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Abstract—Application and OS-level caches are crucial for
hiding I/O latency and improving application performance.
However, caches are designed to greedily consume memory,
which can cause memory-hogging problems in a virtualized
data centers since the hypervisor cannot tell for what a virtual
machine uses its memory. A group of virtual machines may con-
tain a wide range of caches: database query pools, memcached
key-value stores, disk caches, etc., each of which would like
as much memory as possible. The relative importance of these
caches can vary significantly, yet system administrators cur-
rently have no easy way to dynamically manage the resources
assigned to a range of virtual machine data caches in a unified
way. To improve this situation, we have developed UniCache,
a system that provides a hypervisor managed volatile data
store that can cache data either in hypervisor controlled main
memory (hot data) or on Flash based storage (cold data).
We propose a two-level cache management system that uses
a combination of recency information, object size, and a
prediction of the cost to recover an object to guide its eviction
algorithm. We have built a prototype of UniCache using Xen,
and have evaluated its effectiveness in a shared environment
where multiple virtual machines compete for storage resources.
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I. INTRODUCTION

Applications and operating systems have many opportuni-
ties to improve I/O performance by caching data in memory.
Operating systems aggressively use buffer and page caches
to store data that would otherwise have to be retrieved
from disk at much longer latency. Likewise, application-level
caches such as memcached [14], [19] are used to store data
such as the results of expensive to compute database queries.
Applications and operating systems are eager to make this
trade of memory consumption for performance because the
cache can often be shrunk if memory is needed for another
purpose.

Unfortunately, this is not necessarily the case in a virtual
setting where multiple virtual machines (VMs) may aggres-
sively consume whatever memory they are allocated for a
cache [13]. The hypervisor (a.k.a. VMM – virtual machine
manager) is unaware of the distinction between volatile data
pages that can easily be recovered, and those which hold crit-
ical application or OS state. Even worse, the system memory
that is not assigned is wasted due to the hypervisor’s inability
to flexibly manage spare memory. This lack of information
and manageability prevents the hypervisor from efficiently
managing memory resources since each VM appears to be
actively using all of its memory, while in fact some of it

may be able to be reclaimed without a significant impact
to performance. Also, the system spare memory is not used
efficiently.

We have developed UniCache to increase the hypervi-
sor’s control over the storage hierarchy. UniCache allows
applications and operating systems to make calls into the
hypervisor to access a key-value store spread across DRAM
and Flash-based memory, e.g., a set of solid state drives
(SSD) configured as a RAID array [2], [16], [21]. Here we
combine a main memory cache with the new Flash memory
layer to provide larger memory capacity and fast access [3],
[7]. This requires UniCache to carefully allocate memory
and SSD resources to a set of competing VMs with volatile
data to store.

One of the insights in our work is that not all volatile
data caches are equivalent, nor are the objects stored inside
of them. For example, traditional disk caches employ least
recently used (LRU) information to guide eviction [8], [12],
[22]. This makes the assumption that the cost of bringing
any object back into the cache is roughly the same, yet this is
not the case for application-level caches such as memcached,
where some objects may represent the results of very long
running queries while others can be trivially recomputed.
UniCache is able to predict the cost of recovering an object
by tracking previous get/put request pairs. To efficiently
support a wide range of cache types, UniCache uses an
eviction policy that can weight the importance of recency
information, object recovery cost, and object size.

UniCache’s focus is on determining where data should be
stored in a cache that spans multiple levels of the storage
hierarchy, particularly when these storage areas need to
be partitioned for multiple competing VMs. Our work on
UniCache offers three primary contributions:
• An interface that allows applications and operating sys-

tems to store data across a storage hierarchy,
• A cache eviction algorithm that accounts for both tem-

poral locality and data-specific features such as cost to
recompute and size, and
• A cache partitioning scheme that estimates the perfor-

mance benefit provided by the cache to each VM without
requiring any application-specific data.

We have built a prototype system that can support a
variety of uses such as memcached for web applications
and an OS-based disk prefetching system. Our evaluation



of UniCache shows that a certain web application can
provide a significant improvement−32% with memory and
an additional 28% with SSD support.

Our paper is structured as follows: Section 2 provides
the background and motivation for our work, and Section
3 provides an overview of our system architecture and the
interface between applications and the hypervisor managed
caches. We then discuss cache replacement and partitioning
algorithms in Section 4. Section 5 provides our evaluation
using several realistic data center benchmarks. We discuss
related work in Section 6, and conclude in Section 7.

