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Abstract. We present a constant-round non-malleable commitment scheme
based on the existence of sub-exponential one-way functions and using a black-
box proof of security. As far as we know, this is the first construction of a
constant-round non-malleable protocol based on only one-wayness, or to admit a
black-box proof of security under any standard-type assumption.
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1 Introduction

We consider the execution of two-party protocols in the presence of an adversary that
has full control of the communication channel between the parties. The adversary may
omit, insert, or modify messages at will. The honest parties are not necessarily aware of
the existence of the adversary, and not use any kind of trusted set-up (such as a common
reference string). The above kind of attack is often referred to as a man-in-the-middle
attack. Protocols that are secure against such attacks are said to be non-malleable, and
were first studied in the seminal work of Dolev, Dwork and Naor [6]. Due to the hostile
environment in which they operate, the design and analysis of non-malleable protocols
is a notoriously difficult task. The task becomes even more challenging if the honest
parties are not allowed to use any kind of trusted set-up. Indeed, only a handful of such
protocols have been constructed so far.

In their paper, Dolev et al. presented non-malleable protocols for the tasks of
commitment and zero-knowledge. The protocols rely on the existence of one-way
functions, and require O(logn) rounds of interaction, where n is a security parameter.
More recently, Barak [2] presented the first constant-round non-malleable protocols for
commitment and zero-knowledge whose security relies on the existence of trapdoor
permutations and collision-resistant hash functions with sub-exponential hardness. The
result was subsequently improved by Pass and Rosen [24], who obtained constant-round
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protocols assuming only collision-resistant hash functions with standard hardness.
There has been a series of follow-up work on non-malleable commitments [25, 16,
21, 20, 15], but none of which reduces the assumptions in [24] for constant-round non-
malleable commitments. This raises the following natural question:

What are the minimal assumptions under which we can construct
constant-round non-malleable commitment schemes? Specifically, is
one-wayness alone sufficient to construct constant-round non-malleable
commitment schemes?

1.1 Our results

In this work, we address the above question. Our main result is that one-wayness
alone—with sub-exponential hardness—suffices for constructing constant-round non-
malleable commitments.

Main Theorem (informal): Suppose there exists one-way functions
secure against sub-exponential size circuits. Then, there exists a
constant-round non-malleable commitment scheme.

We note that while all known candidates of one-way functions are conceivably
also secure against sub-exponential size circuits, there are several natural candidates
which do not appear to yield collision-resistant hash functions. Our result should be
compared with the very recent work of Lin and Pass [15], which gave a O(l)log* -
round non-malleable commitment schemes under the minimal assumption of one-way
functions with standard (super-polynomial) hardness. Comparing the two, our result
may be viewed as offering a new trade-off between round complexity and quantitative
hardness assumptions. As with [15, 25, 16, 21], our commitment scheme achieves a
very strong notion of non-malleability—that of concurrent non-malleability—which
guarantees independence of the committed values even when multiple executions of the
commitment schemes are executed at the same time. Before providing further details
about our construction, we provide some additional context and applications.

On black-box proofs of security. While the original [6] construction only relies on “el-
ementary” techniques and has a black-box proof of security, basically all constant-round
non-malleable commitment schemes rely on non-black-box simulation techniques [1]
and inherit the sophisticated machinery (e.g. the PCP theorem) associated with them,
along with the need for qualitatively stronger assumptions (that of collision-resistant
hash functions). As such, the problem of reducing the cryptographic assumptions for
constant-round non-malleable commitment schemes appears to be intimately related
to the question of whether non-black-box techniques are necessary for constructing



constant-round non-malleable protocols, without resorting to non-standard assumptions
(c.f. [217%).

Understanding the power and limitations of black-box techniques has been an
important goal in the foundations of cryptography, starting from [13]. For the usage
of a primitive in cryptographic constructions, a recent line of work has narrowed the
gap between what can be achieved using black-box and non-black-box techniques. On
the other hand, for usage of the adversary’s code in the proof of security, we do know
for a fact that non-black-box techniques are inherently more powerful, as evidenced
by the works on constant-round public-coin zero-knowledge protocols [1, 9]. A natural
question is whether such a separation extends beyond the realm of zero knowledge.
Given the state-of-the-art for non-malleability, it is tempting to conjecture that such
a separation extends also to constant-round non-malleable commitment schemes. Our
construction refutes such a conjecture since it admits a black-box proof of security
(which is to be expected since we do not require collision-resistant hash functions).

On constant-round secure multi-party computation. The early work of Goldreich,
Micali and Wigderson [10] showed that we may realize secure multi-party computation
in the presence of a dishonest majority assuming the existence of enhanced trapdoor
permutations, where the round complexity of the protocol grows linearly with the
number of parties.* Subsequent improvements by Katz, Ostrovsky and Smith [14]
(relying on [2]) and Pass [22] culminated a constant-round protocol, assuming in
addition the existence of collision-resistant hash functions. As with previous constant-
round non-malleable protocols, both of these constructions exploit non-black-box
techniques in the proof of security.

