-
tured by the linear model. It can be represented as

(2)

We utilize the stepwise algorithm to evaluate the fitness of
different model configurations. We find that this model can be
further reduced to only three coefficients with similar AIC and
MRE. The reduced quadratic model is represented as

(3)

Here we employ an exponential function on only
because using an exponential function on will
lead to very large errors. The model can be written as

(4)

TABLE III
MODEL FITNESS

We utilize the stepwise algorithm to evaluate the fitness of
different model configurations. We find that this model can be
further reduced to only four coefficients with similar AIC and
MRE. The reduced exponential model is represented as

(5)

In this study, we use two OCZ Vertex SSDs [35], which pro-
vide the SMART readings on average P-E cycles, and bit error
counts that can be directly utilized in our modeling process. Our
models are not limited to a specific type of SSD. As long as the
SSD manufacturers report this status information in SMART
attributes, we can easily train the model to adopt to their new
SSDs.
To exercise the SSDs, we use a synthetic microbenchmark

that iteratively writes a 512 GB file and reads it back. The S.M.
A.R.T. attributes are measured after every 1TB write and 500
GB read to the SSD. We collect the data on two OCZ Vertex
SSDs for about two weeks. For each 1TB write, we find that the
P-E cycles of the SSDs will increase by around 10. We use 80%
of the measured data to train the model, and the remaining 20%
of the data to verify themodel for each SSD respectively. The 80
and 20 separation is chosen to balance the distribution between
training dataset and evaluation dataset. The model accuracy is
evaluated with mean relative error (MRE), which is calculated
as

(6)

Table III lists the model fitness for different models. As one
can see, the non-linear exponential model has a much smaller
AIC and MRE than linear and quadratic models. Using an ex-
ponential model can reduce MRE to about 13%. A low AIC
(26.8) indicates that the exponential model has better fitness
than other linear and quadratic models. The stepwise algorithm
helps us to identify the important items in the model, and re-
duce the model complexity. The reduced quadratic and expo-
nential models are able to achieve similar AIC, and MRE with
only three, and four coefficients respectively. Fig. 4 plots the
estimated RBERs using the exponential model, where one can
see that the measured values (dot) match closely with the esti-
mated RBERs (line). We will use the exponential model in the
following sections.

IV. ERROR CORRECTION CODES FOR FLASH STORAGE
Given their error-prone nature, flash memories use various

error correction codes (ECC). For example, single-error-cor-
rect-double-error-detection (SECDED) coding schemes such as

22 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 1, MARCH 2015

TABLE IV
ECC COMPARISON

Fig. 4. Measured and Estimated SSD Error rate on OCZ Vertex SSD.

Hamming Codes may be sufficient for SLC. However, as tech-
nology scales, flash density continues to increase, and stronger
ECCs are required to ensure data correctness.
In this section, we discuss four common ECCs in flash

storage. Based on our error model, and measurements on real
devices, we estimate the UBERs of SSDs under various types
of ECC schemes. In addition, we analyze ECC overheads in
terms of area, latency, and energy consumption. Those data will
help provide a deep understanding of reliability characteristics
of SSDs.

A. ECC Schemes
Here we briefly review four types of ECCs that are commonly

used in flash memory. For consistency, we use as the code-
word length in bits, as the number of parity bits, and as the
number of user data bits.
Hamming codes [7] are designed for single-error correc-

tion and double-error detection (SECDEC). Hamming codes
can be presented as . The advantage of Hamming codes
is that the encoding and decoding latency and energy are rel-
atively low, but it comes with a limited single-error correction
capability.
Reed-Solomon (RS) codes are used to handle multiple-bit

corruption in flash memory, especially for MLC. RS codes can
be represented as with -bit symbols, where is the size
of the symbol. The number of parity bits is usually , where
is the maximum number of correctable errors. Compared with
Hamming codes, RS codes have higher latency and power con-
sumption, and can handle the errors that occur in groups.
Bose-Chaudhuri-Hocquenghem (BCH) codes, based on

Galois Fields, have lower encoding and decoding latency than
RS codes. Binary BCH is usually represented as ,
where the required number of parity bits is usually .
One disadvantage of BCH codes is that, as the number of

correctable error and code length increase, the decoding la-
tency and area overhead are dramatically increased [12], [13].
Because read performance is critical to SSDs, this latency issue
might become an issue.
Low-Density Parity-Check (LDPC) codes are a class of

error correcting codes that can provide stronger error correc-
tion capabilities [41]. It has been shown that LDPC doubles the
error correcting capability of BCH codes with the same number
of parity bits when it is implemented in TLC flash memory [8].
Compared with other coding schemes, LDPC has a stronger pro-
tection capability, but a higher energy consumption.
We sum up the four types of ECCs in Table IV. We adopt

the numbers from [11], which implements a single error cor-
recting hamming code (536, 512). In this implementation, flash
memory consumes 4 pJ/byte, and 9 pJ/byte for reads, and writes
without ECC, respectively; and about 15 pJ/byte with ECC pro-
tection with an efficient embedded microprocessor. We estimate
the energy consumption of both RS and BCH codes based on the
results in [38].