II. BACKGROUND AND MOTIVATION

UniCache is motivated by two converging challenges: the
growing importance of cached data for meeting performance
goals and the increasing density of Cloud virtual environ-
ments where resources are multiplexed for multiple users.
Single purpose caching solutions such as OS disk caches and
database query caches have long been employed, but general
purpose caches such as Memcached have seen growing
popularity for maintaining web application performance; for
example, Facebook is said to run more than 10,000 mem-
cached servers [20]. Caching has become popular enough
that several cloud platforms such as Amazon AWS and
Windows Azure now offer “cache-as-a-service” products [1],
[6].

Caches come in two varieties: dedicated deployments such
as memcached where each node is allocated a fixed amount
of memory, and opportunistic caches such as the Linux
buffer and page caches that expand to consume underutilized
memory [24], [27]. However, the use of virtual environments
complicates and provides new opportunities for both of these
approaches. An opportunistic cache within one VM may
greedily consume memory pages for itself if no other process
inside the VM is using the memory, but it is possible that
a different, potentially higher priority VM on the same host
could make better use of that memory. Similarly, dedicating
fixed size memory regions to a memcached node can be
convenient for offering a predictable quality of service level,
but if spare memory is available on the host (either owned
by the hypervisor or a lightly loaded VM), then why not
allow the memcached process to expand into that memory
space?

As data are usually divided into two categories: hot (pop-
ular) data and cold (unpopular) data [15], putting all data in
the cache is certainly not efficient in terms of resource man-
agement and operating expenses. Still, since user experience
is becoming one of the most important metrics, enterprises
strive to reduce the end-to-end response time by having
as much data cached as possible. Recent and upcoming
storage advances such as flash memory, NVRAM [4], and
Memresistor [10] promise dramatically larger capacity than
DRAM, while providing much faster speeds than traditional
spinning hard drives. Solid state drives have fallen in price

and increased in capacity, but they still remain something
of a luxury for the low cost servers commonly used in data
centers. This is particularly the case for virtualized servers,
where dozens of VMs may be competing for the host’s
resources. In this environment, dedicating an SSD per VM
(or per cache) is far too expensive. Instead, it is desirable to
have a memory hierarchy composed of DRAM and SSDs to
be jointly managed by the hypervisor because it has more
information about the relative priority of different VMs, as
well as the full system resource availability.

UniCache allows flexible allocations of storage resources
to operating systems and applications that wish to cache
data by offering a unified caching service at the hypervisor
level. Data is split between hypervisor controlled main
memory and Flash memory to provide varying levels of
performance based on application behavior and VM priority.
Expanding the cache to include both memory and SSDs
allows for a much larger amount of data to be stored at lower
cost, which is very important for virtualized environments
when competing VMs want to make use of limited memory
resources.

By combining many diverse caches into one, UniCache
must deal with several challenges caused by differences
in the types and access patterns of data stored there. For
example, one VM might use UniCache to store blocks from
a slow tape drive, while another uses it to prefetch data from
an SSD. The access patterns and size of objects stored in
each of these caches may be similar, but clearly a cache miss
that causes a read to the tape drive will have significantly
higher cost. Alternatively, a third VM might use UniCache
as a backend for memcached; here the cost of a cache miss
may vary significantly depending on the database query that
produced the data, as may the size.

III. UNICACHE FRAMEWORK

UniCache is a generic volatile key-value store for both
applications and OSes. We use DRAM memory as the first-
layer cache and extend this to Flash memory for the second-
level. In the current setup, we use a set of SSDs configured
as a RAID array, and plan to evaluate other forms of Flash
memory (e.g., PCI-based) in future work. In this section, we
discuss the data store’s interface and storage architecture.

Cache Interface: Our cache is structured as a key-value
store, so we use the simple get/put/invalidate interface
commonly used in systems such as memcached [19]. These
functions are accessible via system calls (for user-space
applications such as memcached) or hypercalls (for OS
services like a disk cache). Applications that use these
caches (e.g., web applications or any executable making disk
accesses) do not need to be modified in any way. Figure 1
shows a sample deployment where both a disk caching
system and memcached share access to UniCache. The
Web App in VM-2 interacts using the standard memcached
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Figure 1. General UniCache deployment; UniCache interfaces with
applications via a combination of a hypervisor call and a system call.

protocol with a modified memcached server running in VM-
1. At the same time, the web app is running inside an OS
that has a disk caching system that has been modified to
store and retrieve data from UniCache. The Cache Manager
will mediate access to the unified cache on behalf of these
two VMs.

