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Abstract. The implementations of network protocols are often “bloated”
due to the need to satisfy diverse user requirements and to suit different
application environments. The continual expansion of program features
contribute to not only growing complexity but also increased the at-
tack surface, making the maintenance of network protocol security very
challenging. Existing work either de-bloat programs at source code level
(which may not always be available, in particular for legacy systems) or
customize binaries only with respect to a very limited set of inputs. In
this paper, we propose CustomPro , a new approach for automated cus-
tomization of network protocols. We harness program execution tracing,
tainting and guided symbolic execution to identify relevant code from
the original program binary, and leverage static binary rewriting tech-
niques to create a customized program binary that only contains the
desired functionalities. We implement a prototype of CustomPro and
evaluate its feasibility using OpenSSL (a widely used SSL implementa-
tion) and Mosquitto (an IoT messaging protocol implementation). The
results show that CustomPro is able to create functional program bi-
naries with only desired features and significantly reduce the potential
attack surface by targeting and eliminating unwanted protocol features.

Keywords: Program Customization · Binary Rewriting · Cross-host
tainting.

1 Introduction

Recently, network protocols have frequently become targets of cyber attacks.
Even protocols that are carefully designed to enhance the security of communi-
cations (such as OpenSSL) can be exploited and leveraged, posing severe threats
(such as information leakage and DoS attacks) to online users [2, 11]. Network
protocols are vulnerable due to a number of reasons: a) To satisfy diverse end-
user requirements and to suit different application environments, network pro-
tocols that are designed to deliver key service capabilities and utilities (e.g.,
data storage, search and processing) often lead to continual expansion and ad-
dition of new (and in many cases excessive) features, known as the feature creep
problem [15]. b) Even standardized protocols may have a variety of different im-
plementations and specifications, in accordance with heterogeneous system/user
requirements (especially in IoT systems). Such inconsistency weighs on the fea-
ture creep issue and makes the management of protocol implementations much



more difficult and the network connections prone to attacks. Recent real-world
examples of protocol feature creep include the trap communication feature in
the Simple Network Management Protocol (SNMP) and the heartbeat feature
in the Open Secure Sockets Layer (OpenSSL), both of which may be unnecessary
under most practical scenarios, but unfortunately cause serious security threats
such as denial of service attack and leakage of sensitive information.

An effective approach to mitigate feature creep is debloating, e.g., creating
customized software systems that contain just-enough features and yet satisfy
specific user needs, in order to minimize the software complexity and correspond-
ing attack surface. Prior work on static software debloating [15, 14] is often con-
ducted on source code (where redundant functions and features are relatively
easier to identify) to remove unused code. However, source code may not always
be available especially for commercial off-the-shelf (COTS) or legacy programs.
With only program binaries available, even correctly recognizing function body
itself is a challenging task [1]. It may be impossible to provide “seed functions”
that are usually required by existing feature removal techniques to use as the
source of slicing and to bootstrap the analysis process. On the other hand, new
program binaries directly constructed (or extracted) from runtime traces (some-
times with additional static analysis) through the binary reuse technique [47,
34, 48, 3, 19] can only achieve correct execution under very limited scope of user
inputs.

In this paper, we propose a new approach, CustomPro , for automated cus-
tomization of network protocols. We define automated feature customization
as the process of identifying and rewriting different program features from a
binary executable. Without requiring any knowledge of potential exploits, the
customized programs contain just enough software features to support only the
necessary functionalities, thus significantly reducing attack surface and expo-
sure to future exploitations that leverage excessive features (e.g., zero-day at-
tacks). Our approach goes beyond existing work on feature separation [26], re-
duction [15] and code de-bloating [39, 14, 38], which focus on removing unused
code. We argue that vigilantly managing and customizing permitted features
is crucial for achieving improved software security [15], especially for network
protocols that are frequently targeted by attackers because of the value of their
data and services.

