
CSCI 3|6907 HOMEWORK 3 OUT: FEB 15, DUE: FEB 27

1. (Isolated vertices in Gn,p.) In this problem, we will see that the value p = lnn
n is a “threshold” for

the property that a random graph in the Gn,p model has an isolated vertex, i.e. a vertex with degree 0.
That is, we will prove that

Pr[G has an isolated vertex] n→∞−→

{
0 if p = ω( lnn

n )

1 if p = o( lnn
n )

(a) Let the r.v. X denote the number of isolated vertices in G. Write down the expectation of X as
a function of n and p.

(b) Show that E[X] → 0 for p = ω( lnn
n ) and that E[X] → ∞ for p = o( lnn

n ).
[HINT: Write p = a · lnn

n and observe that E[X] ≈ n1−a.]

(c) Deduce from part (b) that Pr[G has an isolated vertex] → 0 for p = ω( lnn
n ).

(d) Show that Var[X] = n(1− p)n−1 + n(1− p)2n−3(np− 1).

(e) Deduce from parts (b) and (d) that Pr[G has an isolated vertex] → 1 for p = o( lnn
n ).

[HINT: First show that Pr[X = 0] ≤ 1
E[X] +

p
1−p .]

2. (Tournament Rankings.) MU Ex 6.9.

[HINT: For part (b), you will need to first use a Chernoff bound and then a union bound.]

3. (DNF Approximate Counting.) A fundamental problem that arises in many applications is to
compute the size of the union of a collection of sets. The setting is the following. We are given
m sets S1, . . . , Sm over a very large universe U . The operations we can perform on the sets are the
following:

• size(Si): returns the number of elements in Si;

• select(Si): returns an element of Si chosen uniformly at random;

• lowest(x): for x ∈ U , returns the smallest index i for which x ∈ Si.

Let S = ∪m
i=1Si be the union of the sets Si. In this problem, we will develop a very efficient

(polynomial in m) algorithm for estimating the size |S| up to multiplicative factors (see part (f) for a
formal definition).

(a) Let’s first see a natural example where such a set system arises. Suppose ϕ is a boolean formula
in disjunctive normal form (DNF), i.e. it is the OR of ANDs of literals. Let U be the set of all
possible assignments to the variables of ϕ (i.e., |U | = 2n where n is the number of variables),
and for each clause 1 ≤ i ≤ m, let Si be the set of assignments that satisfy clause i. Then the
union S = ∪m

i=1Si is exactly the set of satisfying assignments of ϕ, and our problem is to count
them.1 Argue that all of the above operations can be efficiently implemented for this set system.

1Note that deciding if ϕ is satisable (i.e., has at least one satisfying assignment) is trivial for a DNF formula, unlike for a CNF
formula where it is NP-complete. However, when it comes to counting satisfying assignments, it turns out that the problem is
NP-hard even for DNF formulas! Thus we cannot hope to find a polynomial time algorithm that solves this problem exactly. Thus
the approximation algorithm that we develop in this question is essentially the best one can hope for.



(b) Now let’s consider a naive sampling algorithm. Assume that we are able to pick an element of
U uniformly at random, and that we know the size of U . Consider the algorithm that picks t

elements of U independently and uniformly at random (with replacement), and outputs the value
q|U |, where q is the proportion of the t sampled elements that belong to S. For the DNF example
in part (a), explain as precisely as you can why this is not a good algorithm.

(c) Consider now the following algorithm, which is again based on random sampling but in a more
sophiscated way:

• choose a random set Si with probability size(Si)∑
j(Sj)

• x = select(Si)

• if lowest(x) = i then output 1 else output 0 Show that this algorithm outputs 1 with
probability exactly p = |S|∑

j |Sj | . [HINT: Show that the effect of the first two lines of the

algorithm is to select a random element of the set of pairs {(x, Si) : x ∈ Si}.]

(d) Show that p ≥ 1
m .

(e) Now suppose we run the above algorithm t times and obtain the sequence of outputs X1, . . . , Xt.
We define X = 1

t

∑t
i=1Xi. Use the Chernoff bound to obtain a value for t (as a function of

m, δ, ϵ) that ensures that
Pr

[
|X − p| ≥ ϵp

]
≤ δ.

[HINT: You will need to use the bound from part (d) here.]

(f) The final output for our algorithm will be Y = (
∑

j |Sj |) · X , where X is defined as in part
(e). Using part (e), show that this final algorithm has the following properties: it runs in time
O(m2ϵ−2 log(δ−1)) (assuming that each of the set operations listed above can be performed in
constant time), and output a value that is in the range [(1− ϵ)|S|, (1 + ϵ)|S|] with probability at
least 1− δ.