We have developed two applications to make use of
this interface: a FUSE-based prefetching file system and a
modified version of memcached. Unmodified applications
can then either mount this file system or interact with
memcached, and their data will be transparently stored
within one of UniCache’s storage layers.

Storage Architecture: Figure 2 illustrates UniCache’s ar-
chitecture. When a request is sent to the Cache Manager
component, the data, if managed by UniCache, can either
be directly accessed in a region of memory reserved by the
hypervisor for the cache, or it may need to be retrieved
from the SSDs. Since the Xen hypervisor does not contain
device drivers, if the SSD storage layer must be accessed,
the request must be passed to the UniCache Backend compo-
nent running in the Domain-0 (Dom0, a special privileged
domain). To communicate with the Dom0, the hypervisor
must first create an event channel for notification, and shared
memory and a descriptor ring for actual data transfer. Once
there is an event in hypervisor that must put data into the
SSDs, the Cache Manager notifies the Dom0 via an event
channel, puts a request into the descriptor ring and data
into shared memory. When the UniCache backend gets the
notification via the event channel, it reads the descriptor ring
and data, puts a response into the descriptor ring and data
into shared memory, and notifies UniCache via a hypercall.
A get request will complete in a reverse fashion.

IV. CACHE MANAGEMENT MECHANISMS

UniCache’s Cache Manager component is responsible for
deciding which objects to keep in each layer of the cache,
which objects to evict when a layer is full, and how to
partition the different layers among VMs.

A. Cache Replacement Algorithm

Many caches use locality schemes such as LRU to deter-
mine which objects to evict. However, LRU’s effectiveness
depends on the data stored in the cache being equivalent
other than their access pattern. While this is true in a disk
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Figure 2. UniCache stores data either in hypervisor RAM or on an SSD
RAID, which must be accessed via Dom0. Applications issue requests via
a new system- / hyper-call interface.

cache, where all cached blocks are of identical size and will
take a similar amount of time to read back from disk if they
are evicted, it is not necessarily the case in more generic
caches. Since UniCache’s goal is to simultaneously cache
data for a diverse set of use cases, we believe it is important
to consider multiple factors in the cache replacement policy:
locality, recovery time, and data size.

The benefits of using temporal locality to improve cache
performance are well known, so here we focus on its
limitations. Intuitively, every time a cache decides on an
object to evict, it is making a cost-benefit trade off about
how to use its resources. However, LRU only considers the
potential benefit of keeping an object (the likelihood of it
being accessed again), but does not consider either the cost
of recovering the data if it needs to be brought into cache
again or the relative cost of storing the object inside the
cache. Nevertheless, temporal locality effectively captures
the impact of application workloads, so UniCache assigns a
locality score to each object j:

lj = getj/curr ∈ (0, 1] (1)

where getj is the last time the object was accessed, and curr
is the current time.

In addition to locality, UniCache also considers the re-
covery cost of each object. Most applications will initially
check the cache for a piece of data, and if this fails, will read
the data from its original source (e.g., the disk or database)
before putting it into the cache. By measuring the time
between the initial failed “get” operation and the subsequent
“put”, UniCache is able to estimate the amount of time it
would take to recover a piece of data if it is ever evicted
from the cache.

We have measured the caching behavior of three different
applications: a social calendar web application that caches
MySQL database query results and image files, a prefetching
system that caches disk blocks for a video server, and a
Wikipedia-based benchmark that caches both HTML content
and database queries. Figure 3(a) illustrates the CDF of
recovery times from each of our three sample applications.
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Figure 3. (a) The time to recover an object that has been evicted from a
cache can vary widely. (b) The size of an object also impacts the overhead
of storing it in layer 1 (DRAM) or layer 2 (SSD)

We find that the recovery time for both different applications
and different objects within a single application can vary sig-
nificantly. For example, nearly all of the video server blocks
take approximately 5ms to recover since each is a simple
disk read. In contrast, Wikipedia has a much wider range of
recovery times, since much of the data stored in the cache
is the result of multiple complex database queries. These
results demonstrate that recovery time is an important metric
that needs to be considered by caches storing heterogeneous
data types. To account for this, UniCache assigns each object
a recovery cost metric:

rj = (putj − checkj)/rmax ∈ (0, 1] (2)

where rmax is the largest recovery cost among all the objects
in the cache, checkj is the time when an application first
tried to retrieve data from the cache, and putj is the time
when an application pushed the data into the cache.

