
Big Data Machine Learning and Graph Analytics:
Current State and Future Challenges

H. Howie Huang Hang Liu
Department of Electrical and Computer Engineering

George Washington University
Email: {howie, asherliu}@gwu.edu

Abstract—Big data machine learning and graph analytics
have been widely used in industry, academia and government.
Continuous advance in this area is critical to business
success, scientific discovery, as well as cybersecurity. In this
paper, we present some current projects and propose that
next-generation computing systems for big data machine
learning and graph analytics need innovative designs in
both hardware and software that provide a good match
between big data algorithms and the underlying computing
and storage resources.

Keywords: Big Data; Lambda Architecture; Hardware and
Software Co-Design; Graphics Processing Unit; Non-Volatile
Memory; Solid-State Drive

Big data computing, already a market of seven billion
dollars in 2011, is projected to increase to 50 billion
dollars within six years [1]. It is crucial to the success
of not only internet companies, e.g. Amazon, Twitter and
Facebook, but also traditional business such as Walmart
and Bank of America, as well as government agencies.
Furthermore, big data computing has become such a
powerful paradigm that enables scientists across different
disciplines to tackle challenging research problems. Two
of most important big data applications are machine learn-
ing and graph analytics. For example, machine learning
algorithms, e.g., collaborative filtering and topic modeling,
are often used to improve user experience and increase
the revenue [2], [3], [4], [5]. In the meantime, graph algo-
rithms, such as Breath-First Search (BFS) and betweenness
centrality, can be utilized for social network analysis and
computational biology [6], [7], [8], [9], [10], [11], [12],
[13].

Current big data computing systems fall into two ma-
jor categories: batch processing (e.g., MapReduce and
GraphLab) is able to analyze large volumes of on-disk
data, but the processing time can be as long as several
days and weeks; and streaming processing (e.g., Storm)
can analyze in-memory data in a short period to time
like milliseconds [14]. While batch processing focuses on
the large amount of historical data (Volume), streaming
processing deals with the instantly generated data streams
(Velocity). Both also need to address the issues like dif-
ferent data types (Variety) and uncertainty (Veracity) [15],
[16], [17], [18].

Recently the Lambda Architecture shown in Figure 1 is
proposed to combine the capability of batch and streaming
processing for next-generation big data computing sys-
tems [19]. The insight (the result of big data processing) is
generated by merging the results from both pipelines. The

lambda architecture, albeit an innovative design in itself,
needs to tackle multiple challenges as big data continue
to grow at an unexpected speed.

First, one needs to efficiently merge the models con-
structed from batch and streaming processing. The merg-
ing method may be vastly different for various algorithms.
For example, WordCount only requires adding the val-
ues of the same key together from batch and streaming
processing. However, for BFS, the newly added edges
may lead to drastic changes in the traversal paths. New
interfaces shall be developed to provide good flexibility
and usability for application programmers.

Second, as multi-core CPUs become pervasive, hard-
ware computational accelerators are promising in provid-
ing additional boost to the overall system performance.
In recent years, a number of notable projects [20], [21],
[22], [23], [24], [25], [26], including ours [27], [28],
[29], have successfully utilized Graphics Processing Unit
(GPU) and Many Integrated Core (MIC) architecture in
different application domains. Current implementations
of machine learning and graph analytics algorithms are
mostly developed to run on multicore CPUs. Our research
among others has shown that hardware accelerators like
GPUs can provide substantial speedup over CPU for
both computation and memory intensive applications. We
believe that machine learning and graph algorithms are
good candidates for GPU and MIC processing, and can
potentially achieve a variety of benefits such as faster re-
sponse time and better energy efficiency (which is another
key system design issue).

Third, high-performance storage systems are needed to
store and manage both in-memory and on-disk data. The
availability of non-volatile memory (NVM) technology
such as Flash memory, Solid-State Drive (SSD), and Phase
Change Memory (PCM) presents an exciting opportunity
for optimizing I/O performance and improving data pro-
cessing speed. Built upon our prior work [30], [31], [32],
we are in the process of designing and developing new
memory and storage architectures that can store large
in-memory datasets and deliver short I/O latency, while
ensuring high reliability.

To summarize, next-generation computing systems for
big data machine learning and graph analytics shall take
full advantage of hardware accelerators and non-volatile
memory, and deliver high-performance computing and
storage services to big data applications.

2014 IEEE International Conference on Big Data

978-1-4799-5666-1/14/$31.00 ©2014 IEEE 16



Historical	  Data	  

Streaming	  data	  

Batch	  Processing	  

Streaming	  Processing	  

Query	  
Incoming	  	  
Data	  

Fast	  

Big	  

Small	  

Slow	  

Fig. 1. Overview of the Lambda Architecture

ACKNOWLEDGMENT

This work is supported in part by National Science
Foundation grants 1350766, 1124813, and 0937875.

REFERENCES

[1] Jeff Kelly. Big data vendor revenue and market forecast. Wikibon,
2014.

[2] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan.
Large-scale parallel collaborative filtering for the netflix prize. In
Algorithmic Aspects in Information and Management, pages 337–
348. Springer, 2008.

[3] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet
allocation. Journal of machine Learning research, 2003.

[4] Amol Ghoting, Rajasekar Krishnamurthy, Edwin Pednault,
Berthold Reinwald, Vikas Sindhwani, Shirish Tatikonda, Yuanyuan
Tian, and Shivakumar Vaithyanathan. Systemml: Declarative ma-
chine learning on mapreduce. In IEEE International Conference
on Data Engineering (ICDE), 2011, pages 231–242.