At the core of protocol customization approach, a key problem is to identify
software features directly from a program’s binary without access to source code
or debug information. We define a feature as a collection of basic blocks, which
uniquely represent an independent, well-contained capability of the program.
First, in order to probe for the basic information about the program binary and
feature-related execution (such as executed instructions, values of operands or
pointed memory locations), we run the testing protocol systems inside emula-
tors. Second, since protocol features embedded in an online software system are
often accessed remotedly via the network packets, triggered by varied requests
and responses, we employ dynamic tainting to track the information flow in a
monitored execution of a target feature, utilizing the network packets or relevant
packet fields as taint sources. Third, to enable taint proporgation in the network

2



(which is crucial for network protocols [46, 29]), we equip the tainting module
with the ability of transmitting and processing taint information across different
hosts. Fourth, since dynamic analysis of protocol features depends upon specific
input values and executions, a pure dynamic tainting approach may be difficult
to achieve sufficient code coverage, or in other words, the identified program
code can only handle very limited scope of user inputs related to the target fea-
ture. To this end, we harness tainting and symbolic execution to compensate for
the incompleteness of dynamic analysis. We utilize dynamic tainting to guide an
symbolic execution engine to effectively perform a light-weight search for any ad-
ditional code blocks that belong to the target features but did not get executed
in the test runs. As a result, CustomPro delivers a customized program that has
the unique ability to correctly execute desired features with a wide range of user
inputs.

Identifying the feature-related code segments enables us to rewrite program
features based on user needs. We leverage binary rewriting tools (DynInst [32])
to obtain a customized binary that only retains the desired program features
while removing the other unwanted ones. In particular, we replace undesired
basic blocks with NOP instructions to eliminate unwanted features, and in case
such features/basic blocks are still invoked during program execution, we further
redirect their invoking instruction such as function call or jump to a designated
function exit point. We successfully apply CustomPro to customize real-world
protocol implementations such as OpenSSL(a widely used SSL implementation)
and Mosquitto( a popular implementation of MQTT protocol for lightweight
IoT communications), by customizing the insecure or unnecessary features such
as heartbeat (in OpenSSL) and will (in MQTT).

The main contributions of our work are as follows:

– We propose CustomPro , an automated framework for customizing network
protocol implementations using only program binaries. Given a list of desired
features, CustomPro automatically identifies feature-related program code
and customizes it to provide just-enough features to support desired services
in accordance with user needs.

– For effective feature identification, CustomPro leverages system emulation
to run the test protocols in guest operating systems, from where we can get
the execution information as well as data flows via a cross-host dynamic
tainting. Together with symbolic execution, CustomPro further improves
code coverage and efficiently discovers more executed code relevant to the
desired features.

– We evaluate CustomPro using real-world applications such as OpenSSL and
Mosquitto, and our results show that CustomPro can efficiently customize
software binaries, generating debloated program binaries, and eliminate po-
tential vulenrable code without requiring any knowledge of the exploits.

2 Motivation

The attacks against network systems through the vulnerabilties in protocols
have never ceased and are often followed by severe consequences. Heartbleed [12]
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mov %eax,-0x10(%ebp)
xor %eax,%eax
cmpl $0x2,(%ecx)
je 80488aa

1

mov 0x804a04c,%eax
xor %eax,0xc(%esp)
movl $0x17,0x8(%esp)
movl $0x1,0x4(%esp)
movl $0x8048cb8,(%esp)
jne 80488fd

2

movl $0x0,0x8(%esp)
movl $0x1,0x4(%esp)
movl $0x2,(%esp)
call 8048959

3

movl $0x0,0x4(%esp)
lea -0x20(%ebp),%eax
mov %eax,(%esp)
call 8048618

4

mov 0x804a04c,%eax
mov %eax,0xc(%esp)
call 8048628

5

movl $0x8048d00,(%esp)
call 80486486

mov $0x8048d38,(%esp)
call 80489597

Tainted Packet 

1

2

5

6

3 7
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Fig. 1: Feature identification by combining tainting and symbolic execution

exposes private information such as server private keys to the Internet through
a simple Heartbeat feature in OpenSSL. Nearly half a million certificates were
exposed and over 199,500 sites are still vulnerable as of the time Jan. 2017,
which is over three years after the bug was reported [17]. KRACK [35], or key
reinstallation attack, a replay attack that leverages the vulnerable design in
WAP2 protocol, can be exploited to gradually obtain the full keychain used
for encrypting the traffic under a WIFI environment. The handshake messages
are replayed by MITM (Man In The Middle) such that the end node will be
deceived to reinstall the key that is already in use. The same key value will be
used repeatedly for encryption, resulting in repeated occurrences of the same
message. Finally, the 2017 data breach on credit reporting agency Equifax had
146.6 million people expose their names and dates of birth, and 145.5 of those
expose their Social Security Numbers and/or driver’s license numbers, across US,
UK and Canada [13]. The attack was believed to exploit the CVE-2017-5638,
which is a flaw in the Apache Strut framework. This vulnerability was discovered
and reported more than two months before the data breach happened.