Finally, the size of an object impacts both the cost of
storing it in the cache and the overhead of reading the
data back out of each level of the cache. To demonstrate
this, we have measured the time to put or get objects of
different sizes into the memory and SSD-based layers of
UniCache, as shown in Figure 3(b). The relative cost of
accessing an object in RAM vs SSD actually decreases as
the size rises, i.e., reading a 100KB object from SSD adds
about 100% overhead compared to RAM, but this falls to
60% for a 1MB object. Of course, the SSD caching layer
is also substantially larger than RAM. UniCache represents
the size of each cached value as:

vj = sizej/sizemax ∈ (0, 1] (3)

where sizemax is the maximum key-value length among
objects in the cache.

The composite score of object j in VM i from Equations
(1), (2), and (3) is defined as

scorei,j = αi · li,j + βi · ri,j + (1− αi − βi) · vi,j (4)

where αi and βi, respectively, are locality sensitivity and
recover time sensitivity parameters, and αi + βi ≤ 1. αi

and βi are the knobs to control the importance depending

on the type of a workload. We will show the impact of
each parameter to each workload in our experiments. When
UniCache needs to replace an object from VMi’s cache, it
finds the one with the lowest score based on Equation 4.
The selected object is moved from DRAM to SSD, or is
dropped from the SSD if it has already been evicted once.

B. Cache Partitioning

The second key area explored by UniCache is how the
hypervisor should partition its storage areas for multiple
VMs.1 These algorithms must be used both to divide up
the memory region dedicated to the hypervisor cache and to
partition the SSD resources. In effect, the cache partitioning
algorithm determines which VM must run the cache eviction
algorithm described above when there is insufficient space
in either the DRAM or SSD cache, and, it helps prioritize
VMs based on their workloads.

Best-Effort Cache Partitioning: In the simplest case, no
explicit partitioning is performed, and UniCache’s memory
is offered to users on a “first come first served” basis, we
call Best-Effort. This simple scheme does not account for
either VM priority or performance.

Weight-Based Cache Partitioning: Our second cache par-
titioning scheme uses weights assigned to each VM to
determine the relative portion of the cache they should have
access to. If one VM is assigned twice the weight of another,
then the higher weight VM will be allocated twice as much
cache space. However, if a high weight VM does not use its
entire allocation, a lower weight VM will be able to fill the
spare capacity with its own data.

Performance-Aware Cache Partitioning: While weights
allow administrators to designate the priority of each VM,
tuning the weights to provide performance guarantees can
be very difficult. Our Performance-Aware cache partitioning
scheme attempts to automate this process by adaptively
adjusting the cache partitioning algorithm based on the
performance metrics of each VM. UniCache is able to
infer this information from measurements of hit rate and
the recovery time of different request types—no additional
application specific statistics or modifications are required.
Together, these statistics allow UniCache to estimate the
performance improvement that its cache is offering each
application, so it can repartition its storage areas accordingly.

To adaptively adjust the cache size across multiple VMs,
UniCache estimates the performance cost associated with
reducing its cache size. We consider two factors that are the
keys to optimize the system performance: the cache miss rate
and the average recovery cost shown in Equation (2). The
cache miss rate Mi of VM i (Mi ∈ (0, 1)) is the number of

1Our current implementation performs partitioning on a per-VM basis,
but it would also be possible to subdivide a VM’s allocated memory space
for different cache applications by including an application identifier in all
put/get requests.
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Figure 4. Overheads for basic operations of UniCache.

failed data fetches divided by the total number of requests.
We also calculate the recovery cost running average for a
stream of objects. That is, assuming there are already k
objects and a new object k+1 comes in, the average recovery
time Ri of VM i (Ri ∈ (0, 1)) can be computed as:

Ri,k+1 = (Ri,k × k + rk+1)/(k + 1) (5)

where rk+1 is the recovery time for object k+1 calculated
using Equation (2). As a result, the final cost for VM i is:

Ci =Mi ×Ri (6)

Intuitively, the cost metric represents the performance benefit
provided to each VM by the cache; a VM with a low cost
must have either a low miss rate or only a minor performance
impact when misses occur, and thus should experience a
smaller overall performance degradation if its cache size is
reduced.