B. ECC Performance and Overheads
As the next step, we utilize the experimental data obtained in

Section III to estimate uncorrectable bit error rates under dif-
ferent ECC strengths. The relationship between raw bit error
rates (RBER) and uncorrectable bit error rates (UBER) can be
represented by

(7)
Usually, a codeword contains 512 bytes of user data, and a

number of parity bits. Given an ECC scheme, and our proposed
model, we are able to estimate UBER. Note that, with ECC
protection, UBER is the actual error rate that is visible to ap-
plications. The results are shown in Fig. 5. SSD manufacturers
often quote , or even higher as the UBER in the specifica-
tions [33], [42], [30]. While RBER increases gradually during
the lifetime of SSDs, our data show that a weak ECC can meet
reliability requirements in the early lifetime of the SSD. How-
ever, as the device gradually wears out, soft error rates will be
higher, and therefore stronger ECCs are required to provide a
better protection, which as we will show later would incur sig-
nificant performance and energy overheads.
To evaluate the performance overhead for different ECCs,

we conduct experiments based on the SSD simulator SSDSim
that was developed in Microsoft Research [18]. We model the
latency of BCH codes based on the implementation in [10], and
estimate the latency for other ECC schemes based on relative
protection strengths. For example, we assume that the decoding

XU AND HUANG: EXPLORING DATA-LEVEL ERROR TOLERANCE IN HIGH-PERFORMANCE SOLID-STATE DRIVES 23

Fig. 5. UBER vs. P-E cycles, where lines represent ECCs with different capa-
bilities varying from 1 bit-error to 8 bit-errors per 512 bytes.

Fig. 6. Performance overheads for different ECCs.

latency of BCH and LDPC are comparable, as shown in [39]. In
the tests, we use two microbenchmarks, sequential and random
read, as well as Postmark that mimics the workload on an email
server [43]. We focus on the read performance, and normalize
the numbers to those without ECCs. The results are shown in
Fig. 6. As we can see, all four codes may add over 20% overhead
to read performance, and BCH and LDPC codes win out because
they provide a reasonable tradeoff between access latency and
protection strength.
We further estimate the energy overhead costs of running a

number of workloads, including the MixIO microbenchmark
that consists of a sequence of sequential read and write requests,
IOZone [44] that has the most writes, WebSearch trace that has
the most reads [45], and PostMark that also has a mix of reads
and writes. The energy overhead is estimated based on the data
in Table IV, and the traces generated by SSDSim. Similarly, the
numbers are normalized to without ECC schemes. As shown in
Fig. 7, one can see 1) all ECC codes would incur non-trivial
energy overheads of at least twice as much; 2) a more com-
plex ECC scheme like LPDC may consume up to six times
more energy thanwithout any data protection; and 3) read-inten-
sive workloads will encounter much higher energy overheads
than write-intensive workloads, mostly due to ECC decoding
operations.
It is important to note that ECC overheads can be highly de-

pendent on hardware and software implementation. Ideally, dif-
ferent ECC schemes shall be implemented and evaluated on the

Fig. 7. Energy overheads for different ECCs.

same platform. We believe that the numbers presented in this
work represent a reasonable estimation of each ECC design. The
results demonstrate the need for a flexible, reliable, yet balanced
ECC design for flash storage. We leave hardware implementa-
tion and measurement to future work. In summary, various ECC
schemes used in today's flash storage systems incur non-trivial
overhead in I-O performance and energy consumption. The key
challenge is how to design high-performance flash storage sys-
tems with suitable ECC schemes that satisfy application relia-
bility requirements, and minimize the overheads.

V. DATA-LEVEL ERROR TOLERANCE IN FLASH STORAGE
In this section, we explore the data-level error tolerance in

flash storage. In particular, we try to answer the following ques-
tions. Can the correctness requirement for flash storage systems
be relaxed for data-centric applications? How will the errors in
flash storage systems affect the application outputs? How can
we improve the data-level error tolerance? Previous research
uses fault injections to evaluate the reliability characteristics of
target systems [23], [46], [47]. In this section, we conduct an ex-
tensive set of fault-injection experiments, and analyze the char-
acteristics of data-level error tolerance in a number of data-in-
tensive applications.

A. Data-Centric Applications
To evaluate the data-level error tolerance in flash based

storage systems, we examine six data-intensive applications
from different benchmark suites, including MediaBench [48],
PARSEC [49], and MapReduce/Hadoop [50]. The benchmarks
cover various fields, such as multimedia processing, artifi-
cial intelligence, scientific computing, and cloud computing.
Table V lists the parameters for each application. In this paper,
we study the errors that occur in the data files of these applica-
tions. We consider these files to be critical, and their correctness
should be maintained. Note that errors may still occur in the
program text, operating system files, and libraries, which is
beyond the scope of this work.
For each experiment, we classify the results into five cate-

gories, from crash, bad, good, same, to better. An overview of
evaluation metrics is shown in Table VI. The metrics with the
original subscript are the results of fault-free execution or the