More recently, Lin, Pass and Venkitasubramaniam [17] showed that constant-round
protocols for secure multi-party computation may be based on enhanced trapdoor
permutations and any “natural” constant-round non-malleable commitment scheme.
Combining their construction with our commitment scheme yields the following
corollary:

Corollary (informal): Suppose there exists one-way functions secure
against sub-exponential size circuits and standard enhanced trapdoor
permutations. Then, there exists a constant-round protocol that secure
computes any multi-party functionality against a malicious adversary
corrupting any number of parties.

3 Pandey, Pass and Vaikuntanathan constructed non-interactive non-malleable commitment
schemes assuming the existence of, so called, adaptive one-way permutations — namely
permutations which remain one-way even when the adversary has access to an inversion oracle.
Note that this assumption has a strong non-malleability flavor and as such provide limited
insight into realizing non-malleability “from scratch”.

“In the protocol, each player takes turns to sequentially commit to its input (along with
a “proof of knowledge”); any non-trivial improvement in round complexity will require
interweaving these input commitments, which could potentially allow an adversary to violate
input independence via a man-in-the-middle attack.



As with our non-malleable commitment scheme, the ensuing protocol for secure multi-
party computation admits a black-box proof of security.

Perspective. Prior to this work, the trade-offs between computational assumptions
and round complexity for non-malleable commitments and secure computation looked
fairly similar to those for (computational) zero-knowledge proofs for NP (c.f. [11, 8]):
we have constant-round protocols based on collision-resistant hash functions whereas
those based on the minimal assumption of one-way functions require at least a
super-constant number of rounds (for secure computation, we also require oblivious
transfer). An interesting open problem is whether we can also base constant-round zero-
knowledge proofs for NP on one-way functions with sub-exponential hardness.

1.2 Our techniques
Our construction of the non-malleable commitment scheme proceeds in two steps:

Step 1: Short identities from sub-exponential hardness. First, we construct a constant-
round concurrent non-malleable commitment scheme for identities of length
logloglogn + O(1) (again, n here refers to the security parameter). Our main
technical contribution lies in this step. The starting point of this construction is
“two-slot message length” technique from [22] underlying the recent constructions
of constant-round non-malleable protocols in [24, 25].% The basic (and very much
simplified) idea is to let the receiver sequentially send two challenges—one “long”
and one “short”; the length of the challenges are determined by the identity of
the sender. Intuitively, the protocol is designed to have the property that the
response to a shorter challenge does not help an adversary to provide a response
to a longer challenge. If done appropriately, this guarantees that the man-in-the-
middle adversary needs to act independently. Our key conceptual insight is to rely
on the complexity leveraging technique from [4] to construct these challenges.®
More precisely, for one-way functions with sub-exponential hardness, an oracle
for inverting challenges of length n°(!) (the “short” challenge) does not help invert
invert random challenges of length n (the “long” challenge), since we may simulate

. o(1)
such an oracle by brute force in time 2" .

Step 2: Non-malleability amplification. Next, we transform the initial construction
into a constant-round concurrent non-malleable commitment scheme for identities
of length poly(n). This relies on non-malleability amplification techniques of Lin
and Pass [15]. This is a transformation of so-called “natural” commitment schemes
that are non-malleable for identities of length ¢ into ones for identities of length
Q(2") while incurring only a constant multiplicative blow-up in round complexity.

5 Our protocol, like that in [24, 25], also has a “commit and prove” structure.
® This appears to be the first work to exploit complexity leveraging with a super-constant levels
of challenges.



Primitive Hardness Rounds Black-box? | Reference
one-way functions standard O(logn) yes [6]
one-way functions standard | O(1)l8" ™ yes [15]
one-way functions sub-exp o(1) yes this work
collision-resistance standard o(1) no [24]
collision-resistance, TDP | sub-exp o(1) no [2, 5]
adaptive OWP standard 1 yes [21]

Fig. 1. Summary of non-malleable statistically binding commitments.

We modify our initial construction to satisfy naturality by using the “multiple slots”
approach from [22] (introduced in the context of handling longer identities) to boost
the number of rewinding slots. Applying the [15] transformation to the modified
construction a constant number of times yields the final construction.”

Our final protocol has a conceptually simple and “elementary” proof of security. This is
a welcome respite from the technical subtleties and complexity and/or heavy technical
machinery that arise in much of the previous literature on non-malleability. We also
point out that complexity leveraging has been previously used in [18, 23] - asin Step 1 -
to achieve similar but weaker notions of “independence”. The constructions therein use
a single challenge slot and achieve only “uni-directional” independence as they require
that the challenge in the left interaction be shorter than that on the right. This appears a
prori to be an inherent limitation of the complexity leveraging approach®, because with
two challenge slots, the long challenge in the left interaction may be longer than both
challenges on the right, so that solving the challenge on the left via brute force violates
soundness for both challenges on the right. We show precisely how to overcome this
difficulty in our construction and in the analysis.

