
Detecting Lateral Movement in Enterprise Computer Networks with
Unsupervised Graph AI

Benjamin Bowman Craig Laprade Yuede Ji H. Howie Huang
Graph Computing Lab

George Washington University

Abstract
In this paper we present a technique for detecting lateral

movement of Advanced Persistent Threats inside enterprise-
level computer networks using unsupervised graph learning.
Our detection technique utilizes information derived from
industry standard logging practices, rendering it immediately
deployable to real-world enterprise networks. Importantly,
this technique is fully unsupervised, not requiring any labeled
training data, making it highly generalizable to different en-
vironments. The approach consists of two core components:
an authentication graph, and an unsupervised graph-based
machine learning pipeline which learns latent representa-
tions of the authenticating entities, and subsequently performs
anomaly detection by identifying low-probability authenti-
cation events via a learned logistic regression link predictor.
We apply this technique to authentication data derived from
two contrasting data sources: a small-scale simulated envi-
ronment, and a large-scale real-world environment. We are
able to detect malicious authentication events associated with
lateral movement with a true positive rate of 85% and false
positive rate of 0.9%, compared to 72% and 4.4% by tradi-
tional rule-based heuristics and non-graph anomaly detection
algorithms. In addition, we have designed several filters to
further reduce the false positive rate by nearly 40%, while
reducing true positives by less than 1%.

1 Introduction

According to the 2019 FireEye M-Trends report [5], the me-
dian time to detection of a network intrusion was 78 days.
While this is an impressive improvement from the 418 days
reported in 2011, this still means an adversary would have
over 2 months inside an environment to accomplish their
mission prior to detection. Additionally, nearly half of all
compromises are detected via external sources, indicating
that the tools currently employed by enterprise-level cyber de-
fenders are insufficient for detecting the highly sophisticated
modern-day adversaries.

Existing systems and techniques for detecting network in-
trusions rely heavily on signatures of known-bad events [25],
such as file hashes of malware, or byte streams of malicious
network traffic. While these techniques are able to detect rel-
atively unskilled adversaries who use known malware and
common exploitation frameworks, they provide almost no
utility for detecting advanced adversaries, coined Advanced
Persistent Threats (APTs), who will use zero-day exploits,
novel malware, and stealthy procedures.

Similarly, the state-of-the-art behavioral analytics [26] in
use today by network defenders utilize relatively rudimentary
statistical features such as the number of bytes sent over a
specific port, number of packets, ratio of TCP flags, etc. Not
only are these types of analytics relatively noisy in terms of
false positives, but they are also challenging to investigate
due to their limited information and scope. For example, the
fact that a particular host sent 50% more network packets
in a given day could be indicative of many different events,
ranging from data exfiltration, botnet command & control,
to a myriad of other possibilities, most of which would not
indicate a compromise, such as streaming a video.

To address these challenges, our approach is to build an
abstract, behavior-based, graph data model, with key elements
related to the particular behavior of interest we are trying to
detect. Specifically, we model a computer network using a
graph of authenticating entities, and the target behavior we
detect is anomalous authentication between entities indicative
of lateral movement within the network. Lateral movement
is a key stage of APT campaigns when an attacker will au-
thenticate to new resources and traverse through the network
in order to gain access to systems and credentials necessary
to carry out their mission [17, 21]. This is very challenging
to detect as attackers will often use legitimate authentication
channels with valid credentials as opposed to noisy exploita-
tion procedures.

In order to effectively detect lateral movement, we first con-
vert our input data, which is the in form of industry standard
authentication logs, into a representation which will allow for
not only learning about individual authentication events, but



also the authentication behavior of the network as a whole. To
that end, we construct an authentication graph, where nodes
represent authenticating entities which can either be machines
or users, and edges represent authentication events. Next, we
utilize an unsupervised node embedding technique where
latent representations are generated for each vertex in the
graph. Finally, we train a link predictor algorithm on these
vertex embeddings, and utilize this link predictor to identify
low-probability links in new authentication events.

We apply our technique on two distinct datasets represent-
ing two contrasting computer networks. The PicoDomain
dataset is a small simulated environment we developed in-
house with only a few hosts, and spanning only 3 days. The
second dataset is from Los Alamos National Labs (LANL)
[11] and is a real-world network capture from their internal en-
terprise computer network spanning 58 days with over 12,000
users and 17,000 computers. In both cases, there is labeled
malicious authentication events associated with APT-style
activity which were used as ground truth for evaluation pur-
poses. We were able to detect the malicious authentication
events in the real-world dataset with a true positive rate of
85% and a false positive rate of only 0.9%. In comparison,
traditional heuristics, and non-graph based machine learning
methods, were able to achieve at best 72% true positive rate
and 4.4% false positive rate. Understanding that modern day
cyber defenders are frequently receiving far too many false
positives, we spent additional time building simple filters that
allowed us to further reduce our false-positive rate by nearly
40% on the LANL dataset, while reducing true positives by
less than 1%.

In summary, our contributions of this work are as follows:

• A graph data structure for modeling authentication be-
havior within enterprise-level computer networks based
on information available in industry standard log files.

• An unsupervised graph-learning technique for identify-
ing anomalous authentication events which are highly
indicative of malicious lateral movement.

• Experiments on two datasets showing the strength of
graph learning for this application domain.

The remaining of this paper will be laid out as follows.
Section 2 will provide some background into authentication
protocols, the graph structure, and define the problem of lat-
eral movement. Section 3 will discuss our proposed method
and explain the learning algorithm. Section 4 will discuss our
experimental evaluation and results. Section 5 will discuss
the related work. Section 6 will discuss some limitations of
our approach and our planned future work, and Section 7 will
conclude.

