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Abstract—Covert channels provide a secret communication
medium between two malicious processes to exfiltrate information
stealthily that violates the security policy of a system. In this
paper, we demonstrate a new covert timing channel attack that
exploits the CPU operating frequencies with different power
governors in real system environment. In particular, we establish
how two colluding processes–a trojan and a spy can modulate
the CPU frequency to create a powerful, high-capacity and
robust covert channel. We implement this covert channel both
in a single threaded and simultaneous multi-threading (SMT)
environment and show the feasibility of such a communication.
Our experiments on Intel Xeon server platform demonstrate
dynamic frequency scaling covert channels that can achieve up
to 20 bits/second.

Keywords–covert channel; dynamic frequency scaling; infor-
mation leakage; system security

I. INTRODUCTION

With the advent of cloud computing infrastructure, infor-
mation leakage is a fast growing concern where multiple
tenants share resources and the underlying hardware plat-
forms. Among the many forms of information leakage, covert
channels operate through two colluding applications that se-
cretly communicate with each other through a shared resource
despite the underlying system security policy prohibiting
any such communication between these two applications [1].
Covert channels can be implemented as storage channels that
exploit shared memory covertly [2], or as timing channels that
simply modulate the resource access timing without leaving
any physical evidence to communicate secrets [3]. In contrast
to side channels where a victim process unintentionally leaks
information to a spy process that monitors system activity,
covert channels operate with an insider process that intention-
ally colludes with a spy to exfiltrate information (see figure 1).

Prior works have studied hardware covert timing channels
implemented using branch predictors [4], caches [5], [6],
[7], processor-memory bus [8] and random number generator
(RNG) modules [9]. In all of these types of attacks, the trojan
modulates the access timing of a certain specific hardware
resource by intentionally creating contention events allowing
the spy to observe the altered access timing on that resource
and infer the bit(s) transmitted.

In this paper, we demonstrate a new covert timing chan-
nel that exploits dynamic frequency scaling (DFS) feature
supported by the CPU where its operating frequency can be
altered based on the workload. We show that covert channels
can be implemented on real systems through manipulating the
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Fig. 1. A covert timing channel using timing modulation on a shared resource
to divulge secrets

power governors that control the CPU frequency settings. We
study different implementations of DFS-based covert channels
by varying the spy’s mode of operation in decoding the CPU
frequency. Our experimental results show a high bandwidth
timing channel of up to 20 bits/second is feasible.

Power-efficient computing has become a requirement for
most modern systems especially as processors are becoming
exceedingly power-hungry with their multitude of micro-
architectural units. A well-known strategy to manage CPU
power is the dynamic voltage and frequency scaling (DVFS),
that has been widely supported by a range of systems from
personal mobile devices to large scale computers [10]. DVFS
provides the capability to scale the voltage and frequency set-
tings of the processors on-the-fly depending on the workload
and utilization levels of the CPU cores. Most modern CPUs are
equipped with DVFS capability [11]. With such widespread
adoption and use, the vulnerabilities exposed by DVFS feature
may be exploited by adversaries on multiple types of systems
resulting in potentially huge economic losses or even greater
damages. We note that our work offers much needed insights
into how an adversary could exploit DVFS, and we explore
methods to mitigate such attacks.

The contributions of our work are:
• We demonstrate the feasibility of exploiting DFS sup-

ported by CPUs for covert timing-channels using Intel
Xeon server X5560 platform.

• We study DFS covert timing channel implementation
under different CPU power governors and CPU settings
such as simultaneous multi-threading (SMT).

• We present experimental results that demonstrate a max-
imum bandwidth of 20 bits/s using DFS covert timing
channels, and we show indirect frequency inference meth-
ods that the spy may utilize to infer CPU frequency and
evade detection.978-1-5386-2880-5/17/$31.00 © 2017 IEEE
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II. BACKGROUND

Most modern multi-core processors export the CPU core
frequency information to the user processes. This may be
used by the applications to tune the processor’s frequency
settings such that a good trade-off between application perfor-
mance and CPU frequency can be achieved. While providing
frequency/voltage information might be valuable to design
power-aware applications, this may pose a significant threat
when adversaries can exploit this for malicious purposes [12].