24 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 1, MARCH 2015

TABLE V
CONFIGURATIONS OF EXPERIMENTS

TABLE VI
EVALUATION METRICS OF FAULT INJECTION RESULTS

ground truth values whenever available, and those with fault
subscript are the results after fault injections.
The criteria of classifications are specified by studying prior

work in each domain. 1) For the artificial intelligence applica-
tions canneal, and kmean, we use relative errors (RE) to quan-
tify output quality. It is suggested that this type of application is
inherently approximate. The outputs without any errors may be
off bymore than 15% compared with perfect results, and 5% rel-
ative errors on top of the outputs is acceptable [23], [24]. There-
fore, in our paper, results are considered as good if RE is less
than 5%. 2) For multimedia applications cjpeg and djpeg, PSNR
is usually used to measure the output quality. For the image de-
compression process (djpeg), previous work considers output
decompressed images with PSNR greater than 50 db to be good
results [23], [24]. We adopt the same criteria for the djpeg.
Image compression (cjpeg) is a lossy process, i.e., the output
and input images are not exactly the same, and there is a quality
degradation in output images. Therefore, we also use the rela-
tive errors (RE) at less than 5% as the criteria for good results. 3)
Text search is an application similar to the top-k algorithm that
is widely used in database. Some top-k algorithms allow a cer-
tain level of inaccuracy in results (2%–10% or even higher) to
achieve better performance [51], [52]. Here we specify a higher
accuracy requirement in the experiments. Results with less than
a 0.1% of change in the count of words are good. If any key word
is missing from the output, we consider this is a bad result. 4)
MC is an application to estimate . The accuracy is usually de-
fined according to the number of decimal digits. Therefore, the
criteria for classification are also defined in a similar way.
We conduct more than 30 000 fault injections on the bench-

marks to gain in-depth understanding about the data-level error
tolerance. Specifically, kmeans, MC, and canneal are conducted
for 1000 repetitions with both large and small inputs. The other
three applications, Text, djpeg, and cjpeg, are very time con-
suming. It takes about 5 to 24 hours for each run in a server,

including generating input files, fault injections, and applica-
tion executions. We have conducted at least 150 repetitions for
djpeg, and cjpeg with small inputs, and 1000 repetitions for Text
with small inputs. We have also run the tests for 10 times for
djpeg, cjpeg, and Text with large inputs.
In this work, we consider that data-level error tolerance can be

achieved when the experiments achieve good to better results.
It is important to note that in some cases, because bit faults in-
troduce randomness in data, results may be better than original
ones.
Image Compression (Cjpeg) from the MediaBench suite

compresses the bitmap images into the jpeg format images. Due
to its lossy nature, the outputs of jpeg images do not have the
same picture quality as the original bitmap images. The peak
signal to noise ratio (PSNR) is used to measure the compres-
sion quality, and is calculated as

The jpeg images with PSNR larger than 50 db are acceptable in
terms of quality [23]. In our experiments, we compare the PSNR
between fault free output images and fault injection outputs, and
calculate the relative error (RE) as

If a faulty jpeg image has the same PSNR as the correct jpeg
image, this result is categorized as same. Note that the fault
injection will not generate better images, thus the better cate-
gory is not applicable to this benchmark. A jpeg image with
less than 5% relative error in PSNR is considered as good. Im-
ages with greater than 5% error are considered as bad. If the
image cannot be recognized by the program, it is categorized
as crash. In our experiments, we use 100 bitmap images (with
the total size of 697MB) as the small input, and about 1 494

XU AND HUANG: EXPLORING DATA-LEVEL ERROR TOLERANCE IN HIGH-PERFORMANCE SOLID-STATE DRIVES 25

bitmap images (19GB) as the large input. The faults are ran-
domly injected among all images. This experiment is conducted
about 150 times for small inputs, and 10 times for large inputs;
and the average percentage of images with acceptable quality is
reported.
Image Decompression (Djpeg), also from MediaBench, de-

compresses jpeg images to bitmap images. Because decompres-
sion is a lossless operation, the output images should have in-
finite PSNR if executed correctly. In our experiments, decom-
pressed images with greater than 50 db PSNR are considered
good. Otherwise, it is a bad image. If the image cannot be rec-
ognized by the program, it is considered crash. Similarly, we use
100 jpeg images (638MB) as the small input, and 1 494 jpeg im-
ages (2.7 GB) as the large input. The experiment is conducted
about 150 times for the small input, and 10 times for the large
input. The final output is the average percentage of the number
of decompressed images with an acceptable quality.
K-means clustering algorithms, commonly used for

data-mining applications, group the points with features
into clusters, so that the points in each cluster have minimum
mean distances to the center of the cluster. Here we use the
kmeans function in MATLAB [53]. In this experiment, we test
the inputs with two different sizes: a small input with 10K
points and 10 features for each point, and a large input with
100k points and 100 features for each point. The output of this
algorithm is the classification result. We examine the changes in
classification purity [54]. We compare the classification results
with the reference input. Each cluster in the classification output
may have several groups of points that belong to different
clusters in the reference input. In this case, we consider the
group with the maximum number of points to determine the
correct classification of this output cluster. Other points in this
output cluster are incorrectly classified. Note that, due to the
approximate nature of the K-means methods, even without any
faults presented, MATLAB cannot classify input points with
100% accuracy. The purity (percent of points in the defining
cluster) is usually around 70%. A result with higher purity
is considered better. We consider that a result with less than
5% purity change is good. With the correct output purity, 5%
variation does not significantly affect results. The experiments
are repeated 1 000 times, and the percentage of acceptable
results is reported.
Canneal uses the simulated annealing algorithm to optimize

the routing cost of chip design. The input is the network graph
in a text file. We use native as the large dataset (98 MB, 2.5
million nodes), and simsmall as the small dataset (3.4 MB, 100
K nodes). The output is a map containing the locations of all
elements. The metric of evaluating the output map is the final
routing cost. The final routing cost is calculated using the cor-
rect network graph based on the output map. Note that, due to
the approximate nature of the simulated annealing algorithm,
the output map of the correct execution is not necessarily the
best result. If a fault injection result has a smaller routing cost
than the correctly executed result, it is categorized as better. If
a fault injection result has the same routing cost as the correctly
executed result, it is categorized as same. If the relative error is
less than 5%, it is good. Otherwise the result is bad. The exper-
iments are repeated 1 000 times.

