CSClI 3/6907 HOMEWORK 3 OUT: FEB 15, DUE: FEB 27

1. (Isolated vertices in G,, ,.) In this problem, we will see that the value p = IHT” is a “threshold” for
the property that a random graph in the G,, ;, model has an isolated vertex, i.e. a vertex with degree 0.
That is, we will prove that

n 0 ifp=cw(rn
Pr[G has an isolated vertex] e 1 p w<1)
1 ifp=o(l2n)

(a) Let the r.v. X denote the number of isolated vertices in G. Write down the expectation of X as
a function of n and p.

(b) Show that E[X] — 0 forp = w(lﬂTn) and that E[X] — oo for p = O(InTn)‘

[HINT: Write p = a - lnT” and observe that E[X] ~ n!~%]
(c) Deduce from part (b) that Pr[G has an isolated vertex] — 0 for p = w(th”)
(d) Show that Var[X] = n(1 — p)" ! +n(1 — p)>"3(np — 1).

(e) Deduce from parts (b) and (d) that Pr[G has an isolated vertex] — 1 for p = o(lnT”).
[HINT: First show that Pr[X = (] < ﬁ + 15

2. (Tournament Rankings.) MU Ex 6.9.

[HINT: For part (b), you will need to first use a Chernoff bound and then a union bound.]

3. (DNF Approximate Counting.) A fundamental problem that arises in many applications is to
compute the size of the union of a collection of sets. The setting is the following. We are given
m sets S, ..., Sy, over a very large universe U. The operations we can perform on the sets are the
following:

e size(,S;): returns the number of elements in S;;
e select(.S;): returns an element of S; chosen uniformly at random;

e lowest(z): for z € U, returns the smallest index i for which z € S;.

Let S = U S; be the union of the sets S;. In this problem, we will develop a very efficient
(polynomial in m) algorithm for estimating the size |S| up to multiplicative factors (see part (f) for a
formal definition).

(a) Let’s first see a natural example where such a set system arises. Suppose ¢ is a boolean formula
in disjunctive normal form (DNF), i.e. it is the OR of ANDs of literals. Let U be the set of all
possible assignments to the variables of ¢ (i.e., |U| = 2" where n is the number of variables),
and for each clause 1 < i < m, let .S; be the set of assignments that satisfy clause ¢. Then the
union S = U} S; is exactly the set of satisfying assignments of ¢, and our problem is to count
them.! Argue that all of the above operations can be efficiently implemented for this set system.

'Note that deciding if ¢ is satisable (i.e., has at least one satisfying assignment) is trivial for a DNF formula, unlike for a CNF
formula where it is NP-complete. However, when it comes to counting satisfying assignments, it turns out that the problem is
NP-hard even for DNF formulas! Thus we cannot hope to find a polynomial time algorithm that solves this problem exactly. Thus
the approximation algorithm that we develop in this question is essentially the best one can hope for.

(b) Now let’s consider a naive sampling algorithm. Assume that we are able to pick an element of
U uniformly at random, and that we know the size of U. Consider the algorithm that picks ¢
elements of U independently and uniformly at random (with replacement), and outputs the value
q|U|, where q is the proportion of the ¢ sampled elements that belong to S. For the DNF example
in part (a), explain as precisely as you can why this is not a good algorithm.

(c) Consider now the following algorithm, which is again based on random sampling but in a more

sophiscated way:

e choose a random set S; with probability %ze((?i
§\j

o 1z = select(S;)

e if lowest(x) = i then output 1 else output 0 Show that this algorithm outputs 1 with

probability exactly p = Z|SI|S'|' [HINT: Show that the effect of the first two lines of the
G123

algorithm is to select a random element of the set of pairs {(z,.S;) : x € S;}.]
(d) Show thatp > L.

(e) Now suppose we run the above algorithm ¢ times and obtain the sequence of outputs X7, ..., X;.
We define X = % 22:1 X;. Use the Chernoff bound to obtain a value for ¢ (as a function of
m, 0, €) that ensures that
Pr[|X —p| > ep] <.

[HINT: You will need to use the bound from part (d) here.]

(f) The final output for our algorithm will be Y = (3_, [Sj|) - X, where X is defined as in part
(e). Using part (e), show that this final algorithm has the following properties: it runs in time
O(m?e=2log(d71)) (assuming that each of the set operations listed above can be performed in
constant time), and output a value that is in the range [(1 — €)|S|, (1 + €)|.S|] with probability at
least 1 — 9.