2 Background & Problem Definition

In this section we will discuss some background on authentica-
tion in enterprise networks, how we build our graph structure,
and define the problem of lateral movement.

2.1 Authentication
Modern enterprise computer networks rely on the ability to
manage the permissions and privileges of users in order to
maintain a safe and secure network. Users in the enterprise
network will be given explicit permissions to access resources
within the environment ranging from folders and network
share drives, to applications and services. To make this possi-
ble, there have been many network authentication protocols
developed through the years, which allow users to authenti-
cate to resources in the network in order to verify that they
have the privileges necessary to perform a certain action.

Common authentication protocols in today’s enterprise
computer networks include protocols such as Kerberos,
NTLM, SAML, and others. Each one is designed to be a
secure way to authenticate users inside an environment, and
each has the ability to be abused. APT-level adversaries are
well-versed in the workings of these authentication protocols,
and they are often abused during an attack campaign. For
example, the well-known "Pass the Hash" attack is a weak-
ness in the NTLM implementation where the hash of a user’s
password, which can often be harvested from system memory,
is used to authenticate to additional resources by the attacker.

Because hackers often abuse existing authentication chan-
nels, logs related to these critical protocols are valuable to
the security analyst and detection algorithms. Typically these
logs capture key information such as the account that is re-
questing to authenticate, the origin of the request, what they
are attempting to authenticate to, as well as the result of that
authentication request. Additionally, as authentication in the
environment is network activity, we have the ability to capture
this critical information from centralized network taps, rather
than requiring expensive host-based log collection.

2.2 Graph Structure
There were two main considerations in how we chose to build
our graph data structure. First, we wanted the input data to
be highly accessible to our network defenders. This means
utilizing data that is likely already being collected at the en-
terprise scale. While some smaller enterprises may have the
luxury of collecting verbose system logs from all endpoints,
larger enterprises are limited to coarse feeds from central-
ized resources such as network sensors or domain controllers.
Second, we wanted the data to provide clear and concise in-
formation related to our target detection of lateral movement.
Therefore, we design our algorithm to utilize network-level au-
thentication logs generated from Zeek sensors [31] (formerly



Figure 1: Example of an authentication graph for a small
simulated network.

Bro). Specifically, we utilize the Kerberos logging capability,
which generates protocol specific logging on the Kerberos
authentication protocol which is utilized in the majority of
Microsoft Windows domains. The technique is easily adapt-
able, however, to other authentication logs such as host-based
authentication logs, NTLM logs, Active Directory logs, or
others, providing they can uniquely identify authentication
events between user and system identities in the network.

For Kerberos logs, we extract the client and service princi-
pals, which are unique identifiers associated with users and
services in the network, as well as the source IP address of the
requesting entity, which will uniquely identify the machine
from which the client is operating. The destination IP address
will always be the IP of the Kerberos server itself, and thus
does not add valuable information to our graph. Here is an
example of content we extract from the Kerberos logs with
their respective Zeek column headings:

client id_orig_h service
jdoe/G.LAB 10.1.1.152 host/hr-1.g.lab

This record shows that the user jdoe of domain G.LAB au-
thenticated to service host/hr-1.g.lab, which is a host in the
network, from IP address 10.1.1.152.

Definition 1 An authentication graph (AG) is defined as a
graph G = (V,E) with a node type mapping φ: V → A and
an edge type mapping ψ: E→ R, where V denotes the node
set and E denotes the edge set, A = {IP, user, service} and
R = {authentication}.

A simple authentication graph generated from a small sim-
ulated computer network is shown in Figure 1. We can infer
from this graph that there are two separate organizational units
in our enterprise: the hr unit and the rnd unit, each with two
user nodes (Bob and Alice, John and Mary) interacting with
user workstations represented as service nodes (hr-win7-1,
hr-win7-2, rnd-win10-1, rnd-win10-2), as well as some email

servers and file servers (hr-email, hr-fserv, rnd-email, rnd-
fserv). We can see that user Sally is a network administrator,
as she has authentication activity to the Domain Controller ser-
vice node (DC) in the environment, the email and file server
nodes, as well as her own workstation node (it-win10-1). Note
that for display purposes, the IP nodes have been collapsed
into their representative service nodes.

2.3 Lateral Movement
Lateral movement is a key stage of APT-level attack cam-
paigns as seen in various attack taxonomies such as the Lock-
heed Martin Cyber Kill Chain [17], and the MITRE ATT@CK
framework [21]. Figure 2 provides a simplified version of an
APT-style campaign. After some initial compromise, and prior
to domain ownership by the adversary, there is a cycle of lat-
eral movement through the network. In most cases, the system
that is initially compromised will be a low privileged account,
typically a user workstation. This is due to the prevalence
of client-side attacks (e.g., phishing), which are much more
effective on typical, low-privilege users, as opposed to high-
privilege IT professionals. Thus, the attacker almost always
gains a foothold on a low privilege system and is thus required
to move laterally through the network to achieve their goals.

Definition 2 Lateral movement is defined as a malicious
path < u,v > conducted by an attacker in an organization’s
network characterized by the authentication graph, where u,v
belong to entity set {IP, user, service}.

For example, in Figure 1, if the user Alice fell victim to a
phishing email and downloaded malware, the attacker would
gain their initial foothold as account Alice on hr-win7-2. As
Alice is a low-privilege account, it is unlikely that the attacker
would be able to do much harm to the enterprise at large, such
as installing ransomware on all the systems in the network,
or exfiltrating highly sensitive business data. Therefore, the
attacker would be required to move laterally to systems and

Figure 2: An APT-style campaign showing the cycle of lateral
movement after initial compromise and prior to full domain
ownership.