Monte Carlo (MC) methods use random sampling tech-
niques to estimate the results. In this paper, we conduct fault
injection experiments using the MapReduce implementation of
the estimator in Hadoop. The program randomly generates
points in a unit square plane. Each point can be identified as
inside or outside of the circle. Thus, can be estimated by
calculating the ratio of the number of points in the circle versus
in the square. The user can specify the number of sampling
points, and the number of iterations. A higher precision can
be obtained by specifying a larger number of points, more
iterations, or both. In our experiments, we use one million
sampling points, and one iteration, as the small input, which
results in 16 MB of data. Also, we use 100 million sampling
points, and 10 iterations, with 16 GB of data as the large input.
The output of this program is the estimated value of with
various precisions. The results are evaluated by the estimation
error (EE) to the ground truth value of . EE is defined as

. Note that even a correctly executed
result of MC will have non-zero relative error. Therefore, for
this benchmark, the fault injection result with , that
is lower than of the fault-free result, is better. The
result with ten times is same, the result with 100
times is good, and otherwise bad. The experiments
are repeated 1 000 times.
Text search is anotherMapReduce benchmark in Hadoop that

searches for matching strings in text files. Given a specified key-
word, the number of occurrences of this keyword will be re-
ported. If a regular expression is specified, multiple string pat-
terns can be found. In this case, it will output sorted numbers of
occurrence of all matched strings. We use one file with 1GB size
as the small input, and use the entire Wikipedia repository (148
files and 162 GB) as the large input. In this paper, we search for
a regular expression, and examine the top 100 frequent strings.
If the word count of a string is not significantly changed (less
than 0.1%), the search for this string is considered as good; oth-
erwise it is considered as bad. The result of an experiment is
the worst result of the 100 strings. For example, if any string is
bad, the result of this experiment is bad. If a string is not in the
top 100 results, it is also considered bad. The experiments are
repeated 1 000 times with small inputs, and 10 times with large
inputs to balance the amount of experiments and the accuracy.

B. Analysis of Data-Level Error Tolerance

To understand error behaviors of different applications, we
evaluate all benchmarks on flash storage systems with a range of
BER from to , representative as the raw bit error rate
of flash memory [4], [16]. The results of large inputs are shown
in Fig. 8. We found that the results for the small inputs are quite
similar, except for K-means. The smaller input in K-means con-
tains much fewer errors, therefore the results are improved. Al-
though small inputs in Canneal also contain fewer errors, which
happens because the Canneal input data format is very strict,
the small number of errors can still easily affect the input data
format, and lead to program crashes.
One can see from Fig. 8 that Cjpeg, Monte Carlo methods,

and text searches are relatively robust to errors. It is not sur-
prising that Cjpeg is more robust than Djpeg, because data in

26 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 1, MARCH 2015

Fig. 8. The data level error tolerance of applications under various BERs. (b) Cjpeg, (c) Djpeg, (d) Kmeans, (e) Canneal, (f) MC, (g) Text.

bitmap images are uncompressed. K-means exhibits error tol-
erant capability under a relatively low error rate, but when the
error rate goes higher, the acceptable rate drops significantly.
With the approximate nature of the algorithm, we find that a cer-
tain number of changes in the data input do not degrade result
quality, especially when changes in values are small. When a
value is changed significantly, the algorithm may remove this
value from computation and still produce acceptable results.
Furthermore, text processing exhibits a good error tolerant ca-
pability when the error rate is higher than . Note that our
criteria for text processing are very strict (0.1% compared with
2%–10% for other top-k algorithms). The criteria may be varied
depending on scenarios. In that case, the results can be signif-
icantly improved. Canneal and Djpeg are more error sensitive.
However, this behavior can be easily improved with the help of
a few simple techniques. Note that we envision that such tech-
niques can be implemented as the OS and SoftFlash controller
work together by passing the hints from high-level applications,
as shown in Fig. 2(b).
We utilize progressive jpeg images as the inputs of Djpeg.

Jpeg images consist of a sequence of segments. Each segment
contains Huffman tables, quantization tables, or scans. Each
segment begins with a marker. The segment of scan contains
coded data that can be decoded with Huffman tables and quanti-
zation tables. Progressive images contain multiple scans so that
the contour of an image can be decoded and displayed fast, and
then the image progressively reaches its best quality. Progres-
sive images are widely used on the Internet due to this feature.
This feature also provides an opportunity to improve the error
tolerance capability. The last segments of code data in the pro-
gressive images are less important than the other segments, be-
cause it is used to improve the image quality.

Fig. 9. Improvement in acceptable results under various error rates.