Different applications may have varied security permission
settings and access to a range of critical information. A
malicious application that may exfiltrate sensitive secrets to a
spy process bypassing system security policy can be dangerous
to system integrity. To illustrate this problem with an example
scenario, lets consider that they are two applications running
concurrently on a system where one is a personal finance man-
agement application and the second is a global positioning sys-
tem navigation application. The personal finance management
application has access to sensitive user data such as passwords
and details about the customer’s financial institutions. In order
to operate, this finance management application will also need
to access network resources to communicate with customer’s
bank servers. However, the operating system will scrutinize the
packets sent by this application and likely add protection fea-
tures such as encryption to prevent any information outflows.
Therefore, this application cannot directly expose sensitive
user data. However, if the financial management application
is malicious, it may collude with another seemingly benign
application that has access to the network but is not likely to
be scrutinized by the OS or other security enforcer modules.
We note that a largely benign navigation application may be
exploited for this purpose since it needs to have network
access enabled to support its operation. Through covert tim-
ing channel based transmission, the financial application can
effectively send sensitive secrets to the outside world without
ever being detected. Such situations highlight the need for a
more thorough understanding of how covert timing channels
operate and methods to mitigate the damages caused by them.

A. CPU Power Governors

A CPU power governor defines the power schemes (poli-
cies) for the system CPU [13]. Linux kernel provides instruc-
tions to the processor based on the workload needs, which in
turn scales the CPU frequency on-the-fly during run-time [14].
CPU frequency scaling serves to reduce the overall CPU power
consumption and reduce potential thermal hot spots [15].
If frequency settings are changed without being aware of
the workload, the system’s performance may be adversely
affected.

There are different types of CPU governors in the Linux
kernel namely: performance, powersave, ondemand, userspace
and conservative. Each governor has two preset parameters
namely scaling_min_frequency with the lowest avail-
able CPU frequency and scaling_max_frequency with
the highest available CPU frequency. Note that, at any given
point of time only one CPU governor may be active per core.
We describe the CPU governors briefly below:

Performance: The performance CPU governor always sets
the processor frequency to the maximum available frequency
in order to increase the performance of the system.

Powersave: The powersave governor always sets the pro-
cessor frequency to the minimum frequency available in order
to reduce the system power consumption.

Ondemand: The ondemand governor is the most common
CPU governor used in the Linux kernel [16]. The ondemand
governor typically sets the processor frequency based
on the CPU usage and the workload assigned to it. The
ondemand governor uses different sysfs parameters
such as up_threshold, sampling_rate_min,
sampling_down_factor, sampling_rate and
ignore_nice_load.

Upon setting the ondemand governor, the CPU load
is frequently checked. When the load raises above the
up_threshold preset value, the ondemand governor au-
tomatically sets the CPU to run at the highest possible fre-
quency, which is denoted by scaling_max_frequency.
When the load falls below the preset threshold, the ondemand
governor sets the CPU to run at the lowest possible fre-
quency, which is denoted by scaling_min_frequency.
The sampling_rate, which is typically denoted in mi-
croseconds, defines how often the kernel needs to monitor
the CPU usage to make decisions on whether to change
the CPU frequency either to the highest or lowest. The
sampling_rate_min parameter defines the minimum time
in microseconds on how frequently the kernel needs to mon-
itor the CPU usage and make decisions about changing the
frequency.

Userspace: The userspace governor sets the
processor frequency to a value specified by the
user or any userspace program. The userspace
governor uses the scaling_setspeed governor
parameter to change different frequencies within
the range of scaling_min_frequency and the
scaling_max_frequency. The userspace governor
is typically used along with the cpuspeed daemon and is
most customizable among all the CPU governors.

Conservative: The conservative governor operates very
similar to ondemand governor. However, a major dif-
ference between them is that the ondemand governor
switches between the scaling_max_frequency and
scaling_min_frequency aggressively whereas the con-
servative governor does so more gradually.

By default, the CPU governor is set to ondemand that
automatically scales the CPU frequency based on the CPU
workload’s throughput. The users have the ability to either
change the CPU governor (done via sysfs [13]) and to
request the CPU to operate at a certain frequency (done via
sysfs [14]). Note that such frequency changes are done in
root permission mode.

III. THREAT MODEL AND ASSUMPTIONS

In our threat model, we assume that there are two covertly
communicating processes (namely the trojan and the spy)
that subversively communicate despite the underlying system
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security policy not permitting the two processes to communi-
cate (via Inter-process communication, networks, file system,
or shared memory). The trojan is a process with higher
privileges and access to sensitive data, that is normally not
allowed to reveal data to the external processes. The spy is a
seemingly benign process with lesser privileges than the trojan,
that is co-located alongside the trojan process sharing micro-
architectural (functional) units with it. We assume that the
trojan and the spy can run on any core.