Figure 3: Full algorithm pipeline including offline training of node embeddings and logistic regression link predictor, as well as
online detection via an embedding lookup, link prediction, and threshold-based anomaly detection.

accounts that have higher permissions in the environment.
This can be done by exploitation of vulnerabilities, however,
this is often a noisy and error prone process. More often, ad-
versaries will harvest and abuse legitimate credentials from
the set of compromised systems. In the case of our example,
Alice could harvest the domain admin Sally’s credentials from
the file server hr-fserv which Sally had previously authenti-
cated to, and Alice has privileges to access. Now, with Sally’s
credentials, Alice can authenticate from hr-win7-2 to the Do-
main Controller (DC). This attack could be characterized by
the lateral movement path: <hr-win7-2, Sally, DC >.

Existing techniques are not well suited to detect lateral
movement within enterprise-scale environments. Most Intru-
sion Detection Systems (IDSs) are placed at the border of a
network, and will fail to detect attacker actions after an initial
foothold has been established. Even if the IDS had total visibil-
ity, an attacker using legitimate authentication channels would
likely not trigger any alerts. Host-based security software re-
lies almost exclusively on identifying signatures of known
malware, and thus will prove ineffective at detecting APT-
level adversaries who will move laterally through a network
using novel malware or legitimate authentication mechanisms.
Some environments may implement a Security Information
Events Management (SIEM) System, which would allow for
more complex log analytics. However, SIEMs are typically
standard row or columnar data stores such as Splunk [26]
which only allow for relatively basic statistical analysis of the
data. Behavioral analytics implemented in SIEMs are typi-
cally simple aggregate trends of low level features such as
bytes over particular ports and protocols.

3 Proposed Method

In this section we will discuss our proposed method for detect-
ing lateral movement in enterprise computer networks. We
will provide an overview of our machine learning pipeline, fol-
lowed by detailed discussions of the node embedding process,
the link predictor training, and the anomaly detection.

3.1 Overview
In order to detect lateral movement in enterprise computer
networks, we generate authentication graphs as discussed
previously and apply an unsupervised graph learning process
to identify low probability links. Figure 3 shows the algorithm
pipeline. During the offline training stage (the top half of the
figure), we start by generating authentication graphs, then
create node embeddings via a random walk sampling and
embedding process, and finally train a logistic regression link
predictor using the node embeddings and ground-truth edge
information from the authentication graph.

During the online detection stage (the bottom half of the
figure), new authentication events are processed resulting
in new edges between authenticating entities. Embeddings
for these entities are generated via an embedding lookup,
and link prediction is performed using the trained logistic
regression link predictor. Anomaly detection is performed
via a (configurable) threshold value, where links below a
particular probability threshold will be forwarded to security
experts for investigation.

3.2 Node Embedding Generation
Node embedding generation is the process by which a d-
dimensional vector is learned for each node in a graph. The



goal of these approaches is to generate a vector representation
for each node which captures some degree of behavior within
the network as a whole.

For the authentication graph, we use H to denote the set of
node embeddings, H = {h1,h2, ...,hn}, where hi denotes the
node embedding for the ith node, and n denotes the number
of nodes in the graph. In the beginning, nodes do not have
embeddings, which means hi = /0.

In order to extract latent node representations from the
graph, we utilize an unsupervised node embedding technique
similar to DeepWalk [22], and node2vec [7]. We first sample
our authentication graph via unbiased, fixed-length random
walks. Specifically, for any node v in the graph, we will ex-
plore r random walks with a fixed-length l. For a random
walk starting from node v, let vi denote the ith node in the
walk, the node sequence for this walk is generated with the
following probability distribution:

P(vi = x|vi−1 = y) =

{
1
dy
, i f (x,y) ∈ E

0, otherwise
(1)

where E denotes the edge set in the graph, and dy is the degree
of node y. This results in a set of random walk sequences
S = {S1,S2, ...,Sm}, where Si denotes the ith random walk
sequence, and m denotes the total number of sequences.

With the sequence set of the random walks, we then tune
node embeddings via a Continuous-Bag-of-Words (CBOW)
model with negative sampling as proposed in [18]. In the
CBOW model, we predict the target node provided context
nodes from the random walk sequence. We utilize negative
sampling such that we only update the vectors of a subset of
nodes that were not found in the particular context window
of the target node.

We use the Noise Contrastive Estimation (NCE) loss as
defined in Equation 2:

L=−[logp(y= 1|hT ,hI)+ ∑
hU∈N(hI)

logp(y= 0|hU ,hI)] (2)

where y denotes the label, hT denotes the embedding of the
target node, hI denotes the embedding of the input node which
is the average of the context nodes, hU denotes the embedding
of a noise node, and N(·) denotes the set of noise node embed-
dings for that input. This loss function differentiates the target
sample from noise samples using logistic regression [8].

Further, the probability for different labels of negative sam-
pling is defined in Equation 3,

p(y = 1|hT ,hI) = σ(h′>T hI)

p(y = 0|hT ,hI) = σ(−h′>T hI)
(3)

where σ(·) denotes the sigmoid function, and h′T denotes
the column vector for hT . Therefore, the final loss value is
calculated by Equation 4.

L =−[logσ(h′>T hI)+ ∑
hU∈N(hI)

logσ(−h′>T hI)] (4)

Figure 4: Example embedding space generated from a
random-walk based node-embedding process.

By minimizing the loss value from Equation 4, we are able
to tune our node embeddings such that we are more likely to
predict our target node embedding hT given the context node
embeddings hI , while simultaneously less likely to predict
the negative sample node embeddings hU given the same
context hI . We use Stochastic Gradient Descent (SGD) to
minimize the loss function. In the end, we generate the output
node embedding set H ′ = {h′1,h′2, ...,h′n}, where hi

′ is the
d-dimension embedding for node i.