Organization. We present our construction for short identities in Section 3. For
simplicity, we first present the construction assuming one-way permutations secure
against circuits of size 2" for some constant § < 1. In Section 4, we apply non-
malleability amplification to handle identities of length poly(n). In Section 5, we
modify our constructions to work with general one-way functions (as opposed to
permutations).

"In [15], the transformation is applied to the [6] protocol for constant-length identities (for
which the protocol is constant-round) a total of O(log™ n) times.

8 and indeed, [23] —the pre-cursor to [22]— handles the “opposite direction” via non-black-box
techniques



2 Concurrent non-malleable commitments

We recall the definition of concurrent non-malleability from [16], which builds upon
those in [6, 25]. Let (C,R) be a commitment scheme with identities, and 1™ be the
security parameter.

The man-in-the-middle execution. In the man-in-the-middle execution, the adversary
A is participating m left interactions and m right interactions. In the left interac-
tions, A interacts with C receiving a commitment to m values v, ..., v,,, using
identities idq, ..., id,, of its choice. In the right interactions, 4 interacts with R
attempting to commit to a sequence of m related values vy, ..., 0,,, again using
identities ial, ey id,y, of its choice. A also receives an auxiliary z. If any of the
right commitments (as determined by the transcript) are invalid or undefined, its
value is set to L. For any 4 such that iai = id ; for some j, the value ¥; is also set
to L (that is, any commitment where adversary uses the same identity as that in
one of the left interactions is considered invalid). We write mim“‘l(vl7 ey Uy 2)
to denote a random variable comprising the view of 4 along with the m-tuple of
values (01, ..., Up).

The simulated execution. In the simulated execution, a simulator S receives the
auxiliary input z and interacts directly with R in m right interactions. We write
sta(1", ) to denote a random variable comprising the output of S along with the
m-tuple of values (01, ..., ¥, ) that the simulator has committed to as determined
by the transcript.

Definition 1 ([16, 6, 25]). A commitment scheme (C, R) is concurrent non-malleable
if for every PPT A and every polynomial m = m(n), there exists a PPT S such that

{mimA(ful,...,vm,z)} and

V1,...,0m €{0,1}7,2€{0,1}*
{stas(ln,z)}

are computationally indistinguishable.

v1,...,0m €{0,1}7,2€{0,1}*,ide{0,1}™

We will also consider a restricted notion of concurrent non-malleability where in the left
and right interactions, the adversary .A may only use identities of length at most d. In
addition, we will refer to relaxed notions of concurrent non-malleability: one-many and
one-one non-malleability. In the former, the adversary participates in one interaction
on the left and m interactions on the right, and in the latter, the adversary participates
in one interaction on the left and one interaction on the right. As shown in [16], any
commitment scheme that is one-many non-malleable is also concurrent non-malleable.



3 Short identities from sub-exponential hardness

3.1 Overview of our construction

We construct a family of d = ©(loglogn) protocols (corresponding to d different
identities) as follows. Let n*() = Ty <« T} < --- < Tyy_1 be a hierarchy of running
times. The ith protocol in the family, ¢ = 0,1,...,d — 1 is as follows: to commit to a
string v (with identity ¢),

— Commit to v using a statistically binding commitment Com that is hiding against
adversaries of size Ty.

— Slot 1: prove knowledge of v using a zero-knowledge argument of knowledge that
is computationally sound against adversaries of size 7; and can be (straight-line)
simulated in time o(T;41).

— Slot 2: prove knowledge of v using a zero-knowledge argument of knowledge that
is computationally sound against adversaries of size T;_1_; and can be (straight-
line) simulated in time o(T;—;).

The intuition is that for one of the two slots, the man-in-middle adversary must prove
knowledge of the string ©¥ committed to in the right interaction without getting much
help from the left interaction. Roughly speaking, we will then “extract” from that slot
on the right (by rewinding) while simulating on the left (c.f. [6]). To guarantee that the
extraction succeeds we need to ensure that the simulation does not violate the soundness
of the right interaction; this property is often called simulation soundness [26].

For concreteness, consider a synchronizing adversary participating in the <th
protocol on the left and the jth protocol on the right. If i < j, we may extract the
string commiitted to on the right as follows: run the knowledge extractor for first slot
on the right while simulating the first slot on the left. This works because we may
simulate on the left in time o(T;4;) < Tj without rewinding, without knowing the
string committed to on the left, and without violating soundness for the first slot on the
right. Similarly, if 7 > 7, we can extract the string committed to on the right by running
the knowledge extractor for the second slot in the right while simulating the second slot
on the left in time o(Tg—;11) < Tq—;. In either case, we may achieve strict polynomial-
time simulation by running the man-in-the-middle adversary and committing to 0" on
the left (cf. [25, 16]).

We point out several technical difficulties that arise in turning the above intuition
into a proof (indeed, the actual analysis is quite different from that suggested by the
above line of reasoning).

— Simulation may violate soundness. ~ Consider the case ¢ > j, where we need to
extract from the second slot on the right. To reach the second slot, we will still need
to simulate the first slot on the left, and simply running the straight-line simulator
may violate soundness for the second slot on the right. Roughly speaking, we get
around this specific problem by using non-uniformity.