To verify this effect, we inject the faults only to the last scan of
a progressive image, and compare it with results from injecting
faults in all segments of its un-progressive version. As shown
in the two left-most clusters of the bar graphs in Fig. 9, in the
un-progressive image when the error rate reaches , there
are no acceptable results. Comparatively, the progressive Djpeg
has a higher acceptable rate at each error rate, and the average
acceptable percentage is improved by 32.5%. These results sug-
gest that data in the same file may have different correctness re-
quirements. By differentiating the requirements, and applying
different level of protections, the overall error tolerance capa-
bility can be improved significantly.
In addition, we notice that there are a large number of crash

cases in Canneal. In those crash cases, errors change the input
data to invalid values or formats, which results in crashes. To
fix this problem, we add a simple validation function to check

XU AND HUANG: EXPLORING DATA-LEVEL ERROR TOLERANCE IN HIGH-PERFORMANCE SOLID-STATE DRIVES 27

the input data. If the data are out of the valid range, random
and valid values will be generated to replace the erratic values
so that the program will not crash due to erratic values. This
function only takes several lines, so that it does not affect the
overall Canneal performance. But it is very effective. As shown
in Fig. 9, Canneal with this simple improvement becomes much
more error tolerant, even under a high error rate. The original
version cannot execute correctly with an error rate higher than

. However, the improved version achieves 100% accept-
able results at all four error rates.
Through analyzing fault injection results, we summarize our

observations as follows
• A large amount of data can potentially tolerate much
higher bit error rates than what the SSD provides. Our
fault injection results show that, for these applications, the
bit error rate can be as high as . Comparatively, cur-
rent SSDs usually use as the targeted bit error rate.
With the error model constructed in Section III, it is pos-
sible to store data for these applications in SSDs without
any ECCs or with weaker ECCs as long as their error rates
are lower than the application requirements. We have con-
ducted a case study, which will be presented shortly, to
show the potential benefits of this approach.

• Data have different levels of importance, and in some
cases the importance can be easily identified. For ex-
ample, all data in the input files of K-means, Text, and
MC are highly error-tolerant. These files as a whole can
be easily operated when deploying SoftFlash. It is tricky
for data with different importance in a single file. For ex-
ample, the jpeg and bmp images contain some formatting
and coding information that is more critical than coded
data. Because the critical parts of these files are only rela-
tively small portions, a more aggressive approach can even
take advantage of these non-critical data by storing them
into SoftFlash. Fortunately, these non-critical data can be
identified by markers in the file, which can be utilized by
SoftFlash as indicators.

• Minor changes to some data-intensive applications can
significantly improve their reliability. For example, Can-
neal cannot tolerate even a single error if it has the wrong
format. But an improved version with a simple modifica-
tion shows a strong error tolerance capability (Fig. 9).

In summary, the applications exhibit strong error tolerance
capabilities at very high error rates. We also show that some
simple techniques can be applied to reduce the need for strong
ECCs. Therefore, it is viable to relax the data correctness
requirements in SoftFlash, with support from the operating
system, and the SSD controller. As we have shown in the
Fig. 9, after fixing a small bug in the program, Canneal shows
great error tolerance ability. The application designers should
write robust programs that minimize the potential impacts
of the errors, which in turn will increase the data-level error
tolerance of applications. The details about the implementation
issues in operating systems and SSD controllers are discussed
in Section VI.

C. Case Study

Various applications exhibit strong capabilities of the data-
level error tolerance. In this section, we conduct a case study to

TABLE VII
MC WITH DIFFERENT ECC SCHEMES

demonstrate how to use SoftFlash to trade data-level correctness
for area, performance, and energy.
We assume that the MC benchmark is running on a SoftFlash

SSD at its P-E cycles of 3 400. This experiment can be easily
carried out to the full lifetime of an SSD, which we omit here to
save print space. First, the operating system uses the disk-level
RBER models in Section III to estimate the current raw bit error
rate of the underlying SSD. At the P-E cycle of 3 400, the esti-
mated disk-level error rate is . Second, the operating
system obtains the data-level correctness requirement of MC,
based on the results in SectionV, which show thatMCmaintains
the data-level correctness at the error rate of . Third, the op-
erating system passes the hint of the data-level error tolerance of
MC to the underlying SoftFlash SSD. Because the MC shows a
strong error tolerance capability at the error rate of , and the
modeled current error rate is close to this range, the data-error
manager in the SoftFlash SSD controller dispatches the data in-
puts of MC to flash chips without ECC protections. In the tra-
ditional architecture, the input data will be stored in flash chips
with ECC protections otherwise.
We conduct fault injection experiments in theMC benchmark

with calculated uncorrectable bit error rates, and also calculate
the overhead costs for traditional architectures with three ECC
schemes. The quantitative results are presented in Table VII.
The read performance and energy numbers are normalized to
the SoftFlash numbers. One can see that the mean relative errors
(accuracy in the table) are in SoftFlash, drops to

with Hamming code, and does not further decrease
even with stronger ECC. However, the energy, performance,
and storage overhead continue to increase as the number of ECC
bits increases. The energy consumption of ECC schemes can go
up to 4.5 times that of SoftFlash. The storage overhead for ECC
parity goes up to 4.8%, and the read performance overhead is in-
creased bymore than 40%. Though the last performance number
is not as high as energy overhead, considering the importance
of SSD read performance, 40% degradation is quite significant.
Clearly, for this particular application, MC is error tolerant to a
certain degree, and cannot benefit with additional ECC strength.
As a result, the proposed SoftFlash system that aims to achieve
data-level correctness can leverage this behavior to devise dy-
namic protection in an online fashion, and trade data correctness
for I-O performance.
We conduct another case study on the improved version of

Djpeg. We assume the same error rates and ECC algorithms
are used as in MC. The results are shown in Table VIII. Using

28 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 1, MARCH 2015

TABLE VIII
IMPROVED DJPEG WITH DIFFERENT ECC SCHEMES

ECC algorithms, results from Djpeg are all the same as in the
original outputs. But the improved version of Djpeg can still
achieve acceptable results, even at a high error rate, as shown
in Section V-B. This case study demonstrates the opportunity
of reducing the ECC strength in image storage. The result
shows the potential benefits in reducing energy, and improving
performance.