The operating system is assumed to be un-compromised so
that it diligently preserves legitimate information flows and
enforces the right access control. The Linux kernel CPUFreq
subsystem is used for controlling DVFS with a range of power
governors to choose from (ondemand, userspace, powersave,
performance and conservative). The two processes do not
require any special privileges to establish a covert channel
for power governors like ondemand and conservative. But
if the power governor is chosen to be Userspace, the trojan
process needs to have super-user (sudo) rights to set different
frequencies.

IV. DFS COVERT CHANNEL

In this section, we show how a trojan and spy process
could manipulate the DFS feature supported by the CPUs to
implement their covert timing channels. We first show how to
construct the covert channel through exploiting the ondemand
and userspace CPU governors, and then demonstrate how the
spy may potentially evade detection through adopting indirect
methods to infer CPU core frequency.

All our experiments were performed on Intel Xeon X5560
CPU with 8 cores and 12 GB of DDR3 memory. Each
core has a set of 10 distinct frequencies ranging from 1.59
GHz to 2.79 GHz. The machine runs Ubuntu 16.04.1 LTS
operating system, with a generic GNU/Linux kernel version
4.4.0-42. Our experiments assume minimal interference from
the external processes in terms of competing workloads that
can alter CPU frequency. If such interference is seen, we
note that de-noising can be relatively straightforward if the
trojan/spy monitor for workloads in the cores that they are
about to run, and move to a different core whenever they detect
high interference.

A. Building the Dynamic Frequency Covert Channel

In order to demonstrate the feasibility of our covert chan-
nels, we execute two malicious process—trojan and spy
with two possible scenarios: 1. ondemand CPU governor, 2.
userspace CPU governor. The performance and powersave
governors cannot be used as it allows the CPU to run only
at a single preset frequency.

The goal of the trojan here is to covertly send a secret bit
by modulating the frequency of its CPU core. The spy then
infers the bit as a 0 or a 1 based on the frequency set by the
trojan process.

Exploiting ondemand governor: To transmit a bit 1,
the trojan increases the frequency of the CPU core to

char bit;
FILE *file = fopen("bits_to_send.txt", "r");
while ((bit = getc(file)) != EOF)
if(bit == 1)

do_intense_computation_for(interval);
else

usleep(interval);
fclose(file);

Listing 1: Trojan using ondemand governor

scaling_max_frequency by running an intensive com-
putation e.g. perform a dense matrix multiplication. To trans-
mit a 0, the trojan just sleeps for the entire interval bring-
ing down the frequency to scaling_min_frequency.
The spy periodically samples with non-perturbing reads that
reads the frequency of the core through /sys/devices/
system/cpu/cpu*/scaling_cur_freq. When the fre-
quency is high it infers a 1 and 0 otherwise.

To illustrate, let us consider a trojan that wants to send
the bits 1010. The trojan would do an intensive computation
for the first second, sleep for the next second, repeat the
computation for the next and so on. The spy would read the
frequency of the CPU core every second and infer the bits
sent by the trojan. To detect and correct any bit errors, we
note that the transmission could include error correction bits
that helps improve reliable transmission between the trojan
and the spy. It is worth noting here that the spy can run on
any core since the kernel allows any userspace program to
read the frequency of other CPU cores in the system without
any privilege requirement. We note that, despite the fact that
multiple frequency settings are supported by the CPU, it is
usually easier to infer the binary-coded data using ondemand
governors. The trojan implementing DFS covert channel using
ondemand CPU governor is shown in listing 1.

FILE *fp=fopen("bits_to_send.txt","r");
char bit;
// list of available frequencies
char *list_of_frequencies[]{
"1.59Ghz","1.72Ghz","1.82Ghz","1.99Ghz",
"2.12Ghz","2.26Ghz","2.39Ghz","2.79Ghz"};

while((bit = fgetc(fp))!=EOF){
set_freq(list_of_frequencies[int(bit)]);
usleep(interval); }

Listing 2: Trojan with userspace governor

Exploiting userspace governor: In contrast to ondemand
governor, userspace governor allows the trojan process to set
the frequency of any CPU. Our system allows the CPU to
run using 10 different frequencies. This makes it possible
to send decimal-coded messages, one corresponding to each
frequency i.e. setting a frequency of 1.59 GHz corresponds to
a 0 and 1.72 GHz corresponds to a 1, and so on. The trojan
implementing DFS covert channel using userspace governor is
shown in the listing 2. The spy program is the same as used in
the ondemand governor where it periodically reads the core’s
frequency through sysfs or /proc/cpuinfo.