The key takeaways from these attacks are as follows:

– Network Protocols are a critical link in the chain of network security.

– Patching solutions can’t keep up. Patches can come late while the exploits
have already led to large-scale disaster. Even after a patch is released, there
is no guarantee that all vulnerable entities in the network will apply the
patch soon enough, leaving some of them vulnerable for a longer time.

– Hardening the security of network protocols is very different from that of
single-host and offline software systems, since protocols often contain a sig-
nificant amount of features and operate in a fully distributed environment.
Any effective solution must harden all of the entities collectively along with
their corresponding binary code modules.
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Software customization, an approach to extract desired parts and/or remove
undesired ones from a target program, has been applied to reduce the attack
surface and improve program security [16, 14]. In this paper, we leverage cus-
tomization to 1) remove wanted program features to reduce attack surface (or
the risk of being attacked), e.g., protect the program from zero-day exploits;
and 2) prevent the network from being exploited via known vulnerabilities be-
fore patches becomes available. However, previous customization techniques of-
ten remove unused functions from program source code, which is not always
available especially for COTS and legacy programs. To this end, CustomPro
develops protocol customization that only requires only program binary for cus-
tomization. Moreover, in practice it is often hard (if possible at all) to identify all
functions/code related to target protocol features from only several seed func-
tions [16]. Network protocols such as SSL handshake often implement complex
state machines where different states are convoluted together and even spread
across different hosts, linked by only network packets. In CustomPro , we utilize
a cross-host, dynamic tainting technique to track exchanged packets and trace
program executions, in order to discover the code segments related to target
protocol features. CustomPro rewrites the static binary based on the user needs.
It further applies symbolic execution to identify any additional code belonging
to the target features that were not captured during dynamic analysis.

We utilize the example shown in figure 1 to illustrate our key idea. The feature
identification starts from a tainted packet or tainted fields in a packet. The taint
will propagate through basic blocks of the binary code. In this example, there are
two features Fa and Fb, starting from node 2 and 6 respectively. Suppose that
a user wants to keep feature Fa and remove Fb. The basic blocks represented
by shaded nodes (1,2,3,4) are tainted in the current execution path, i.e., 1 →
2 → 3 → 4, discovering code blocks (1,2,3,4). However, another execution path
1→ 2→ 5 also belonging to Fa has not been identified due to limited coverage of
dynamic analysis. Hence, we perform symbolic execution starting from the node
2 to explore the possibility of any other execution paths of Fa, which eventually
leads to discovery node 5.

Assumptions and Scope: We assume that the packet format of a target
protocol is known beforehand and the feature-related fields can be identified. In
practice, packet formats can always be identified either through protocol specifi-
cations or using reverse engineering techniques described in prior work [9, 4, 21,
8]. We also assume that some (limited number of) test inputs are provided to
trigger the target features and serve as starting point for our analysis. These in-
puts can be easily obtained from system tracing, packet sniffing, and/or fuzzing.
The scope of this work is to customize a given implementation of network pro-
tocols with only access to program binaries.

3 System Overview

We formally define protocol features and problem statement as follows:
Feature: A program feature is defined as a set of basic blocks – denoted

by Fi = {f1
i , f

2
i , ..., f

n
i } ⊆ F – which uniquely represent an independent, well-
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Fig. 2: CustomPro System Diagram

contained operation, utility, or capability of the program. A feature at the binary
level may not always correspond to a software module at the source level. We
use T = {Fi, ∀i} to denote the set of all available features in the program.

Problem Statement: The goal of CustomPro is that, for a given program
binary and test cases invoking different program features, and user’s customiza-
tion requirement (i.e., a set of desire features T̂ ⊆ T ), it will produce a modified
binary that contains the minimum set of basic blocks/functions to satisfy the

user’s customization requirement and to support all desired features in T̂ .

CustomPro consists of two major modules: feature identification and fea-
ture rewriting. Its system architecture is illustrated in Figure 2. Users provide
customization requirement (i.e., a list of features that are needed) as well as
test-cases to reach different features. CustomPro takes the program binary and
customization requirement as inputs and generate a customized binary contain-
ing only the desired features.