— Which slot should we extract from? In the analysis, we need to know which slot
to simulate and which one to extract from. This is problematic because we allow
the identity on the right to be adaptively chosen, and because we do not know
the message schedule in advance. To make things worse, the messages may be
adaptively and dynamically scheduled.

The key insight in the analysis is to decouple the issue of extraction and the issue
of simulation-soundness (this is similar to the approach in [21]). Specifically, we will
always simulate both slots on the left and extract from both slots on the right, no matter
what the scheduling is. We will then carefully argue that extraction succeeds in at least
one slot even though we may be violating soundness while simulating on the left. This
is where we reason about the scheduling of messages. For technical reasons, we will
also require that we can break Com via brute force in less time than it takes to break the
zero-knowledge property.

3.2 Handling identities of length log log logn + O(1)

Let m denote a one-way permutation secure against circuits of size on’ (where
0 < 1) and let Com be a statistically binding commitment scheme. In addition, let
{Pwirok; Vwirox) denote the 3-round public-coin witness-indistinguishable proof of
knowledge based on the Feige-Shamir protocol from [7], which satisfies the following
properties:

— The first two messages depend only on the length of the instance and the security
parameter and can be computed efficiently without knowing the instance or the
witness.

— The third message can be computed efficiently given the instance, the witness, and
the randomness used to generate the first message.

— The protocol is special-sound—namely, given any two accepting proofs of z,
(o, B8,7), (o, B',7') such that 3 # (3’. a witness to x can be efficiently recovered.

We consider a hierarchy of security levels for the one-wayness of the d permutations
7o, - - - y Tg—1 and the hiding properties of Com and (Pyipox, Vwirok )» that is given by:

T KM KL -+ K mg_g K€ Com K <7DWIPOKaVWIPOK>

Foreachi =0,1,...,d — 1: m; is T;-one-way but can be broken in time Tllﬁ

Com is Ty-hiding but can be broken in time le fl

(Pwipok; Vwirox) 18 Ty41-witness-indistinguishable (by using a T;41-hiding com-
mitment). We denote the messages of the protocol by (v, 8, 7).

Specifically, we pick 7; to be 7 restricted to {0, 1}%, where £; = (logn)“/9)""" so that
poly(n) - 2% < 2¢+1. Taking £4_; = poly(n), yields (4/6)? = ©(logn/loglogn)
and thus d = ©(loglog n). We will instantiate Com from 7 on (log n)(4/5)d+2 bits and
(Pwirox s Vwirox) from 7 on (log n)(4/ )™ bits. We present the protocol in Fig 2.



Common input: security parameter 1" and an identity id € {0,1,...,d — 1}.
Sender’s input: a value v € {0,1}".
Commit Phase:

Stage 0:

C — R : Pick uniformly r € {0, 1}*°"(™) and send ¢ = Com(v; 7).

Stage 1 (Slot 1):
R — C: Pick uniformly oy € {0, 1}%%.

C & R : Prove statement (¢, o1) using (Pwok, Ywirox) and witness (v, r, L)
w.r.t. the relation

Acom = {((¢,0), (v,1,5)),|s| = |o| | ¢ = Com(v;r) OR 7(s) = o}

Stage 2 (Slot 2):
R — C: Pick uniformly oy € {0,1}¢a-1-,

C & R : Prove statement (¢, 02) using (Pyipox, Ywirox) and witness (v, r, 1)
w.r.t. Acom.

Reveal Phase:
C—R: Sendw,r.
R: Verify that ¢ = Com(v; 7).

Fig. 2. The commitment scheme nmCom = (C, R) for short identities. We denote the 4
messages exchanged in stage b by oy, ap, Bp, b, for b = 1, 2. The values £, ..., ¢ are
specified in Section 3.2.

Lemma 1. The protocol nmCom is a statistically binding commitment scheme.

Proof. The binding property follows readily from the fact that Com is itself statistically
binding. To establish hiding, we construct a simulator C’ that plays the role of the sender
innmCom. C’ on input a commitment c to a string under Com and an identity id interacts
with R as follows:

Stage 0: Sends c.

Stage 1: Computes s; = 7 (07) and proves the statement (c, o7) using the
witness (L, L, s7).

Stage 2: Computes sy = 7 (03) and proves the statement (c, o) using the
witness (L, L, s9).



We allow C’ to run in time o(7Ty) so that it can invert 7 on oy, 0. Then, witness
indistinguishability of (Pywpok, Vwirox) implies that for all v:

viewg+ (C(v), R*) 2. viewg- (C'(Com(v)), R*)
On the other hand, Com is T-hiding and C’ runs in time o(Ty), so we have
viewg - (C'(Com(v)), R*) =, viewg+ (C'(Com(0™)), R*)

Combining, we obtain viewg~(C(v), R*) =, viewgr~(C(0™), R*), from which hiding
follows. ad

Lemma 2. The protocol nmCom is one-one non-malleable for identities of length
logloglogn + O(1).