For a successful transmission of a message, the spy process
needs to decode the message from the trojan at about the same
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rate that it is being sent. In order to efficiently transmit a
message, the trojan and the spy should synchronize on two
pieces of information: 1. number of distinct frequencies that
used by the trojan for modulation, and 2. bit transmission
period.

There are several ways a spy process can determine the
current frequency setting of a particular CPU. A straightfor-
ward method is to read from the /proc/cpuinfo file. This
method has a high performance overhead and it not suitable for
sending messages at a higher rate. The maximum achievable
bandwidth using this method is 3 bits/sec with no error.
Alternatively, the spy process can read the current frequency
of the core directly from /sys/devices/system/cpu/
cpu*/scaling_cur_freq which also has a maximum
achievable bandwidth of 3 bits/sec with no error.

B. Frequency Inference

An indirect way that the spy can use to evade detection
and infer the CPU frequency is to run a non-perturbing,
lightweight loop for a fixed amount of observation time. Based
on the value of loop iteration counter at the end of the preset
observation period, the CPU core frequency is inferred.

Note that the spy must know how to infer the communicated
bit based on the values of the counters observed, and must
calibrate itself to distinguish the band of counter values and
the corresponding bits. This can be done so by studying the
distribution of counter values that the spy reads over time.

unsigned long counter;
while(1) {

counter = 0;
increment_counter(interval); }

Listing 3: Spy program for inference based method

As an instance, let us consider a scenario where the trojan
communicates a specific bit. On the spy side, rather than
directly reading a file containing the current CPU frequency, it
runs a non-perturbing timed loop that runs for a preset amount
of time showed in listing 3. At the end of each observation
period, a certain counter value is observed. We repeat this
experiment for a 10 times, and plot the distribution of values
observed during such runs. Figure 2 shows our results, where
we see a distribution centered around 180× 105 when trojan
communicates a 0 bit, and another distinct distribution cen-
tered around 320 × 105 when the spy communicates a 1 bit.
Using this inference method, we clearly see that there exist
two separate bands of counter values that helps the spy to
distinguish a 1 from a 0 bit transmission. This experiment
shows the feasibility of inferring CPU core frequency even if
the spy doesn’t directly read the system files (note that reads
on such files may be tracked to monitor for illegal activity by
a spy process).

V. RESULTS AND DISCUSSION

In this section we demonstrate the feasibility and the ef-
fectiveness of our covert channel using ondemand governor,
userspace governor, and inference based methods.
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Fig. 2. Gaussian distribution of counter values (105)

Figure 3 shows a random 64-bit pattern transmission using
ondemand power governor. We show the bit sequence the
trojan process is trying to communicate covertly to the spy
process. A higher bar indicates a 1 and a lower bar indicates
a 0. Below the trojan process are the two methods the spy
process uses to infer the frequency. We first show that the spy
process is perfectly able to decode the bit pattern by reading
the core’s frequency set by the trojan from /proc/cpuinfo.
We also show that spy is able to successfully decode the bit
pattern by decoding the frequency from sysfs filesystem.

In the the case of ondemand power governor, there
are only two frequencies that represent a 0 or 1
corresponding to scaling_min_frequency and
scaling_max_frequency which is 1.59 GHz and
2.79 GHz in our system.

In the case of userspace governor, in our system, we were
able to use base 10 to transmit bits from trojan to spy process
as we have 10 different frequencies that we can set. For
simplicity in figure 4 shows trojan process using base 4, i.e. use
4 different frequencies to communicate to the spy. One can see
that spy can decode the frequency and get the corresponding
number without any errors.

In this case, we could encode 10 integers (3.25 bits) for
every interval. We found that the trojan process could transmit
data with intervals up to 10 ms without any errors. This gives
us a bit rate of 325 bits/second. Since, this method requires
trojan to have super-user (sudo) privileges, which is unlikely
but possible in the real world scenario, we do not advertise
this as our main result.

For demonstration purposes, we showed how the trojan
transmits information to the spy using integers, as it can be
related to leaking a credit card number, but this can easily
be extended to sending any information with high speed and
accuracy.

Figure 5 shows the trojan sending a 0 or 1 by either
performing a intense computation or sleeping for a given
interval. The y-axis for the spy shows the value of the counter
for spy. Recollect from listing 3 that in this method the spy
program just keeps running a counter for a specific time
interval, and decodes the bits based on the counter’s value.