VI. DISCUSSION

Our experiments demonstrate the feasibility and benefits of
deploying a new SSD architecture as shown in Fig. 2. The re-
sults and analysis on the data-level error tolerance can be used
to derive the required error rates for applications. The RBER
model at the disk level can be used to estimate the actual error
rate in SSDs. Then, decisions can be made to provide suitable
ECC to bridge the gap between the actual and required error
rates.
To implement such an architecture, supports are required

from operating systems and SSD controllers. In this section,
we discuss these implementation issues.
Operating system supports. The RBER model is con-

structed in operating systems. A kernel module can be devel-
oped for this purpose. There are three major functions in this
module: 1) identifying data for error resilient applications;
2) collecting SMART data from underlying SSDs; and 3)
constructing a RBER model, and estimating RBERs using the
constructed model. To support those functions, there are three
major modifications that should be made in operating systems.
First, the kernel module must be able to differentiate data with

different error tolerance requirements so that they can be stored
with different ECC strength. For some applications, such as the
text, canneal, kmean, and MC applications used in our experi-
ments, the difference can be identified at the file level. All data
in the files that are used as inputs for the same application can
be considered with the same error tolerance requirement. There-
fore, the target error rates obtained from our fault injection ex-
periments can be stored with files in their meta data (e.g., inode).
For some applications, a portion of data (e.g., pixels in bmp files
used by cjpeg) in the same file are more resilient than others
(e.g., metadata in bmp files). For these applications, the differ-
ence should be identified at the block level. The target error rate
can still be stored in inode, but there is an extra bit assigned to

each block to indicate if this target error rate is applied to this
block. When the file system is performing operations on files,
the error tolerance information in inode can be retrieved. To en-
sure the correctness of systems, the data used by operating sys-
tems and inode data should be protected with ECC.
Second, the kernel module should be able to obtain SMART

data from SSDs for model construction. This is a relatively easy
task because it can be implemented with existing tools such
as smartmontools [55]. After SMART data are obtained, the
model can be constructed to obtain the estimated error rate of
SSDs. With the estimated error rate and the error resiliency re-
quirements for each file or block, the kernel module can specify
the required ECC strength, and can store this information into
inode.
Third, when accessing data from SSDs, the kernel module

must be able to send requests with the required ECC strength
along with other information in inode to SSD controllers. This
need can be done by modifying the SCSI command interface.
The original read and write commands can be modified to add
this information.
SSD controller supports. SSD controllers receive SCSI

commands from the kernel module, and adjust current ECC
strength accordingly. Note that software ECC can be imple-
mented in the SSD controllers to provide flexibility of adjusting
ECC strength. Software ECC is already supported by some
flash manufacturers [56]. Therefore, the modification to SSD
controllers is minimal, and can be done by modifying SSD
controller firmware without involving hardware changes.
In summary, SoftFlash requires a kernel module to perform

model construction, modifications to SCSI commands and
inode, and modifications to SSD controller firmware. It does
not involve modifications to the current hardware. Therefore,
the design of SoftFlash can be adopted in real systems at a
reasonably low cost.

VII. CONCLUSION

In this paper, we study the three key problems that enable a
new SSD architecture SoftFlash: 1) find the error models for
flash memory and solid-state drives; 2) conduct fault injection
experiments on various types of applications; and 3) analyze
potential benefits in performance, area, and energy efficiency.
Our study shows that the error rate model of SSDs can be con-
structed by two inputs from SMART attributes that can be easily
accessed fromOS. Combined with our analysis of the data-level
error tolerance of various applications, SoftFlash can potentially
improve the read latency by more than 40%, and reduce energy
overhead by up to 78%.
We have gained the insightful understandings of fault be-

haviors in flash based storage systems, identified a few key
design challenges, and evaluated design feasibility and its po-
tential benefits. We discuss the major implementation issues of
deploying SoftFlash. The modifications to current systems are
mainly within OS and SSD controller firmware, which we plan
to carry out in future work. We believe that the proposed flash
storage system with data-level error tolerance presents an in-
teresting tradeoff between high-performance data access and
data-level correctness for many applications.

XU AND HUANG: EXPLORING DATA-LEVEL ERROR TOLERANCE IN HIGH-PERFORMANCE SOLID-STATE DRIVES 29

ACKNOWLEDGMENT

We thank Dr. Jason Rupe, Dr. Wei-Ting Kary Chien, and
anonymous reviewers for their valuable suggestions.

REFERENCES
[1] “Micron P400m enterprise SATA SSD datasheet,” [Online].