Repartitioning must be performed when there is no suffi-
cient cache space and the VMs are competing to get more
room. UniCache seeks to equalize the performance estimates
of all VMs2—when a new object is put in UniCache and
there is no space to accommodate it, the Performance-Aware
cache partitioning algorithm finds the VM with the minimum
cost, i.e., the VM has low miss rate (high hit rate) and/or
low recovery cost (fast source data retrieval), and likely will
suffer a smaller performance degradation than other VMs.
Subsequently, this VM is asked to surrender cache space for
the new object.

Note that our Performance-Aware scheme could also
account for differing VM priorities by applying a weight
to each cost score.

V. EXPERIMENTAL EVALUATION

Our goals for the evaluations are to see the overheads
of UniCache through micro-benchmarks, and to check
the performance for both UniCache-based memcached and
prefetching through real workload-based benchmarks.

2Alternatively, weights could be easily added to the Ci metric to give
varying performance benefits to different VMs based on importance.
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A. Environmental Setup

System Setup: Two experimental servers, each of which has
4× Intel Xeon X3450 2.67GHz processor, 16GB memory,
a 500GB 7200RPM hard drive, and 4× 180GB Intel SSD
520 Series (SATA 6GB/s). Dom0 is deployed with Xen 4.1.2
and Linux kernel 3.5.0-23-generic, and the VMs use Linux
kernel 3.3.1.
Benchmarks: We use realistic workloads to test the system:
a video server [11] on a FUSE-based prefetching filesystem,
Wikipedia with real request traces [25], and a social online
calendar web app, CloudStone [23].

B. UniCache Overheads

Firstly, we identify the cost of accessing data with Uni-
Cache. Figure 4 shows the overheads of put and get op-
erations across different storage areas including memcached
(mcd) in user space, hypervisor-controlled RAM, SSD, Disk
and NFS, or a database (DB). When the value size is
50KB, the put and get overheads of moving data between
user space and hypervisor RAM instead of memcached are
0.1975 ms and 0.1445 ms, respectively; The put and get
overheads between hypervisor RAM and SSD are 0.6266
ms and 0.7225 ms, respectively.

C. Cache Benefits

Figure 5 illustrates performance improvement over mem-
cached for three applications when using 500MB memory
cache and an SSD that is not space constrained. Wikipedia
sees a 18% improvement with only memory, and an addi-
tional 18% with SSD support relative to the base case where
there is no cache assistance. CloudStone shows a significant
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Figure 6. Comparison of Cache Replacement Algorithms for Wikipedia
and Video Server with Prefetching; LRU = (1,0).

improvement − 32% with memory and an additional 28%
with SSD support, since it stores both database queries and
image files from file system. Video server with prefetch-
ing also shows performance improvement about 12% with
memory only and extra 4% with SSD support. For these
workloads, more than 4GB of data are populated on the
SSDs. We expect that more flash memory will be utilized
as the workloads increase.

D. Cache Replacement

We next test the impact of our cache replacement al-
gorithms for both the prefetching video server and the
Wikipedia workload. In the Wikipedia benchmark shown in
Figure 6(a), we find that combining both LRU and recovery
time information actually gives the best performance (lower
response time is better) − an improvement of 10% over LRU
and nearly 20% compared to the random eviction policy.
This confirms our hypothesis that different application types
can benefit from different caching policies, and that recovery
time can be an important factor for applications that cache
a mix of simple and complex query results.

The video server benchmark provides very different re-
sults. Figure 6(b) shows how the average operations per
second change when using each algorithm. We find that
the faster, random eviction algorithm actually gives the best
performance. However, this is not surprising since the size
and recovery time metrics of every object in the cache is
nearly identical since they are all disk blocks. Similarly,
since the videoserver mostly performs sequential reads, LRU
is not a good eviction policy. As a result, none of the
replacement algorithms are statistically better due to high
variance in throughput.

E. Cache Partitioning

In this section we study UniCache’s partitioning schemes
by using a small 100MB first-level cache for three competing
VMs. Wikipedia starts to fill up the cache, followed by
CloudStone at some point later, and a video server with
prefetching capability last. To highlight the effects of various
partitioning schemes, in this test UniCache uses the LRU
replacement algorithm.

In Figure 7, the first row of the figure demonstrates cache
size changes over time (600 seconds), and the second row

shows miss rates of each VM. As shown in Figure 7(a), the
Video Server application is very aggressive, so it dominates
the cache when using the Best-Effort algorithm, so that
Wikipedia and CloudStone do not get enough cache space.
The Weight-Based partitioning algorithm (Figure 7(b)) can
equalize the portion given to each VM, causing CloudStone
and Video Server to maintain a similar size, and Wikipedia
to keep increasing until it obtains the equal amount as
others. However, an equal weight does not result in an equal
miss-rate, as shown in 7(e), and this in turn means that
performance measured in response time will vary (Figure 8).