One can see that when the frequency is low, the value of the
counter is also low. This is because on userspace governor, the
core is set to its minimum which means less computation will
be done when compared to a core that runs on its maximal
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Fig. 3. Bit transmission using ondemand governor
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Fig. 4. Bit transmission using userspace governor

frequency. In the case of ondemand governor, the value of
the counter will be low because of the interference from the
trojan, and the counter will have a high value when there is
no interference i.e. trojan is executing its sleep command.

Figure 6 illustrates the error rate for each of our methods
using ondemand governor. We increased the bit rate by lower-
ing the interval with which the trojan and spy communicate.
i.e. for an interval of 100 ms the bit rate is 10 bps. Both
/proc/cpuinfo and sysfs methods exhibit same error
rate. The error increases rapidly as we start to send more that
3 bps. We believe this is because of the rate at which the
kernel updates the proc and the sysfs file system. Additionally,
we incur the overhead of opening and reading the values from
the file.

In contrast, our inference based method is a bit more
resilient to the speed up until 20 bps and the error starts
increasing thereafter. This is because the inference based
method doesn’t depend on external factors like the kernel/user
writing/reading from any files.

VI. OTHER POSSIBLE DESIGN OPTIONS

There are a number of challenges that remain in proving
this covert channel to be an effective and an imminent threat.
We have not considered background noise in this work, but
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Fig. 5. Bit transmission using inference based method

there are various digital signal processing methods [17] that
can be used to eliminate the noise from the actual signal.

Next, the bit transmission rate can be increased in several
ways depending on whether or not the spy has root privileges.
In the case where the spy has root privileges on the system,
the spy could have a kernel module running that constantly
monitors the CPU frequency from the registers.

Finally, reading the current frequency does not tell us
anything about the average frequency over an interval. Intel
has a pair of model specific registers (MSR) defined that
are ideal for monitoring average frequency: IA32_MPERF
(MSR 0xE7) and IA32_APERF (MSR 0xE8). To determine
the average core frequency over an interval, we could use
the fixed-function counters “Reference Cycles Unhalted” and
“Core Cycles Unhalted”.

On the other hand if the spy process is limited to be in
userspace mode (no root privileges) we propose couple of
options. First, for inline instrumentation, these performance
counters (or their programmable equivalents) can be read using
the RDPMC instruction directly from user mode. Second, for
external instrumentation, that might have high performance
overhead is performing an inter-processor interrupt so that the
target processor will “wake up” and read its own MSRs.

VII. RELATED WORK

There have been numerous works on covert channel re-
search over past decade. Researchers have come out with smart
ways of ex-filtrating information stealthily. Recently, Masti
et al. [18] demonstrate a covert channel implementation that
takes advantage of the thermal sensors information exposed by
processors chips. Yao et al. [19] demonstrate a hardware-based
covert timing channel implementation that exploits the timing
differences in cache read accesses exposed by NUMA-based
architectures.

Wu et al. [20] demonstrate a covert communication channel
that is based on Intel Quick Path Interconnect (QPI) lock
mechanism. Ristenpart et al. [21] present a cross-VM covert
channel by exploiting the L2 cache. Evtyushkin et al. [4]
present a covert channel though branch predictors. There
have also been studies [8] which uses memory bus as covert
channels. Recently, there have been some interesting study [9]
on using the micro-architectural features like random number
generator as covert communication channel.
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Fig. 6. Error rate for different techniques used by spy process to decode the
CPU frequency (sysfs and /proc/cpuinfo overlap for all bit rates)

Side channels have been well studied in the recent times.
Typically, side channels are used for crypt-analysis. There have
been several attacks which includes the extraction of AES
keys [22], DSA keys [23] and RSA keys [24].

On of the possible ways to detect timing channels (irre-
spective of either side or covert) is to expose less timing
information in general [25]. Venkataramani et al. [26] study
how to detect contention-based covert timing channels through
dynamically tracking conflict patterns on shared hardware
resources. One of the popular ways to mitigate covert and
side channels is through partition of system resources [27].
There have also been works [28] to detect malware through
analyzing existing performance counters proposed.

VIII. CONCLUSION

In this work, we have presented a new type of covert channel
exploiting the popular power management strategies adopted
in modern day processors and using them as covert channels
to exfiltrate data stealthily between the trojan and the spy
processes. The key idea is that the trojan process can modulate
the discrete CPU operating frequencies by setting them either
directly or indirectly with the help of power governors. In
order to read the CPU frequency, the spy process can either
read directly from the sysfs, procfs file systems provided by
the Linux kernel or indirectly by inference based method. We
have demonstrated the feasibility and the potential of achieving
a high bandwidth of up to 20 bits/second using dynamic
frequency covert channels on Intel Xeon server X5560.
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