Available: http://www.micron.com/~/media/Documents/Products/
Data%20Sheet/SSD/p400m_2_5.pdf

[2] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron,
“Migrating server storage to SSDs: Analysis of tradeoffs,” in Proc. 4th
ACM Eur. Conf. Computer Systems, 2009.

[3] F. Chen, D. Koufaty, and X. Zhang, “Understanding intrinsic char-
acteristics and system implications of flash memory based solid state
drives,” in Proc. 11th Int. Joint Conf. Measurement and Modeling of
Computer Systems, 2009.

[4] L. Grupp, A. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. Siegel,
and J. Wolf, “Characterizing flash memory: Anomalies, observations,
and applications,” in Proc. 42nd Annu. IEEE/ACM Int. Symp. Microar-
chitecture, 2009.

[5] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J. Schindler,
“An analysis of latent sector errors in disk drives,” in Proc. 2007 ACM
SIGMETRICS Int. Conf. Measurement and Modeling of Computer Sys-
tems, 2007.

[6] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to
flash memory,” Proc. IEEE, vol. 91, no. 4, pp. 489–502, Apr. 2003.

[7] Spansion, “What Types of ECC Should be Used on Flash Memory?”
Application Note, 2011.

[8] A. Yu, “Improving NAND reliability with low-density parity check
codes (LDPC),” in Proc. Flash Summit, 2011.

[9] V. Gaudet, “Energy efficient circuits for LDPC decoding,” Jul. 2007
[Online]. Available: http://www.cmoset.com/uploads/7.2.pdf

[10] G. Wu, X. He, N. Xie, and T. Zhang, “Diffecc: Improving SSD read
performance using differentiated error correction coding schemes,” in
Proc. Int. Symp. Modeling, Analysis, and Simulation of Computer Sys-
tems, 2010.

[11] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy, “Ultra-low
power data storage for sensor networks,” in Proc. 5th Int. Conf.
Information Processing in Sensor Networks, 2006.

[12] D. Strukov, “The area and latency tradeoffs of binary bit-parallel BCH
decoders for prospective nanoelectronic memories,” in Proc. 40th
Asilomar Conf. Signals, Systems and Computers, 2006.

[13] T. Kgil, D. Roberts, and T.Mudge, “Improving NAND flash based disk
caches,” in Proc. 35th Annu. Int. Symp. Computer Architecture, 2008.

[14] A. Ferreira, S. Bock, B. Childers, R.Melhem, and D.Mossé, “Impact of
process variation on endurance algorithms for wear-prone memories,”
in Proc. Design, Automation & Test in Europe Conf. Exhib. (DATE),
2011.

[15] A. Chimenton and P. Olivo, “Erratic erase in flash memories—Part I:
Basic experimental and statistical characterization,” IEEE Trans. Elec-
tron Devices, vol. 50, no. 4, pp. 1009–1014, Apr. 2003.

[16] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares,
F. Trivedi, E. Goodness, and L. Nevill, “Bit error rate in NAND flash
memories,” in Proc. IEEE Int. Reliability Physics Symp., 2008.

[17] H. Sun, P. Grayson, and B. Wood, “Qualifying reliability of solid-
state storage from multiple aspects,” in Proc. 7th IEEE Int. Workshop
Storage Network Architecture and Parallel I/O, 2011.

[18] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. S. Manasse,
and R. Panigrahy, “Design tradeoffs for SSD performance,” in Proc.
USENIX Annual Technical Conf., 2008.

[19] Y. Jin, “A definition of soft computing,” [Online]. Available: http://
www.soft-computing.de/def.html

[20] M. Breuer, “Multi-media applications and imprecise computation,” in
Proc. 8th Euromicro Conf. Digital System Design, 2005.

[21] F. Kurdahi, A. Eltawil, A. Djahromi, M. Makhzan, and S. Cheng,
“Error-aware design,” in Proc. 10th Euromicro Conf. Digital System
Design Architectures, Methods and Tools, 2007.

[22] J. Meng, S. Chakradhar, and A. Raghunathan, “Best-effort parallel ex-
ecution framework for recognition and mining applications,” in Proc.
IEEE Int. Symp. Parallel&Distributed Processing, 2009.

[23] X. Li and D. Yeung, “Application-level correctness and its impact on
fault tolerance,” inProc. IEEE 13th Int. Symp. High Performance Com-
puter Architecture, 2007.

[24] X. Li and D. Yeung, “Exploiting application-level correctness for
low-cost fault tolerance,” J. Instruction-Level Parallelism, vol. 10, pp.
1–28, Sep. 2008.

[25] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:
Saving dram refresh-power through critical data partitioning,” in Proc.
16th Int. Conf. Architectural Support for Programming Languages and
Operating Systems, 2011.

[26] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and
D. Grossman, “Enerj: Approximate data types for safe and general
low-power computation,” in Proc. 32nd ACM SIGPLAN Conf. Pro-
gramming Language Design and Implementation, 2011.

[27] J. Heidecker, “NAND flash qualification guideline,” in Proc. NEPP
Electronic Technology Workshop, 2012.

[28] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of NAND
flash memory,” in Proc. 10th USENIX Conf. File and Storage Tech-
nologies, 2012.