Proof. Consider a man-in-the-middle adversary A. We assume WLOG that A is
deterministic. Following [25, 16], the stand-alone adversary S uses A as a black box
and emulates the left interaction by honestly committing to the string 0. Messages
from the right interaction are forwarded externally. As such, it suffices to show that for
all v:

mim‘:lmCom (’U) = mimfmCom (On) (*)
On a high level, the proof consists of a series of hybrid arguments:

STEP 1: Simulate the left interaction using C' instead of C.

Specifically, let S’ denote the stand-alone adversary that like S, uses A as a black
box and forwards message from the right interaction externally; the difference is
that it emulates the left interaction by running C’ (on input Com(v)) instead of
C. We denote the output of this experiment by staS (Com(v)). By Ty41-witness-
indistinguishability, the transcripts of the right interaction when we use C and when
we use C’ on the left will be T, 1-indistinguishable; in particular, the commitments
in Stage 0 on the right are T4, ;-indistinguishable. Recall that we can extract the
values in these Stage 0 commitments in time 0(7y41). This implies:

mim;“mCom(v) =5 stas/(Com(v))

STEP 2: Extract v on the right.

Using the knowledge extractor for (Pypox, Vwirox) On the right, we may extract
the witnesses for both slots on the right in the experiment staS (Com(v)), the
idea being one of the two witnesses should contain the witness (7,7) for the
commitment on the right. More precisely, let ext-stas’ (¢) denote the output of the
following experiment (a pictorial representation is provided in Fig 4):

1. Fix a random tape for S’(c) by fixing one for C’(¢). This allows us to treat
S'(c) as a single deterministic entity.



2. Fix a random tape for R and compute 7 = (S’(c), R). Let id denote the tag of
the right interaction and 7 denote the transcript (¢, 71, &7, B1,71, 52, @z, Pa, F2).
If id = id or & aborts or if R rejects, output the view of A and L and halt.

3. Rewind and attempt to extract witnesses w;,ws for the respective state-
ments (¢,61) and (¢,62) w.rt. Acom, relying on the special-soundness of
(Pwirok s Vwirox )- This is done as usual, by sending new random messages ﬁ{,
Bg, but with the following important exception: if A schedules messages in a
different way than in 7 (or if R rejects), the rewinding is aborted, and restarted.
Let T denote the set of all possible scheduling; clearly, |I'| = O(1) since
the protocol is constant-round. We will show that the expected number of
rewindings for Slot 1 is given by |[I'| = O(1); the same argument applies to
Slot 2. Let 7y denote the prefix of 7 up to Slot 1. For each schedule p € T,
let Pr[p | 7] denote the probability that R accepts (i.e. obtaining convincing
proof both slots) using the scheduling p conditioned on the prefix being ;. For
a fixed 71, p, the expected number of rewindings is given by W. Therefore,

71]
the total expected number of rewindings for Slot 1 is given by: '

ZPI‘Tl ZPr | 7] - Prp|T ZPI‘Tl IT| =T

pel

By linearity of expectations, the total expected number of rewindings for both
slots is also O(1). We now only need to make sure that we indeed extracted a
valid opening: if either w; or ws is a valid opening (v, 7) for ¢, output (7, ¥),
else output fail.

We know that whenever ext-staS (Com(v)) does not output fail, its output
contains the correct value v and therefore the distributions

sta® (Com(v)) and ext-sta® (Com(v))
are identical. In the next subsection, we will establish the following claim:
Claim (simulation-soundness). For all v, Pr[ext—stasl(Com(v)) = fail] =
neg(n)

For now, we hint that the proof of the claim exploits the two-slot structure in an
essential way to transform a non-negligible failure probability in extraction into
non-negligible success probability at inverting 7. Assuming that the claim holds, it
follows readily that

sta® (Com(v)) =, ext-sta (Com(v))

STEP 3: Replace the input to S" with Com(0™).

Now, we observe that S’ combined with the knowledge extractor on the right runs
in expected time o(T}). This is less than the time it takes to break Com, and thus
its output will be indistinguishable whether the input to S’ is Com(v) or Com(0™).



In particular, we have
ext-sta®’ (Com(v)) = ext-sta®’ (Com(0™))
Combining steps 1 and 2, we have

mimzt o (v) 2 ext-sta® (Com(v))

mimA .. (0") =, ext-staS (Com(0™))

nmCom

Combining with Step 3 yields (x). O

3.3 Proof of simulation-soundness

We complete the proof of Lemma 2 by establishing the main technical claim. Suppose
towards a contradiction that the claim is false, i.e., there is some non-negligible function
e such that for all sufficiently large n, there exists some v satisfying

Prlext-sta® (Com(v)) = fail] > e(n)

Fix one such n, along with an associated v and identity id. In addition, we may also
fix the coin tosses of S’ and some specific ¢ = Com(v), along some id on the right,
while losing a factor d in the probability ext-sta outputs fail. That is, with probability
at least 697") (over the coin tosses of R), the tag on the right is id and the knowledge
extractor outputs witnesses 7' (&;) and 7~ (&3). We then construct an adversary A
that for some j € {id, d— 1 —id}, inverts 7 on {0, 1}% with probability Q(@) in time
o(T}), which contradicts the one-wayness of 7. Roughly speaking, A works as follows:
on input a challenge o € {0, 1}%, simulate the experiment ext-staS’ (Com(v)), and

- ifj =id, set 51 = o and compute 7~ ! (o) by extracting the witness from Slot 1;
and ~

- if j =d — 1 —id, set 52 = o and compute 7~ !(o) by extracting the witness from
Slot 2.