The Best-Effort scheme only benefits the Video Server,
causing significant performance issues for both Wikipedia
and CloudStone (Figure 8 (a) and (b)). The Weight based
scheme is acceptable for Wikipedia, since its size is smaller
than its weight. However, CloudStone suffers from the
Weight-Based scheme because it cannot store some impor-
tant data in the first level of the cache. The Performance-
Aware scheme provides the best performance for both
Wikipedia and CloudStone, but the Video Server bench-
mark cannot reach its peak performance. We believe that
Performance-Aware is providing a good trade-off for each
application: it gives CloudStone more space than the Video
Server because misses for the CloudStone application have
greater cost. In this experiment, Wikipedia gradually in-
creases its share, and we expect that it will continue to take
space away from the video server (and possibly CloudStone),
since it has some objects with very high recovery cost, as
was shown in Figure 3(a).

Table I
RESPONSE TIMES FOR THREE PARTITIONING ALGORITHMS AND THREE

APPLICATIONS

Response Time Best-Effort Weight Perf-Aware
Wikipedia 84 ms 36 ms 36 ms
CloudStone 12 sec 400 ms 170 ms
VideoServer 4 ms 7 ms 7 ms

Table I summarizes the average response time over the
last 100 seconds of the experiment, when the partitions have
somewhat stabilized. Wikipedia shows a 234% better perfor-
mance with the Performance-Aware partitioning algorithm
and Weight-Based algorithm compared to the Best-Effort
algorithm. CloudStone experiences performance anomalies
in the Best-Effort case since the cache performs so poorly,
but we see that the Performance-Aware approach provides a
significant benefit compared to the Weight-Based algorithm.
Only VideoServer shows better performance under Best-
Effort, but clearly that comes at a high cost to the other
applications.

VI. RELATED WORK

UniCache proposes a unified cache server at the hypervi-
sor level to offer more flexible cache allocation to operating
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(c) Performance-Aware
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(d) Best-Effort
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Figure 7. Cache size vs. cache-miss rate for three partitioning algorithms (Best-Effort, Weight-Based, Performance-Aware) and three applications
(Wikipedia, CloudStone, Video Server).
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Figure 8. Average response time with three different partitioning algorithms shows the performance impact of three applications: Wikipedia, CloudStone,
and Video server.

systems and applications. This work builds on top of our
Mortar infrastructure [13], which focused on aggregating
spare memory among a group of VMs; we extend that here
with support for storing data in DRAM and SSDs, and by
providing new cache eviction and repartitioning algorithms.

These challenges have been tackled indirectly through
dynamic virtual machine memory management and hyper-
visor or SSD based cache systems. Waldspurger [26] seeks
to manipulate the allocation of each VM’s memory based
on its needs, but this cannot differentiate between memory
pages used to store critical data and those used as a cache.
UniCache enables the hypervisor to differentiate volatile data
from other types, and also extends the storage area that
can be used to include SSDs. Zhu et al. [27] dynamically
adjust the number of cache servers based on statistical
inference, but only focus on one type of caching application.
Levandoski et al. [15] propose classification algorithms to
identify hot and cold data in main memory databases, but
the process includes an offline analysis so that it is hard to
apply for the environments with varying workloads.

Several prior projects have focused on using SSDs or hy-
pervisor memory to improve the performance of a particular
cache, e.g., a VM’s disk cache [17] or a database’s query
cache [5], [9], [18]. A key aspect of UniCache is that it can
be used to cache data from a wide variety of sources, and
thus it needs to use more information about its data objects to
determine where to store them (memory or SSD) and how
to guide eviction policies. We also focus on multi-tenant
environments that must specifically deal with partitioning
the cache among users.

VII. CONCLUSION

Managing memory in a virtualized environment is difficult
since the hypervisor does not know how memory is being
used within each VM. We have developed UniCache to
transfer the management of volatile data directly to the
hypervisor. UniCache stores data in either main memory or
on an SSD RAID array. Since UniCache is designed to store
data for a wide variety of applications simultaneously (e.g.,
disk blocks and web database queries), we have developed



an advanced cache replacement policy that can account for
both object popularity and its cost to bring back into the
cache if it is needed later. We believe that UniCache holds
promise as a way to more effectively share multiple layers
of the storage hierarchy among competing VMs.
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