[29] Seagate Inc., “Barracuda data sheet,” [Online]. Available: http:/
/www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/bar-
racuda-ds1737-1-1111us.pdf

[30] PNY Technologies Inc., PNY Prevail SSD [Online]. Available: http://
www3.pny.com/SSDPDFs/Prevail-SSD.pdf

[31] Seagate, Establishing Industry Endurance Standards for Solid State
Storage, Tech. Rep., 2010 [Online]. Available: http://www.seagate.
com/files/staticfiles/docs/pdf/whitepaper/tp618-ssd-tech-paper-us.pdf

[32] JEDEC, “Solid state drive (SSD) requirements and endurance test
method,” [Online]. Available: http://www.jedec.org/standards-docu-
ments/docs/jesd218a

[33] Samsung, Samsung SSD SM825 [Online]. Available: http:/
/www.samsung.com/us/business/oem-solutions/pdfs/SM825\
_Product\%20Overview.pdf

[34] American National Standard of Accredited Standards Com-
mittee INCITS, ATA/ATAPI Command Set. S.M.A.R.T. [Online].
Available: http://www.t13.org/Documents/UploadedDocuments/
docs2006/D1699r3f-ATA8-ACS.pdf

[35] OCZ, OCZ Vertex SSD Specification [Online]. Available: http://
www.ocztechnology.com/products/flash_drives/ocz_vertex_series_
sata_ii_2_5-ssd 2009

[36] N. R. Draper and H. Smith, Applied Regression Analysis. New York,
NY, USA: Wiley, 1981.

[37] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Autom. Control, vol. AC-19, no. 6, pp. 716–723, Dec. 1974.

[38] B. Fu and P. Ampadu, “Error control combining hamming and product
codes for energy efficient nanoscale on-chip interconnects,” IET
Comput. Digit. Techn., vol. 4, no. 3, pp. 251–261, May 2010.

[39] J. Kim, J. Cho, andW. Sung, “Error performance and decoder hardware
comparison between EG-LDPC and BCH codes,” in Proc. 2010 IEEE
Workshop on Signal Processing Systems (SIPS), 2010.

[40] S. Lin and D. Costello, Error Control Coding: Fundamentals and Ap-
plications. Englewood Cliffs, NJ, USA: Prentice Hall, 1983.

[41] R. G. Gallager, Low Density Parity Check Codes. Cambridge, MA,
USA: MIT Press, 1963.

[42] Intel, Intel 510 SSD Specification [Online]. Available: http://down-
load.intel.com/pressroom/kits/ssd/pdf/Intel_SSD_510_Series_
Product_Specification.pdf

[43] J. Katcher, “Postmark: A new file system benchmark,” [Online]. Avail-
able: http://www.netapp.com/tech_library/3022.html

[44] IOzone [Online]. Available: http://www.iozone.org
[45] “SPC trace file format specification,” 2002 [Online]. Available: http://

skuld.cs.umass.edu/traces/storage/SPC-Traces.pdf
[46] X. Xu and M.-L. Li, “Understanding soft error propagations using effi-

cient vulnerability-driven fault injection,” in Proc. Int. Conf. Depend-
able Systems and Networks, 2012.

[47] X. Xu, K. Teramoto, A. Morales, and H. H. Huang, “DUAL: Relia-
bility-aware power management in data centers,” in Proc. IEEE Int.
Symp. Cluster Computing and the Grid, 2013.

[48] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf, “Mediabench
ii video: Expediting the next generation of video systems research,”
Microprocess. Microsyst., vol. 33, pp. 301–318, Jun. 2009.

30 IEEE TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 1, MARCH 2015

[49] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D. Disserta-
tion, Princeton University, Princeton, NJ, USA, Jan. 2011.

[50] Apache, Apache Hadoop Website, 2011 [Online]. Available:
http://hadoop.apache.org/

[51] A. Metwally, D. Agrawal, and A. E. Abbadi, “Efficient computation of
frequent and top-k elements in data streams,” in Proc. 10th Int. Conf.
Database Theory, 2005.

[52] H. Huang, N. Zhang, W. Wang, G. Das, and A. Szalay, “Just-in-time
analytics on large file systems,” in Proc. 9th USENIX Conf. File and
Storage Technologies (FAST), 2011.

[53] MathWorks, Matlab Website, 2011 [Online]. Available: http://www.
mathworks.com/products/matlab/

[54] C. Manning, P. Raghavan, and H. Schutze, Introduction to Information
Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[55] Smartmontools [Online]. Available: http://smartmontools.sourceforge.
net/

[56] M. Mariano, Micron Technology, Inc., ECC Options for Improving
NAND Device Reliability, Tech. Rep., 2012.

Xin Xu received the B.S. and M.S. degrees from East China University of Sci-
ence and Technology in 2006 and 2009, respectively. He is currently a Ph.D.
candidate in the Department of Electrical and Computer Engineering at George
Washington University.
His research mainly focuses on characterizing and designing fault tolerance

mechanisms in computer systems at the system and architecture levels.

H. Howie Huang received the Ph.D. in computer science from the University
of Virginia in 2008.
He is an Assistant Professor in the Department of Electrical and Computer

Engineering at the George Washington University. His research interests are in
the areas of computer systems and architecture, including cloud computing, big
data, high-performance computing and storage systems.
Prof. Huang received the NSF CAREER award in 2014, NVIDIA Academic

Partnership Award in 2011, and IBM Real Time Innovation Faculty Award in
2008.