Recall that S is simply A with a left execution of C’'(Com(v)) and thus a naive
simulation of S’ takes time roughly T,; > T);. The bottleneck to an efficient simulation
lies in computing each of the messages 71,2 in stages 1 and 2 in the computation
of C’. We adopt one of three strategies to accomplish this in time o(7}): compute the
message by computing a witness, hardwire the message into the reduction, or argue
that we do not need to compute the message for extraction on the right. We consider
three representative schedulings of the messages 71,y in relation to the two slots in
the right execution. In our analysis we crucially rely on the fact that ext-sta aborts all
rewindings that use a different schedule than ext-sta saw in the first simulation 7. Given
this property it is sufficient to consider a static scheduling. In particular, as the number
of possible scheduling is constant, we can WLOG consider a particular fixed scheduling
(again at the cost of only a constant loss).
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Fig. 3. Three scheduling strategies

Both v, 7, are sent after Slot 1 ends. In this case, we construct an adversary that
breaks 7 on {0, 1}%@ by extracting from Slot 1 on the right. Here, we observe that
we do not need to compute y; or 7. Specifically, we just need to simulate the
interaction on the left up to the end of Slot 1. Since both ~y; and 7, are sent after
Slot 1, we can complete the simulation on the left in polynomial time.

Both v, 7, are sent before Slot 2 begins. In this case, we construct an adversary that
breaks 7 on {0, 1}24717ia by extracting from Slot 2 on the right. Here, we argue that
we can fix 7; and ~». Specifically, we non-uniformly fix a partial transcript of the
execution up to the point just before Slot 2 on the right begins, i.e. just before o is
sent. This fixes all of the left interaction, so there is nothing left to simulate on the
left.

71 is contained in Slot 1 and - in Slot 2. More generally, this covers the case 7 is
sent before Slot 2 begins and ~5 is sent after Slot 1 ends. We need to consider two
sub-cases:

- id < id. We construct an adversary that breaks 7 on {0, 1}% by extracting
from Slot 1 on the right. Here, we compute 7; (by inverting o) and observe
that we do not need to compute 5. Specifically, we just need to simulate the
interaction on the left up to the end of Slot 1 on the right, i.e. up to the point v;
is sent. It suffices to compute 7! (o) and thus ~1, which can be done in time
o(Tig+1) < Ty

—id > id. We construct an adversary that breaks = on {0,1}‘a-i-1 by
extracting from Slot 2 on the right. Here, we fix v; and then compute 75
(by inverting o5). Specifically, we non-uniformly fix a partial transcript of the
execution up to the point just before Slot 2 on the right begins, i.e. just before
oo is sent. This fixes all of the first slot on the left (including ;) which we
may then hardwire into the reduction. To complete the simulation on the left
for Slot 2, it suffices to compute =1 (02) and thus 73, which can be done in
time o(Ty—iq) < T, 5 1

With probability (< ;) ), ext-sta outputs fail for one of these schedulings. We may

then use A for that scheduling to derive a contradiction to the one-wayness of .
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Fig. 4. A pictorial representation of ext-staS (Com(v))

Remark 1. We highlight two subtleties in the analysis:

— It is important that in A’s simulation of ext-sta (Com(v)), it uses the same
witnesses for the relation Acom as C'; otherwise, we could have easily solved
the problem of efficient simulation by having A use the witness (v,r) for
the commitment Com(v). We cannot appeal to witness-indistinguishability here

because we rewind the (Pyipox, Vwirok) protocols.

— Itis also important for simulation-extractability that o5 is sent after the completion
of Stage 1 in nmCom. This way, we can fix a partial transcript up to the end of Slot
1 while allowing the verifier’s challenge o5 in Slot 2 to remain undetermined.

4 Non-malleability amplification

In order to apply the non-malleable amplification theorem from [15] to our construction,
we first need to modify our construction to satisfy an additional technical requirement,
that of non-malleability w.r.t 4-round protocols (to be formalized shortly), which they
coin natural. [15] also requires that the commitment scheme be initial-binding, that is,
the first message sent by the sender already determines the value committed to; our
commitment scheme clearly satisfies this.

Lemma 3 (Non-malleability amplification [15]). Let (C, R) be a k(n)-round natural
non-malleable commitment scheme for identities of length t(n) with computational
complexity p(n). Then, there exists a 15k(n)-round natural non-malleable commitment
scheme for identities of length 28~ with computational complexity 2t(”)p(n) +

k(n)poly(n) + poly(n).