In the context of the authentication graph, this process
equates to predicting a user based on the machines and users
found within at-most l-hops away. This will result in node
embeddings where users who often authenticate to similar
entities will be embedded in a similar region. Similarly, sys-
tems which share a user base will be found embedded in a
similar region. This provides us the ability to then look at
authentication events as events between two abstract vectors,
as opposed to between distinct users and machines.

Figure 4 provides a 2-dimensional embedding space gen-
erated for the graph in Figure 1 using this node embedding
process. We can see that the embedding of the graph corre-
sponds nicely to the organizational units of the various users
and systems. Additionally we see that the servers are clearly
separated from the users and their workstations. Also, the
network administrator is clearly separated from both orga-
nizational units. In addition, notice that the user Alice does
not have an edge to the hr-email server in the authentication
graph, despite clearly being a member of the hr organiza-
tion. Even though this is the case, we can see that Alice is
co-located in the embedding space with other hr users and
systems. This fact will be crucial during the link prediction
process, as even though there is no explicit link between Alice
and the hr-email server, we would like our link prediction
algorithm to predict a high probability for the authentication
event between Alice and hr-email, considering it is perfectly



reasonable that Alice authenticates to the hr-email server.

3.3 Link Prediction
Next, we utilize a traditional logistic regression (LR) algo-
rithm to provide us with a probability estimate that a particular
authentication event occurs between two nodes a and b. For-
mally, our LR algorithm models:

P(y = 1|h′) = σ(h′) =
1

1+ e−w>h′
(5)

where y is the binary label indicating if an edge exists or not,
the weight vector w contains the learned parameters, and h′ is
the element-wise multiplication of the node embeddings ha
and hb defined in Equation 6, also known as the Hadamard
product.

ha ◦hb = (ha)i j · (hb)i j (6)

We train the above model by generating a dataset of true
and false edge embeddings from the ground truth authenti-
cation graph. The true edge set consists of all edges in the
authentication graph:

ET = ha ◦hb ∀(a,b) ∈ E (7)

with each edge embedding receiving a binary label of 1. On
the contrary, the false edge set consists of all edges that do
not exist in the authentication graph:

EF = ha ◦hb ∀(a,b) /∈ E (8)

with each edge embedding receiving a binary label of 0. Train-
ing on these two sets of data would cause significant over
fitting as EF contains every possible edge not in the original
edge set E. Therefore, we down sample EF via a random
sampling process, and only train on the same number of false
edges as found in ET .

3.4 Anomaly Detection
Anomaly detection is achieved by applying our trained LR
link predictor to new authentication events. First, authentica-
tion events are parsed into a set of edges between authenti-
cating entities. Next, we perform an embedding lookup for
the node embeddings generated during the training stage. The
anomaly detection function A can be expressed as:

A(ha,hb) =

{
1, i f f (ha ◦hb)< δ

0, otherwise
(9)

where ha and hb are the embeddings for nodes a and b, and the
function f (·) is the logistic regression link predictor trained
on the true and false edges generated from our training graph.
The parameter δ is the threshold for generating an alert. In
this paper, we use a threshold of δ = 0.1, or 10%, which we
will show shortly yields good performance.

4 Evaluation

In this section we will evaluate our technique for detecting
malicious authentication in enterprise networks. First we will
discuss the datasets we used for evaluation, followed by a
detailed description of the various methods we evaluated, and
an analysis of our results. In an effort to further reduce false
positives, we make some observations about the data and our
results, and update our algorithm accordingly.

4.1 Datasets

We apply our malicious authentication detection to two
datasets generated from contrasting computer networks. Table
1 provides details on each dataset. We discuss both datasets
in detail below.

Table 1: Dataset Details
PicoDomain LANL

Duration in Days 3 58
Days with Attacks 2 18

Total Records 4686 1.05 B
Total Attack Records 129 749

User and Machine Accounts 86 99968
Computers 6 17666

PicoDomain is a dataset we generated in-house for cyber
security research. It is designed to be a highly scaled-down
environment which contains only the most critical elements
commonly found in enterprise-level domains. Specifically, the
PicoDomain consists of a small Windows-based environment
with five workstations, a domain controller, a gateway firewall
and router, and a small-scale internet that houses several web-
sites as well as the adversarial infrastructure. A Zeek network
sensor was installed inside the environment and placed such
that it had visibility of traffic entering and leaving the network
from the simulated Internet (north/south), as well as traffic
between local systems in the simulated enterprise network
(east/west). A total of three days of network traffic was cap-
tured. During this three day period, there was benign activity
performed in a typical 9-5 workday pattern, such as browsing
the web, checking e-mail, etc. Additionally, on days 2 and
3, we ran an APT-style attack campaign which included all
stages of the kill chain. The attack campaign started with a ma-
licious file downloaded from an e-mail attachment. This gave
the attacker the initial foothold in the network. The attacker
then proceeded to perform various malicious actions typically
associated with APT-level campaigns. This included exploit-
ing system vulnerabilities for privilege escalation, registry
modifications to maintain persistence, credential harvesting
via the tool Mimikatz, domain enumeration, and lateral move-
ment to new systems via the legitimate Windows Management
Instrumentation (WMI) service. At the end of the campaign,



the attacker was able to compromise a domain admin account,
resulting in full network ownership by the attacker.

Comprehensive Cyber Security Events is a dataset re-
leased by Los Alamos National Labs (LANL) and consists
of 58 consecutive days of anonymized network and host
data [11]. There are over 1 billion events containing authenti-
cation activity for over 12,000 users and 17,000 computers
in the network. An APT-style attack was performed during
the data capture, and relevant authentication log entries were
labeled as being malicious or benign. No further details were
provided in the dataset as to what types of attacks were per-
formed during the exercise. This is a limiting factor of this
dataset, and, in fact, led to the generation of the previously
mentioned PicoDomain dataset.