[5] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin,
Aapo Kyrola, and Joseph M Hellerstein. Distributed graphlab: a
framework for machine learning and data mining in the cloud.
Proceedings of the VLDB Endowment (VLDB), 2012.

[6] Christian Doerr and Norbert Blenn. Metric convergence in social
network sampling. In Proceedings of the 5th ACM workshop on
HotPlanet, 2013, pages 45–50.

[7] G Chin, Grant C Nakamura, Daniel G Chavarria, and Heidi J Sofia.
Graph mining of networks from genome biology. In Proceedings
of the 7th IEEE International Conference on Bioinformatics and
Bioengineering (BIBE) 2007., pages 1265–1269.

[8] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C
Dehnert, Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel:
a system for large-scale graph processing. In Proceedings of the
ACM SIGMOD International Conference on Management of data
(SIGMOD), 2010, pages 135–146.

[9] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and
Carlos Guestrin. Powergraph: Distributed graph-parallel computa-
tion on natural graphs. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2012,
volume 12, page 2.

[10] Aapo Kyrola, Guy E Blelloch, and Carlos Guestrin. Graphchi:
Large-scale graph computation on just a pc. In Proceedings
of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2012, volume 12, pages 31–46.

[11] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A
lightweight infrastructure for graph analytics. In Proceedings of the
ACM Symposium on Operating Systems Principles (SOSP), 2013,
pages 456–471.

[12] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. X-stream:
edge-centric graph processing using streaming partitions. In Pro-
ceedings of the ACM Symposium on Operating Systems Principles
(SOSP), 2013, pages 472–488.

[13] Zhao Zhao, Guanying Wang, Ali Raza Butt, Maleq Khan, VS Anil
Kumar, and Madhav V Marathe. Sahad: Subgraph analysis in
massive networks using hadoop. In IEEE International Parallel
& Distributed Processing Symposium (IPDPS), 2012.

[14] Nathan Marz. Storm-distributed and fault-tolerant realtime compu-
tation. https://storm.incubator.apache.org/, 2013.

[15] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In IEEE Symposium
on Mass Storage Systems and Technologies (MSST), 2010, pages
1–10.

[16] David Corrigan. Integrating and governing big data. IBM Whitepa-
per, 2013.

[17] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. Communications of the ACM, 2008,
51(1):107–113.

[18] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker,
and Ion Stoica. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In Proceedings
of the USENIX conference on Networked Systems Design and
Implementation (NSDI), 2012, pages 2–2.

[19] Nathan Marz. Lambda architecture. http://nathanmarz.com/blog/
how-to-beat-the-cap-theorem.html, 2013.

[20] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel.
Gpufs: integrating a file system with gpus. In ACM SIGARCH
Computer Architecture News, volume 41, pages 485–498, 2013.

[21] Pramod Bhatotia, Rodrigo Rodrigues, and Akshat Verma. Shredder:
Gpu-accelerated incremental storage and computation. In Proceed-
ings of the conference on File and Storage Technologies (FAST),
2012, page 14.

[22] Weibin Sun, Robert Ricci, and Matthew L Curry. Gpustore:
harnessing gpu computing for storage systems in the os kernel. In
Proceedings of the ACM Annual International Systems and Storage
Conference (SYSTOR), 2012, page 9.

[23] Sungpack Hong, Tayo Oguntebi, and Kunle Olukotun. Efficient
parallel graph exploration on multi-core cpu and gpu. In IEEE In-
ternational Conference on Parallel Architectures and Compilation
Techniques (PACT), 2011, pages 78–88.

[24] Duane Merrill, Michael Garland, and Andrew Grimshaw. Scalable
gpu graph traversal. In ACM SIGPLAN Notices, 2012.

[25] Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale
deep unsupervised learning using graphics processors. In Proceed-
ings of the ACM International Conference on Machine Learning
(ICML), 2009, volume 9, pages 873–880.

[26] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. Fast
support vector machine training and classification on graphics
processors. In Proceedings of the ACM International Conference
on Machine Learning (ICML), 2008, pages 104–111.

[27] Hang Liu, Jung Hee Seo, Rajat Mittal, and H Howie Huang.
Matrix decomposition based conjugate gradient solver for poisson
equation. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC), 2012, pages
1499–1500.

[28] Hang Liu, Jung-Hee Seo, Rajat Mittal, and H Howie Huang. Gpu-
accelerated scalable solver for banded linear systems. In IEEE
International Conference on Cluster Computing (CLUSTER), 2013,
pages 1–8.

[29] Wei Wang, Lifan Xu, John Cavazos, H Howie Huang, and Matthew
Kay. Fast acceleration of 2d wave propagation simulations using
modern computational accelerators. Journal of PloS one, 2014.

[30] H Howie Huang, Shan Li, Alex Szalay, and Andreas Terzis.
Performance modeling and analysis of flash-based storage devices.
In IEEE Symposium on Mass Storage Systems and Technologies
(MSST), 2011, pages 1–11.

[31] Jie Chen, Guru Venkataramani, and H Howie Huang. Repram: Re-
cycling pram faulty blocks for extended lifetime. In IEEE/IFIP
International Conference on Dependable Systems and Networks
(DSN), 2012.

[32] Ahsen J Uppal, Ron C Chiang, and H Howie Huang. Flashy
prefetching for high-performance flash drives. In IEEE Symposium
on Mass Storage Systems and Technologies (MSST), 2012.

17