Non-malleability w.r.t. k-round protocols. The concept of non-malleability is
traditionally only considered in a setting where a man-in-the middle adversary is
participating in two (or more) executions of the same protocol. We here consider a
notion of non-malleability with respect to arbitrary k-round protocols.

Consider a one-many man-in-the-middle adversary A that participates in one left
interaction—communicating with a machine B—and in many right interactions—
acting as a committer using the commitment scheme (C,R). As in the standard
definition of non-malleability, A can adaptively choose the identities in the right
interactions. We denote by mim? ’A(y, z) the random variable consisting of the view of
A(z) in a man-in-the-middle execution when communicating with B(y) on the left and
honest receivers on the right, combined with the values A(z) commits to on the right.
Intuitively, we say that (C,R) is one-many non-malleable w.r.t B if mim®4(yy, z)
and mim® 4 (y5, 2) are indistinguishable, whenever interactions with B(y;) and B(y»)
cannot be distinguished. More formally, let view 4[{B(y), A(z))] denote the view of
A(z) in an interaction with B(y).

Definition 2. Let (C,R) be a commitment scheme, and B an interactive Turing
machine. We say the commitment scheme (C, R) is one-many non-malleable w.r.t. B,
if for every probabilistic polynomial-time man-in-the-middle adversary A, and every
two sequences {y}}nen and {y%}nen, such that

{viewal(B(s}), A:))} ~ {viewa[(B(s2). AG))}

neN,ze{0,1}* neN,ze{0,1}*

it holds that:
{mim? 4y, 2) |

~ . B/A/ 2
~ {mlm (y",Z)}
neN,ze{0,1}*

neN,ze€{0,1}*

We say that (C, R) is one-many non-malleable w.r.t k-round protocols if (C, R) is one-
many non-malleable w.r.t any machine B that interacts with the man-in-the-middle
adversary in k rounds.

Modifying our construction. We describe a variant of our construction in Section 3
that is one-many non-malleable w.r.t (2¢— 1)-round protocols for any constant ¢ > 1. In
addition, the protocol now handles identities of length ¢ log loglog n + O(1), although
the increase is not necessary for non-malleability amplification. Specifically, we follow
the multiple slot approach in [22] to boost the number of slots from 2 to 2¢. On input
atagid € 0,1,...,d° — 1, let (idq,...,id.) denote the base d representation of id. For
Jj = 1,2,...,c, we will pick a challenge of length £y, for the 25 — 1’th slot, and a
challenge of length £4_1_iq; for the 2;5’th slot. '

The analysis. First, we need to verify that the modified construction remains one-many
non-malleable (w.r.t. itself). Indeed, the proof of Lemma 2 and the analysis in Section A



extend in a straight-forward manner to ¢ > 1, except in the proof of simulation-
soundness, where it is slightly more involved. We will consider two broad classes of
scheduling strategies:

— Forall j = 1,2,...,c: 7251 is contained in Slot 25 — 1 and ~y,; is contained in
Slot 2j.
— There exists some j where one of Slot 25 —1 or Slot 25 contains none of vy, . . . , y2..

The previous analysis will still go through, except we now lose a factor (as

1
opposed to 1/d from before) in the probability of inverting the one-way permutation.

Next, we argue that the modified construction is one-many non-malleable w.r.t (2c—
1)-round protocols. This follows from the fact that we now have 2¢ rewinding slots on
the right (c.f. [15]) so that there will always be a slot on the right that does not contain
any message from the (2¢ — 1)-round protocol executing on the left.

5 Construction from sub-exponential one-way functions

We need to make two modifications to the protocol in Section 3 in order to handle a
general one-way function f instead of a one-way permutation 7w with sub-exponential
hardness.

Modifying receiver’s challenge. Following [3], we will replace the challenge that the
receiver sends at the start of each of the two slots with a 3-round challenge response
protocol. This is essentially a cut-and-choose protocol that guarantees that the receiver
sends challenges in the range of the one-way function f. Again, we fix some input
length ¢ for f corresponding to the desired level of security for the slot.

R — C: Pick s? at random from {0,1}* and send y? = f(s?) for b =
0,1,i=1,2,...,n.

C—TR: Sendp= (y1,...,n) at random from {0, 1}".
R — C: Send (s)",...,sk).

C: Verify that forall i = 1,2,...,n: f(si'") = y;.

The sender will then run (Pyipox, Vwirox ) 0n the instance (¢, 3, y1, ..., y0, vk, ) wrt.
the following relation:

. 1—ps
ACom = {((C7y?7y%7~ . ay27y71u,u)7 (’U,’/‘,Z,S)), | c= Com(v;r) OR f(S) = yz ! }

The challenge-response protocol has the following properties (cf. [3]):



— With probability 1 — 27" over p, if the sender accepts at the end of the challenge-
response protocol, then there exists a trapdoor witness for the relation Acopm.
Indeed, a trapdoor witness exists unless at most one value in each pair (y?,y})
lies in f({0,1}*), in which case there exists at most one y for which the sender
will not abort.