4.2 Methods Evaluated

We evaluate two variants of our proposed graph learning meth-
ods, as well as four different baseline techniques, which in-
clude two non-graph-based machine learning algorithms, as
well as two traditional rule-based heuristics. We will discuss
each below.

Graph Learning with Local View (GL-LV). This is our
graph learning technique configured in such a way as to have a
more localized view in our graph. This means our embeddings
and link predictor will be optimized for nodes within a close
proximity. To achieve this, we generate 20 random walks
of length 10 for every node, and generate a 128-dimension
embedding for each node based on a context window size of
2. This means each node will only consider a neighborhood
of 2-hop neighbors in the embedding process. Our anomaly
detection threshold is set at δ = 0.1.

Graph Learning with Global View (GL-GV). This is
our second graph learning variant which is very similar to the
first, however this time configured to have a more global view
of the graph. This means our embeddings and link predictor
will be optimized for nodes that are further apart in our graph.
To that end we used the same configuration as previously,
however now setting the window size to 5. This means nodes
will consider at most 5-hop neighbors during the embedding
and link prediction process, which will give the algorithm a
much broader view of the graph.

Local Outlier Factor (LOF) [2]. For a non-graph-
based machine learning comparison, we implement the LOF
anomaly detection algorithm. The LOF is a density-based
anomaly detection approach, where relative local densities
are compared between each sample, and those which are very
different from their neighbors are considered anomalous. In
order to generate features for this algorithm, we 1-hot encode
the authentication events into an authentication vector con-
taining a dimension for all authenticating entities. For each
event, the dimensions corresponding to the various authenti-
cating entities for that particular record will be set to 1, and all
other dimensions will be 0. We then apply the LOF algorithm

to these vectors to identify anomalies.
Isolation Forest (IF) [15]. This is a second non-graph-

based machine learning comparison technique. The Isolation
Forest algorithm identifies samples that can be easily isolated
from the dataset by simple decision trees as being anomalous.
This is applied to the same authentication vectors as in the
previous LOF method.

Unknown Authentication (UA). This is a more traditional
rule-based heuristic which simply identifies all first-time au-
thentication events as anomalous. During the training period,
a list of known authentications is generated for each authen-
ticating entity in the network. During the testing phase, any
authentication event which was not seen during the training
phase is considered as anomalous. After an anomalous result
is generated the first time, the authentication event is added
to the set of known authentications for the particular entity.
This way we do not generate repeated anomalies for the same
event.

Failed Login (FL). This is a second traditional rule-based
heuristic which considers all failed login events as anomalous.
As this technique does not requiring any training data, we
only evaluate it on the test portion of the datasets.

4.3 Detection Analysis
Next we apply the six different algorithms discussed previ-
ously and evaluate their ability to detect malicious authenti-
cation in our two datasets. For all techniques, we report the
number of true positives (TP), false positives (FP), as well as
the true positive rate (TPR), and false positive rate (FPR).

PicoDomain. First we apply all techniques to the simulated
PicoDomain dataset. We split the dataset into training and
testing, with the training data consisting of authentication
activity before the APT attack began, and the testing data
containing all other activity. As this is a small dataset focused
on malicious activity, the majority of the time period contains
malicious events. As a result, there was only roughly 20%
clean training data available. Thus our final train/test split on
this data was about 20%/80%. For all 6 detection techniques,
we only generate accuracy metrics on the testing dataset.

Table 2 shows the results for all six techniques. Not unsur-
prisingly, the UA detector performed very well, with 100%
TPR, and only 1.5% FPR. This means all of the lateral move-
ment associated with the APT campaign involved systems
which did not have authentication activity during the training
period, a characteristic that is likely only to hold in relatively
small and simulated environments. We can also see that the
failed login (FL) rule generated very few results, and only
managed to detect a single event associated with the malicious
activity. This is due to the fact that the APT campaign did
not involve any brute-force password guessing attempts. The
single failed login is likely due to user error during the attack.

Both ML techniques (LOF and IF) struggled to detect ma-
licious events, with TPRs well below 50%, and FPRs as high



Table 2: Anomaly Detection Results on PicoDomain Dataset
Algorithm TP FP TPR (%) FPR (%)

UA 129 11 100 1.5
FL 1 15 0.8 2.0

LOF 41 19 32 2.5
IF 34 62 26 8.3

GL-LV 102 0 80 0.0
GL-GV 102 0 80 0.0

as 8.3%. This indicates that the pure authentication activity
between entities, without the additional information present
in the graph topology, is not sufficient for detecting lateral
movement.

Our graph learning techniques, GL-LV and GL-GV, per-
formed much better than the comparison ML techniques,
achieving 80% TPR. This shows the strength of the graph
topology for the detection of lateral movement. Additionally,
the graph-learning approaches were able to reduce the FPR
to 0% compared with the 1.5% of the UA detector. A low
false positive rate is critical for anomaly detection techniques,
as will be made clear by the next experiment on the LANL
dataset. Interestingly, we see that the global view and local
view had no effect on the performance. This again is likely
due to the extremely small scale of this dataset. The aver-
age shortest path between any two nodes in the PicoDomain
graph is slightly over 2 hops. This means the additional visi-
bility that the GL_GV detector provides will not contribute
significantly more information on the graph structure.

LANL. Here we apply the same 6 detectors to the LANL
Comprehensive Cyber Security Events dataset. In a similar
manner, we split the data into training and testing sets. The
training set consists of 40 days on which no malicious activity
is reported, and the testing set of 18 days with malicious
activity. This is equivalent to roughly 70% training data, and
30% testing data. Due to the large scale of this dataset, it was
necessary that we perform an additional down sampling for
the two ML techniques LOF and IF, which was accomplished
by removing timestamps from the training and testing dataset,
and removing duplicate events. The TPR and FPR for these
two techniques have been adjusted to account for this.