CustomPro employs a combination of static and dynamic techniques. In par-
ticular, 1) feature identification module mainly relies on monitored program
execution (inside a system emulator), dynamic analysis and symbolic execution
to explore and discover the code segments related to the target features; and
2) feature rewriting module is a static binary rewriter at the core of its design.
When instructions are identified by the previous module, the rewriting module
keeps the desired instructions and remove others.

The feature identification module is explained in Section 4. Through program
tracing, cross-host tainting and guided symbolic execution(GSE), CustomPro is
able to find the program instructions that are necessary to perform the desired
features. The discovered instructions can come from two sources: 1. Execution
tracing and tainting form the basis of feature identification, in which executed
program instructions are logged and those related to target features are tainted.
2. With the information above, GSE performs a light-weight search for additional
code blocks that are also related to the target feature but not executed in the test
runs. The feature identification module then combines and passes the collectively
identified instructions (that are related to the target features) to the feature
rewriting module.
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The feature rewriting module is explained in Section 5. It modifies the pro-
gram binary in accordance with user’s customization requirements. The instruc-
tions remaining in the customized program can be viewed as a subset of that of
the original program(only exception is the handling of function exit), which is
able to retain the behavior of only the desired features. To evaluate and improve
the soundness of our customization, We perform fuzzing to check the feasibility
and code coverage of the customized program. We separate the fuzzing inputs
into two categories: 1) benign inputs that belong to the remaining features and
should be processed as if they are given to the original program; 2) malicious
inputs that don’t belong to the remaining feature and shouldn’t be processed.
Once benign inputs cause the program to malfunction, this input will be taken
to the previous feature identification module and generate a new execution trace,
from which more code segments related to the target feature are discovered and
added to the customized binary.

4 Feature Identification

As a feature-oriented customization framework, CustomPro discovers basic blocks
that are related to target features in program binary. Previous work for feature
customization, e.g., [16], often requires seed functions to bootstrap the feature
identification process. However, such seed functions are difficult to obtain in
practice. Users and even administrators often do not have detailed information
regarding the implementation of various protocol features/functions. CustomPro
instead considers network packets as the starting point of feature identification,
as it focuses on network applications and protocols. In particular, CustomPro
’s feature identification module performs program execution tracing, cross-host
tainting and symbolic execution to discover the relationships between features
and their coresponding code.

4.1 Execution tracing

CustomPro starts with test inputs that trigger the target features, during which
all code related to the target features are captured and identified dynamically.
To this end, we employ dynamic program analysis to discover the code and other
runtime infomation related to the target features. We run the program inside a
whole system emulator-TEMU [44], where the instructions get executed will be
logged and tainted instructions are labeled. The taint propagation mechanism
will identify all code related to certain packets/fields. In fact, during the program
execution, other runtime information such as operand values and CPU register
values are also inspected and logged. These values are used later for a symbolic
execution as described in section 4.3.

Network protocols typically involve executions on multiple network entities
with different roles, such as servers and clients. We execute all relevant entities
on the guest OS inside TEMU, and implement a cross-host tainting mechanism
to propagate taints between multiple entities. As will be described in section 4.2,
we piggyback taint information onto existing network packet, which requires the
modification of both sender and receiver entities.
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4.2 Cross-host Packet Tainting

Fig. 3: Field symbolization in tainted fields

Not all of the logged instructions are related to the target features. One
intuitive approach to identify relevant instructions is tainting. However, whole-
packet-level tainting may fail to achieve the granularity needed to extract the
code of the target feature. For example, in ClientHello message of SSL protocol,
there could be undesired extensions such as HeartBeats along with other nec-
essary fields. If the customization requirement is to remove heartbeat feature,
packet-level tainting cannot distinguish HeartBeats from other features embeded
in the same packet.

In CustomPro , we apply muti-tag, field-level tainting to label instructions
according to the features they belong to. In particular, we classify tainted in-
structions into two sets: 1) K: code related to desired features and will be kept
in the customized binary and 2) R: code related to undesired features and will
be removed after customization. Note that untainted code will not be removed
from the original binary since they are related to program initialization or state
transitions. In addition, the instructions in K and R will be utilized during par-
tial symbolic execution to identify any missing code blacks. The details will be
explained in Section 4.3.

