1. You are climbing a stair case. It takes \(n \) steps to reach the top. Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top? Give a dynamic programming algorithm to solve this problem. Note: \(n \) is a positive integer.

2. You are given an array \(A = (a_1, a_2, ..., a_n) \) of \(n \) positive integers. The objective is to find a pair \((a_i, a_j) \) such that \(i < j \) and \(d_j - d_i \) is maximum and positive. For example, for \(A = (9, 2, 4, 3, 8) \), a solution is \((2, 8) \). For \(A = (9, 6, 5, 3, 1) \), there is no such a pair. Find a dynamic programming algorithm to solve this problem.

3. Given two strings \(a \) and \(b \), check if \(a \) is a subsequence (not necessarily consequent subsequence) of \(b \).
 Example:
 \[a = \text{aegis76} \]
 \[b = \text{evatookplanetohamburgonsomedayin1976} \]
 Then \(a \) is a subsequence of \(b \).
 Give a dynamic programming algorithm to solve this problem.

4. Given a string \(s \), find the longest palindromic subsequence (LPS) length in \(s \). Example:
 \[s = \text{axbddd} \] the LPS length is 4. Give a dynamic programming algorithm to solve this problem.