Table 3 shows the results for the six anomaly detectors.

Table 3: Anomaly Detection Results on LANL Dataset
Algorithm TP FP TPR (%) FPR (%)

UA 542 530082 72 4.4
FL 31 116600 4 1.0

LOF 87 169460 12 9.6
IF 65 299737 9 16.9

GL-LV 503 146285 67 1.2
GL-GV 635 107960 85 0.9

The impact of scale is readily evident in these results, with a
significant number of false positives for all detectors, despite
reasonably small false-positive rates.

We can see that the UA detector performs again reasonably
well, with a significant 72% of the malicious authentication
events detected. However, with this real-world dataset, we can
see how noisy this detector is, with a FPR of 4.4% resulting
in over 500,000 false positives. The FL detector again fails
to perform, indicating that for APT style campaigns, simple
failed login attempts are not suitable detectors. Similarly, both
ML approaches generated many false positives, and few true
positives, again showing that simple authentication events
without the added information in the authentication graph are
insufficient for malicious authentication detection.

The two graph learning techniques were able to provide
the best TPR at the least FPR. The GL-LV detector, although
returning less true positives than the simple UA detector,
was still able to detect 67% of the malicious activity, at only
1.2% FPR compared to 4.4% by the UA detector. The best
performing predictor on this dataset is the GL_GV detector,
which was able to detect the most malicious authentication
events with a TPR of 85%, while maintaining the lowest FPR
of 0.9%. For this dataset, the increased context window of
the GL-GV over the GL-LV contributed significantly to the
added performance. The average shortest path between any
two nodes in the LANL graph is roughly 4 hops. This explains
why, in this case, the broader view of the GL_GV detector
was able to capture more information from the graph structure
in the node embeddings, resulting in a better performing link
predictor.

It is important to note here that all of the previous experi-
ments were performed on commodity server hardware. Specif-
ically, we utilized a server with two Intel Xeon CPU E5-2683
CPUs, and 512 GB of ram. This provided enough memory
and compute power to run any of the detectors discussed
on the full 58-day LANL dataset in under 6 hours. We be-
lieve that the techniques used here would be supported by the
infrastructure already available to our network defenders.

4.4 Reducing False Positives

As we can see from the previous experiment, and specifi-
cally Table 3, the effect of false positives on the datasets of
the scale found in the real-world can be very detrimental.
Even for the best performing detector, the GL_GV detector,
a false positive rate of 0.9% resulted in over 100,000 indi-
vidual false positive results in the test data. As these results
will ultimately be used by cyber analysts to investigate the
threats, it is important that we do our best to keep the false
positives to a minimum. In this section, we present some of
our observations of the data and results, and design several
filters to further reduce the false positive rate by nearly 40%,
while reducing true positives by less than 1%.



Figure 5: Impact of various approaches in reducing the number of false positives returned on the LANL dataset.

Observation 1: The malicious authentication events are
predominantly first authentication events.

This observation was made based on the fact that the simple
unknown authentication (UA) detector performed very well
at identifying the malicious events. However, its false positive
rate was far too high to use on its own. Based on this obser-
vation, we use the inverse of this detector as a false positive
filter. More precisely, all anomalies generated by the graph
learning approach are passed through a filter based on the
known authentication events. We discard any of the anoma-
lous authentication events that were previously seen during
the training period. This filter corresponds to the "Known
Auth" filter in Figure 5. We can see that we achieved about a
10% reduction in false positives, while reducing true positives
by less than 1%.

Observation 2: The malicious authentication events are
predominantly based on user interactions.

Our authentication graph includes interactions between
users and computers, but also interactions between purely
computers. Some of the interactions are possibly associated
with the red team exercise, however, the labeling scheme uti-
lized by LANL only labeled authentication events involving
user accounts as being malicious. Without further details on
exactly what the red team activity entailed, it is impossible
to label other interactions as malicious or benign that could
have been associated with the red team exercise. Based on
this, we modify our anomaly detection algorithm, and again
add a new filter where the results that are generated and do
not involve at least one user account are discarded. This filter
corresponds to the "User Only" filter in Figure 5. We can see
this had a significant impact on the results, reducing false
positives by over 20% from the original, while not reducing
the true positives at all.

Observation 3: The malicious authentication events are
predominantly related to specific user accounts and systems.

This observation makes sense from a practical standpoint.
When an adversary gains access to a network, it is unlikely
that they have multiple initial footholds. Typically a single
foothold would be established, and then access throughout
the network would expand from there. This means that all

of the malicious edges in our authentication graph should be
close together, or even form a connected component in the
graph. Based on this observation, we build a third filter, where
all of the anomalous results are chained together based on
their shared nodes and edges. Any anomalous results which
do not form a chain with at least one other anomalous event
is discarded. This filter corresponds to the "Anomaly Chain"
filter in Figure 5. This resulted again in about a 20% reduction
in false positives from the original, and no reduction in true
positives.

To summarize, the last bars labeled as "Combined" in Fig-
ure 5 represent the results when combining all of the previous
filters together. We can see this resulted in the best perfor-
mance, and was able to reduce the number of FPs on the
LANL dataset by nearly 40%, while losing < 1% of the true
positives.

5 Related Work

This section studies the related works in terms of anomaly
detection and node embedding methods.

Anomaly detection for APT identification has been ex-
tensively studied. However, the majority of works are based
on expensive host-based log analysis, with the goal of anoma-
lous process activity, indicative of malware or exploitation
[23] [6] [24] [16]. Some go so far as mining information from
user-driven commands for anomaly detection [14]. While host
logs may be available in some environments, it would be a
significant burden for most large enterprises to capture and
store verbose host-based logs such as system call traces.