— Itis computationally infeasible for a 2°(“)-time adversary to find a trapdoor witness
for the relation Acon, if f is an exponential one-way function.

Modifying the commitment schemes. We will use Naor’s commitment scheme [19]
in Com and in (Pwpok, Vwirox - Specifically, we will commit v by committing to each
bit of v in parallel. We may set the values of Ty, ..., Ty as before. The complexity of
breaking a Tj;-hiding commitment via brute-force is now poly(n) - 2018 Ta)™)) (for

some constant x > 1 that depends on the seed length of pseudorandom generators from

/2

one-way functions in [12]). We can then set {41 = n®(#/8) to ensure that a1 >

poly(n) . 20((10g Td)m)).
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non-malleability.

References

[1] B. Barak. How to go beyond the black-box simulation barrier. In FOCS, pages 106-115,
2001.

[2] B. Barak. Constant-round coin-tossing with a man in the middle or realizing the shared
random string model. In FOCS, pages 345-355, 2002.

[3] M. Bellare, M. Jakobsson, and M. Yung. Round-optimal zero-knowledge arguments based
on any one-way function. In EUROCRYPT, pages 280-305, 1997.

[4] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable zero-knowledge. In
STOC, pages 235-244, 2000.

[5] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. Non-interactive and non-malleable
commitment. In STOC, pages 141-150, 1998.

[6] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM J. Comput., 30(2):
391-437, 2000.

[7] U. Feige and A. Shamir. Zero knowledge proofs of knowledge in two rounds. In CRYPTO,
pages 526544, 1989.

[8] O. Goldreich and A. Kahan. How to construct constant-round zero-knowledge proof
systems for NP. J. Cryptology, 9(3):167-190, 1996.

[9] O. Goldreich and H. Krawczyk. On the composition of zero-knowledge proof systems.
SIAM J. Comput., 25(1):169-192, 1996.

[10] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game or a completeness
theorem for protocols with honest majority. In STOC, pages 218-229, 1987.
[11] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity for

all languages in NP have zero-knowledge proof systems. J. ACM, 38(3):691-729, 1991.
Prelim. version in FOCS ’86.



[12] J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom generator from any
one-way function. SIAM J. Comput., 28(4):1364-1396, 1999.

[13] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way
permutations. In STOC, pages 44-61, 1989.

[14] J. Katz, R. Ostrovsky, and A. Smith. Round efficiency of multi-party computation with a
dishonest majority. In EUROCRYPT, pages 578-595, 2003.

[15] H. Lin and R. Pass. Non-malleability amplification. In STOC, pages 189-198, 2009.

[16] H. Lin, R. Pass, and M. Venkitasubramaniam. Concurrent non-malleable commitments
from any one-way function. In TCC, pages 571-588, 2008.

[17] H.Lin, R. Pass, and M. Venkitasubramaniam. A unified framework for concurrent security:
universal composability from stand-alone non-malleability. In STOC, pages 179-188, 2009.

[18] M. Liskov, A. Lysyanskaya, S. Micali, L. Reyzin, and A. Smith. Mutually independent
commitments. In ASIACRYPT, pages 385-401, 2001.

[19] M. Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151-158, 1991.

[20] R. Ostrovsky, G. Persiano, and I. Visconti. Simulation-based concurrent non-malleable
commitments and decommitments. In 7CC, pages 91-108, 2009.

[21] O. Pandey, R. Pass, and V. Vaikuntanathan. Adaptive one-way functions and applications.
In CRYPTO, pages 57-74, 2008.

[22] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In
STOC, pages 232-241, 2004.

[23] R. Pass and A. Rosen. Bounded-concurrent secure two-party computation in a constant
number of rounds. In FOCS, pages 404-413, 2003.

[24] R. Pass and A. Rosen. New and improved constructions of nonmalleable cryptographic
protocols. SIAM J. Comput., 38(2):702-752, 2008. Preliminary version in STOC ’05.

[25] R. Pass and A. Rosen. Concurrent nonmalleable commitments. SIAM J. Comput., 37(6):
1891-1925, 2008. Preliminary version in FOCS ’05.

[26] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext
security. In FOCS, pages 543-553, 1999.

A nmCom is one-many non-malleable

Here, we establish a stronger claim, namely that the protocol nmCom is in fact one-
many non-malleable for identities of length log loglogn + O(1). We do not need this
stronger property, although it is of independent interest. To see why the claim holds,
suppose there are m right interactions, where the tags are respectively (ial, ceey iam)
and the committed values are respectively (01, ..., 0, ). We modify Step 2 to extract
each v; on the right where id; # id. As before, we will sample one transcript 7, and then
attempt to extract witnesses for each of the m right executions. We need an expected
2m|T| rewindings, 2|T"| for each of the m right executions. Next, we will need to show
that the probability that the extractor outputs fail for any of the m right interactions in
negligible. If this probability is at least ¢, then there is some right interaction for which
the extractor outputs fail for that interaction with probability at least .=. Simply repeat
the analysis for simulation-soundness in Section 3.3 for this execution (and simulate R
for the other m — 1 interactions internally).



