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Abstract—Big data machine learning and graph analytics
have been widely used in industry, academia and government.
Continuous advance in this area is critical to business
success, scientific discovery, as well as cybersecurity. In this
paper, we present some current projects and propose that
next-generation computing systems for big data machine
learning and graph analytics need innovative designs in
both hardware and software that provide a good match
between big data algorithms and the underlying computing
and storage resources.
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Big data computing, already a market of seven billion
dollars in 2011, is projected to increase to 50 billion
dollars within six years [1]. It is crucial to the success
of not only internet companies, e.g. Amazon, Twitter and
Facebook, but also traditional business such as Walmart
and Bank of America, as well as government agencies.
Furthermore, big data computing has become such a
powerful paradigm that enables scientists across different
disciplines to tackle challenging research problems. Two
of most important big data applications are machine learn-
ing and graph analytics. For example, machine learning
algorithms, e.g., collaborative filtering and topic modeling,
are often used to improve user experience and increase
the revenue [2], [3], [4], [5]. In the meantime, graph algo-
rithms, such as Breath-First Search (BFS) and betweenness
centrality, can be utilized for social network analysis and
computational biology [6], [7], [8], [9], [10], [11], [12],
[13].

Current big data computing systems fall into two ma-
jor categories: batch processing (e.g., MapReduce and
GraphLab) is able to analyze large volumes of on-disk
data, but the processing time can be as long as several
days and weeks; and streaming processing (e.g., Storm)
can analyze in-memory data in a short period to time
like milliseconds [14]. While batch processing focuses on
the large amount of historical data (Volume), streaming
processing deals with the instantly generated data streams
(Velocity). Both also need to address the issues like dif-
ferent data types (Variety) and uncertainty (Veracity) [15],
[16], [17], [18].

Recently the Lambda Architecture shown in Figure 1 is
proposed to combine the capability of batch and streaming
processing for next-generation big data computing sys-
tems [19]. The insight (the result of big data processing) is
generated by merging the results from both pipelines. The

lambda architecture, albeit an innovative design in itself,
needs to tackle multiple challenges as big data continue
to grow at an unexpected speed.

First, one needs to efficiently merge the models con-
structed from batch and streaming processing. The merg-
ing method may be vastly different for various algorithms.
For example, WordCount only requires adding the val-
ues of the same key together from batch and streaming
processing. However, for BFS, the newly added edges
may lead to drastic changes in the traversal paths. New
interfaces shall be developed to provide good flexibility
and usability for application programmers.

Second, as multi-core CPUs become pervasive, hard-
ware computational accelerators are promising in provid-
ing additional boost to the overall system performance.
In recent years, a number of notable projects [20], [21],
[22], [23], [24], [25], [26], including ours [27], [28],
[29], have successfully utilized Graphics Processing Unit
(GPU) and Many Integrated Core (MIC) architecture in
different application domains. Current implementations
of machine learning and graph analytics algorithms are
mostly developed to run on multicore CPUs. Our research
among others has shown that hardware accelerators like
GPUs can provide substantial speedup over CPU for
both computation and memory intensive applications. We
believe that machine learning and graph algorithms are
good candidates for GPU and MIC processing, and can
potentially achieve a variety of benefits such as faster re-
sponse time and better energy efficiency (which is another
key system design issue).

Third, high-performance storage systems are needed to
store and manage both in-memory and on-disk data. The
availability of non-volatile memory (NVM) technology
such as Flash memory, Solid-State Drive (SSD), and Phase
Change Memory (PCM) presents an exciting opportunity
for optimizing I/O performance and improving data pro-
cessing speed. Built upon our prior work [30], [31], [32],
we are in the process of designing and developing new
memory and storage architectures that can store large
in-memory datasets and deliver short I/O latency, while
ensuring high reliability.

To summarize, next-generation computing systems for
big data machine learning and graph analytics shall take
full advantage of hardware accelerators and non-volatile
memory, and deliver high-performance computing and
storage services to big data applications.
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Fig. 1. Overview of the Lambda Architecture
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