The tainting engine in TEMU maintains the taint tags in shadow memory.
In our case, the shadow memory will track the taint status of every byte in NIC
buffer. When the taint source and tag are specified at the packet (i.e., which
fields are tainted and which tag each field gets), the corresponding memory
location is tainted. The taint then will be propagated along with data flow such
as read, DMA (Direct Memory Access), table lookups and arithmetic operations.
By default, TEMU will taint the whole packet if it satifies the user-defined filters
such as TCP packet and UDP packet. For a finer-grained tainting, we instrument
the tainting engine in TEMU to enable field tainting on packets. The target fields
are identified through their offsets in the packets.

In order to track the data flow across different hosts, CustomPro also im-
plement a cross-host tainting mechanism [46] to transmit taint information in
the network. This is essential for protocols that contain state machines on both
server and client sides. Take SSL handshake process as an example, when the
server is listening to incoming connections, it stays at a state ready to read
ClientHello. After the ClientHello message is received and processed, the server
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will go into another state such as replying ServerHello, renegotiation or error
state depending on the result of processing ClientHello. Suppose a ServerHello is
sent to the server side, the client will change its state to reading the ServerHello.
Such iterations extend the scope of data flow from one individual host to multi-
ple hosts across the network, while the status of one execution depends on the
executions on all other hosts in the protocol. To enable cross-host tainting, we
piggyback taint information onto each packet flight. The taint information con-
tains an offset table that indicates which bytes in the current packet are tainted
and which labels are used to taint them, allowing the taints to be extracted and
processed at the recipient.

4.3 Guided Symbolic Execution

By utilizing tainting, CustomPro now can map each instruction to its feature,
on all participating entities of the protocol. To customize the binary, a straight-
forward approach would then keep the desired instructions (related to desired
features) and remove the rest. However, there is still one limitation to this ap-
proach: The given test inputs can only trigger specific execution paths in the
binary code, which may not provide a full coverage of the target feature execu-
tion.

To this end, after tracing and tainting, we take the execution traces and
tainting information as the input to perform guided symbolic execution(GSE),
in order to discover any additional code blocks that are related to the target
features/fields. Symbolic execution is usually resource-consuming in terms of
memory and CPU circles. To trim the searching space of symbolic execution, we
(i) leverage the tainting results as well as the runtime information from execution
tracing, to limit the number of locations that require symbolic execution and
(ii) infer conditions from execution logs to further concretize certain variables
as well as to limit the value ranges of certain symbolized fields. In particular,
our solution is summarized as follows. a) We leverage GSE to symbolize only the
variables (i.e., registers and memory locations) that are tainted during execution
and belong to the set K as mentioned in 4.2, because the operands of tainted
instructions in set K contain or point to variables that are related to the desired
packet fields. b) During monitored execution, we take snapshots of the system
states, e.g., when tainting starts (such as when the first tainted byte in the NIC
is accessed by the program). This will dump the value of registers and process
memory layout. The value of variables that we are not interested in will be
passed into GSE to concretize as variables as possible. c) Available packet format
information may further limited the range of certain variables, in which case we
can apply such conditions to reduce the search space of those symbolic variables.
In particular, as shown in figure 3 (assume that this is a tainted packet), we only
symbolize part of the header fields and skip the payload. The fields marked by
dark gray will be symbolized while the unshaded fields will keep their concrete
values. The hatched area are concrete fields that can help limit the range of
symbolized fields. For example, the packet length fields can help set boundaries
for the total length of other symbolized fields. Given other specifications of the
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protocol (such as the min/max/enum value of certain fields), we can further trim
the searching space of GSE to accelerate the code exploration.

While dynamic tracing can precisely locate the basic blocks that get exe-
cuted, and with tainting enabled, it is also able to mark the blocks that are
related to specific registers/memory locations of interest, it is easy to see that
through one iteration of tracing and tainting, we can only identify the code blocks
that process specific network packets and belong to only one execution path of
the target feature. There are potentially other execution paths and branches
that are also related to the same type of operation but not taken in particu-
lar runs. On the other hand, symbolic execution can be employed to explore
more paths/branches, providing better code coverage . However, without prop-
erly trimming the searching space, it is often faced with a path explosion problem
and could easily incur prohibitive overhead in practice. This can be illustrated
by reusing the example in figure 1. At node 1, the format of packet is checked
and either feature Fa or Fb will be invoked. Without symbolic execution, only
one single path (1→ 2→ 3→ 4) is considered as the code related to Fa. After
customization, the new binary containing only the identified execution path will
not be able to process any packet inputs that will lead to node 5. And if symbolic
execution is applied without the tainting information, it will start exploration
from node 1 and try to symbolically execute all possible paths from there. Sig-
nificant CPU and memory resources can be required to explore redundant paths
such as 1→ 6→ 7→ 4. Hence, we combine tainting and symbolic execution in
CustomPro , by leveraging the tainted variables (such as registers and memory
locations) from instruction tracing to guide symbolic execution. We will fix the
value in the packet that indicates the feature Fa and symbolize other relevant
fields, to explore the code only belonging to feature Fa.