At the network level, there are techniques for detecting
web-based attacks [13], as well as botnet activity [1] utilizing
anomaly detection algorithms. A highly related technique
[4] combines host information with network information to
detect lateral movement. However, they require process-level
information from hosts, making this technique a poor fit at
the enterprise scale. As lateral movement detection is such
a hard problem, some approaches instead focus on detecting
the degree to which environments are vulnerable to lateral
movement attacks [10].

There are also approaches that look for deviations from
known, specification-driven, rules of how an environment



should behave, such as Holmes [20] and Poirot [19]. While
these work reasonably well and are able to reduce false pos-
itives by explicitly defining what behavior is deemed mali-
cious, they are still based on knowledge derived from a human,
and thus risk circumvention by new and novel attack paths.
In addition, these techniques require constant maintenance
and upkeep to develop new specifications for the constantly
evolving attack surface.

Node embedding methods aiming at learning represen-
tative embeddings for each node in a graph have been suc-
cessfully applied to various downstream machine learning
tasks, such as node classification [22], link prediction [7], and
node recommendation [30]. Existing methods usually take
two steps to generate node embeddings. First, they sample
meaningful paths to represent structural information in the
graph. Second, they apply various data mining techniques
from domains such as natural language processing (NLP),
utilizing technologies such as word2vec [18] for learning
meaningful vector embeddings.

The major difference between existing methods lie in the
first step, i.e., how to mine better paths to capture the most
important graph information. In this context, the early work
DeepWalk [22] applies random walks to build paths for each
node. In order to give more importance to close-by neigh-
bors, Line [27] instead applies a breadth-first search strategy,
building two types of paths: one-hop neighbors and two-hop
neighbors. Further, the authors of node2vec [7] observe that
the node embeddings should be decided by two kinds of simi-
larities, homophily and structural equivalence. The homophily
strategy would embed the nodes closely that are highly in-
terconnected and in similar cluster or community, while the
structural equivalence embeds the nodes closely that share
similar structural roles in the graph. Based on these strate-
gies, node2vec implements a biased random walk embedding
process which is able to model both similarity measures.

There are additionally many other graph neural network
architectures recently proposed, such as the convolution-based
GCN [12], attention-based GAT [28], and many variants based
on both [9]. However, they are mostly designed for semi-
supervised or supervised tasks, and are not as suitable for
unsupervised learning as the random-walk based approaches
mentioned previously.

6 Limitations & Future Work

Although our results are promising, there are several limiting
factors of our approach. The first limitation is the problem of
explainability, which is not specific to our technique, but rather
a limitation of machine learning techniques in general. When
our graph learning algorithms label an event as an anomaly,
it is relatively challenging to determine why it has done so.
There is current and active research on explaining machine
learning and AI algorithms [3], and many even specific to
explaining the results of graph learning algorithms in partic-

ular [29]. We may be able to use some of these techniques
in the future which would allow us to identify what nodes
were most important when generating both the embedding,
and ultimately the link prediction scores.

Our detection algorithm is based on the assumption that
we will have historic data for each entity we plan to perform
link prediction on in the future. If we have never seen an
entity authenticate before, then we will not have an embed-
ding generated for that entity, and thus we will be unable to
perform the link prediction. There are many ways to handle
this problem, such as assigning new entities a generic "new
node" embedding, or assigning the new node embedding to
the average embedding of its neighbors (provided that they
have embeddings themselves), however we have not explored
the impact of these various approaches. We believe that, at
least in the case of enterprise network authentication, it is a
fair assumption to believe that for the vast majority of user
accounts in the network, there should be some history of their
behavior provided a sufficiently long historic window.

In this work we focused specifically on log data pertaining
to authentication events. However, there is a myriad of addi-
tional data that we could add to our graph and ultimately to
our graph learning algorithms. In the future we plan to add
finer grained detail of actions performed by users, such as
DNS requests and file-share accesses. This will allow us to
also expand our detection algorithm to identify other stages
of the kill chain beyond lateral movement, such as command
and control traffic, which would likely cause anomalous DNS
requests.

7 Conclusion

In this work we discussed the challenging problem of de-
tecting lateral movement of APT-level adversaries within
enterprise computer networks. We explained why existing
signature-based intrusion detection techniques are insuffi-
cient, and existing behavioral analytics are too fine grained.
We introduced our technique of abstracting a computer net-
work to a graph of authenticating entities, and performing
unsupervised graph learning to generate node behavior em-
beddings. We discussed how we use these embeddings to
perform link prediction, and ultimately anomaly detection for
malicious authentication events. We applied our techniques
to both simulated and real-world datasets and were able to
detect anomalous authentication links with both increased
true positive rates, and decreased false positive rates, over
rule-based heuristics and non-graph ML anomaly detectors.
We analyzed the results of our algorithm, and developed sev-
eral simple filters to further reduce the false positive rate of
our technique.



Acknowledgment

This work was supported in part by DARPA under agreement
number N66001-18-C-4033 and National Science Foundation
CAREER award 1350766 and grants 1618706 and 1717774,
as well as support from the ARCS Foundation. The views,
opinions, and/or findings expressed in this material are those
of the authors and should not be interpreted as representing
the official views or policies of the Department of Defense,
National Science Foundation, ARCS, or the U.S. Govern-
ment.

References

[1] Leyla Bilge, Davide Balzarotti, William Robertson, En-
gin Kirda, and Christopher Kruegel. Disclosure: detect-
ing botnet command and control servers through large-
scale netflow analysis. In Proceedings of the 28th An-
nual Computer Security Applications Conference, pages
129–138. ACM, 2012.