If multiple types of packets that cannot be generated in one run are given as
the inputs to feature identification module, CustomPro will perform the above
operations one by one and then merge the basic blocks discovered from each
iteration. Finally, CustomPro combines the addresses obtained from execution
tracing, tainting and GSE to identify a set of instructions that should be kept
during binary rewriting. All the basic blocks from 1 to 5 in figure 1 can be
discovered by feature identification module, and will be kept in the customized
program binary.

5 Feature Rewriting

Feature rewriting creates a customized binary that consists of the desired, feature-
related code blocks discovered through feature identification. This section de-
scribes the three main steps that CustomPro performs for feature rewriting.

5.1 Instruction Identification

CustomPro will collect traces from different program executions to identify and
compute the union of the related feature-constituent functions. This is needed
since a single execution trace and symbolic execution may not reach all desired
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program features (or feature-related code blocks). Let F̂ be a set of target pro-

gram features for rewriting. If the constituent basic blocks of each feature Fi ∈ F̂
can be successfully identified, we can simply create a superset of their constituent
basic blocks, i.e., F̂ = ∪Fi. Binary rewriting techniques are developed next to
create a customized program by retaining only the features in F̂ .

In order to rewrite the binary, we need to obtain the static addresses of
instructions. We locate the static instructions based on their offsets from the
entry point (starting address of “.text” section). The offsets can be calculated
by substract the actual runtime segment address of “.text” from the runtime
instruction address. The static addresses are then passed to binary rewriter as
inputs to modify the instructions.

5.2 Binary Rewriting

We adopt basic block level binary rewriting in CustomPro . In particular, we use
DynInst, a static binary rewriter to modify the program binary. The PatchAPI
in DynInst abstracts the program basic blocks in the form of CFG, which is
compatible with our framework. In the case of feature removal, the goals of
binary rewriting are twofold:

– The basic blocks to be eliminated should not be called. The call site of the
eliminated code will be replaced to redirect the program execution to an exit
point;

– To prevent the undesired code from getting accessed through malicious op-
erations/attacks such as Return-Oriented Programming (ROP), we replace
the undesired basic blocks with “NOP” (except for the shared code and data
segments), so they are no longer accessible.

The solution is illustrated in Figure 4. The original control flow is from basic
block B1 to B2 via a “call” instruction as arrow 1 indicates. If B2 is the target to
be removed, CustomPro will change the call site in B1 and redirect it to B3(an
exit point) as Arrow 2 indicates. In addition to the instrumentation of control
flow, CustomPro will also replace B2 with “NOP”s to prevent invoking the
removed features (and feature-related blocks) at runtime, e.g., through ROP [28].

5.3 Verification

After binary rewriting, standard program fuzzing techniques [45] can be em-
ployed by CustomPro to validate the effectiveness and correctness of feature
rewriting. A fuzzing engine generates test cases that can be categorized into
two sets: D that invoke the desired features in customized program, and E that
involve at least one of the eliminated features. In particular, CustomPro uses
D to confirm the integrity of necessary program functionalities after rewriting,
while E helps verify the successful removal and handling of eliminated features.
We note that this validation procedure can also be performed using user/admin
provided test cases when they are available. If a benign input - that belongs to
the desired features in the instrumented binary and should be processed just
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...

lea rsi, ptr[rip+0x6c7]

shl rdx, 0x20

mov eax, eax

or rdx, rax

mov rdi, rbx

mov ptr[rip+0x2212b4], rbp

mov ptr[rip+0x221e15], rdx

call 0x7f7a9426c550

lea r8d, ptr [rdx-0x30]

movsx edx,ptr [rdi+0x1]

lea ecx, ptr [rax-0x30]

lea r10, ptr [rdi+0x1]

lea r9, ptr [rsi+0x1]

mov rdi, r10

lea eax, ptr [rdx-0x30]

cmp al, 0x9

jnbe 0x7f7a9426be47

...