[2] Markus M Breunig, Hans-Peter Kriegel, Raymond T
Ng, and Jörg Sander. Lof: identifying density-based
local outliers. In ACM sigmod record, volume 29, pages
93–104. ACM, 2000.

[3] Mengnan Du, Ninghao Liu, Qingquan Song, and Xia
Hu. Towards explanation of dnn-based prediction with
guided feature inversion. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1358–1367, 2018.

[4] A. Fawaz, A. Bohara, C. Cheh, and W. H. Sanders. Lat-
eral movement detection using distributed data fusion.
In 2016 IEEE 35th Symposium on Reliable Distributed
Systems (SRDS), pages 21–30, Sep. 2016.

[5] FireEye. M-trends 2019. https://content.fireeye.com/m-
trends/rpt-m-trends-2019, 2019.

[6] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff. A sense of self for unix processes. In Pro-
ceedings 1996 IEEE Symposium on Security and Pri-
vacy, pages 120–128, May 1996.

[7] Aditya Grover and Jure Leskovec. node2vec: Scalable
feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 855–864. ACM,
2016.

[8] Michael Gutmann and Aapo Hyvärinen. Noise-
contrastive estimation: A new estimation principle for
unnormalized statistical models. In Proceedings of the
Thirteenth International Conference on Artificial Intelli-
gence and Statistics, pages 297–304, 2010.

[9] William L Hamilton, Rex Ying, and Jure Leskovec. Rep-
resentation learning on graphs: Methods and applica-
tions. arXiv preprint arXiv:1709.05584, 2017.

[10] John R Johnson and Emilie A Hogan. A graph ana-
lytic metric for mitigating advanced persistent threat.
In 2013 IEEE International Conference on Intelligence
and Security Informatics, pages 129–133. IEEE, 2013.

[11] Alexander D. Kent. Comprehensive, Multi-Source
Cyber-Security Events. Los Alamos National Labo-
ratory, 2015.

[12] Thomas N Kipf and Max Welling. Semi-supervised
classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

[13] Christopher Kruegel and Giovanni Vigna. Anomaly
detection of web-based attacks. In Proceedings of the
10th ACM conference on Computer and communications
security, pages 251–261. ACM, 2003.

[14] Wenke Lee, Salvatore J Stolfo, and Kui W Mok. A
data mining framework for building intrusion detection
models. In Proceedings of the 1999 IEEE Symposium
on Security and Privacy (Cat. No. 99CB36344), pages
120–132. IEEE, 1999.

[15] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isola-
tion forest. In 2008 Eighth IEEE International Confer-
ence on Data Mining, pages 413–422. IEEE, 2008.

[16] Emaad Manzoor, Sadegh M Milajerdi, and Leman
Akoglu. Fast memory-efficient anomaly detection in
streaming heterogeneous graphs. In Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1035–
1044. ACM, 2016.

[17] Lockheed Martin. The cyber kill
chain. https://www.lockheedmartin.com/en-
us/capabilities/cyber/cyber-kill-chain.html, 2020.
Accessed: 2020-01-16.

[18] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In Ad-
vances in neural information processing systems, pages
3111–3119, 2013.

[19] Sadegh M. Milajerdi, Birhanu Eshete, Rigel Gjomemo,
and V.N. Venkatakrishnan. Poirot: Aligning attack be-
havior with kernel audit records for cyber threat hunting.
In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’19, page
1795–1812, New York, NY, USA, 2019. Association for
Computing Machinery.



[20] Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete,
R Sekar, and VN Venkatakrishnan. Holmes: real-time
apt detection through correlation of suspicious informa-
tion flows. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 1137–1152. IEEE, 2019.

[21] MITRE. Mitre att@ck. https://attack.mitre.org/, 2020.
Accessed: 2020-01-16.

[22] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deep-
walk: Online learning of social representations. In Pro-
ceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
701–710. ACM, 2014.

[23] R Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep
Bollineni. A fast automaton-based method for detecting
anomalous program behaviors. In Proceedings 2001
IEEE Symposium on Security and Privacy. S&P 2001,
pages 144–155. IEEE, 2000.

[24] Xiaokui Shu, Danfeng Yao, and Naren Ramakrishnan.
Unearthing stealthy program attacks buried in extremely
long execution paths. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security, pages 401–413. ACM, 2015.

[25] Snort. Snort. https://www.snort.org/, 2020.
Accessed:2020-01-16.

[26] Splunk. Splunk. https://www.splunk.com, 2020.
Accessed:2020-01-16.

[27] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. Line: Large-scale information
network embedding. In Proceedings of the 24th interna-
tional conference on world wide web, pages 1067–1077.
International World Wide Web Conferences Steering
Committee, 2015.

[28] Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio. Graph
attention networks. arXiv preprint arXiv:1710.10903,
2017.

[29] Rex Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zit-
nik, and Jure Leskovec. Gnn explainer: A tool for
post-hoc explanation of graph neural networks. arXiv
preprint arXiv:1903.03894, 2019.

[30] Xiao Yu, Xiang Ren, Yizhou Sun, Quanquan Gu,
Bradley Sturt, Urvashi Khandelwal, Brandon Norick,
and Jiawei Han. Personalized entity recommendation:
A heterogeneous information network approach. In Pro-
ceedings of the 7th ACM international conference on
Web search and data mining, pages 283–292, 2014.

[31] Zeek. The zeek network security monitor.
https://zeek.org, 2020. Accessed: 2020-01-16.


	Introduction
	Background & Problem Definition
	Authentication
	Graph Structure
	Lateral Movement

	Proposed Method
	Overview
	Node Embedding Generation
	Link Prediction
	Anomaly Detection

	Evaluation
	Datasets
	Methods Evaluated
	Detection Analysis
	Reducing False Positives

	Related Work
	Limitations & Future Work
	Conclusion