;store current state

mov ax,0x4c01;

int 0x21 ;

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

NOP

B1 B2

B3 B4

1

2

Fig. 4: An illustrative example of implementing feature rewriting on OpenSSL.

as previously - causes the program to crash, we will take this input to generate
the corresponding execution trace, and discover the instructions in the execution
trace to be added to the current binary. This step of verification and revision
serves as a feedback to the feature identification module to ensure correctness
and functionality of the instrumented binary.

6 Implementation

We implement a prototype of CustomPro using several binary analysis tools.
Tracing and cross-host tainting: We implement our tracing and cross-

host tainting module by modifying TEMU: a) To enable finer-grained tainting
such as field tainting, we instrument the plugin “tracecap” in TEMU to add
filters when setting the taint bitmap, e.g., to enable tainting of packets satisfying
certain formats or specific fields in the packets. b) We instrument system calls
such as open(), read(), write(), connect(), recv()andsend(), so that they are able
to process and pass taint information across hosts.

Symbolic execution: We use Angr [31] to perform symbolic execution on
the static binary. The symbolic execution starts from the memory locations
where packets are stored (which can be identified by the tainting information
in CustomPro ). We also pass the taint tag information to Angr such that the
symbolic execution engine will only explore the tainted variables related to target
features and avoid the irrelevant features and instructions. We set the end of
main function as the ending point of exploration. We also instrument the default
exploration mechanism to dump the instructions executed by symbolic engine
using the “ins addr” member in “history.actions”.

Binary rewriting: We use DynInst for static binary rewriting. In particular,
the PatchAPI is used to instrument and modify the binary. PatchAPI abstracts
the program into CFG and most of the rewriting operations are performed upon
it. The CFG abstraction includes functions, basic blocks and control flows. Our
implementation (i) removes target features by removing the corresponding basic
blocks from the CFG list and replacing the basic block bodies with NOPs; (ii)
redirects any jumps to the removed basic blocks to a program exit point.
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7 Evaluation

In this section, we evaluate the effect of feature customization on two real-
world protocol implementations: OpenSSL and Mosquitto. We choose four fea-
tures from OpenSSL, namely, heartbeat, client certificate request, renegotiation,
encrypt-then-MAC(ETM). Since the handshake of SSL protocol is a state machine-
based process, and each feature involves the implementation on both client and
server, we customize both sides of OpenSSL to eliminate each one of the four
target features at one time. Mosquitto implements the MQTT protocol (an IoT
messaging protocol) which involves three different entities in a message iteration:
broker, publisher and subscriber. After the subscriber sign up for a certain topic,
the publisher sends message related to that topic to the subscriber. The broker
serves as a middle man and receives all message updates from the publisher then
decides which subscribers the messages should be sent to, with respect to the
message topics. We choose three features from mosquitto broker and publisher
to build different customized versions of the protocol.

Experiment Setup: Our experiments are conducted on a 2.80 GHz In-
tel Xeon(R) CPU E5-2680 20-core server with 16 GByte of main memory. The
operating system is Ubuntu 14.04 LTS. To evaluate the feature customization
on OpenSSL and Mosquitto, we first run the default program to get the num-
ber of runtime and static instructions with all target features included. The
runtime instructions include all instructions that get executed, excluding dy-
namic library functions such as glibc code. We further filter out the library code
based on the runtime addresses of instructions and mapping information from
the /proc/PID/maps. It is obvious that runtime instructions contain duplicated
instructions, as the same basic block in the program binary can be executed
multiple times. Hence, we also collect the number of (unique) instructions in the
static program binary that are executed during runtime.

7.1 Customizing OpenSSL

Table 1: Number of instructions remaining in OpenSSL by removing different features

Removed Feature
# Inst remaining in Server # Inst remaining in Client

Dynamic Static Dynamic Static
HeartBeat 128953 110937 111123 110487
ClientCertificate 121167 103214 107341 95025
Encrypt-then-MAC 128651 110952 122541 110330
Renegotiation 128953 110937 111123 105487

OpenSSL is an open-source software that implements SSL/TLS protocols. We
use OpenSSL version 1.0.1 for evaluation (the latest version still containing the
Heartbleed bug). We first collect the number of runtime and static instructions
from the default program by running the default s server and s client. Our
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experiments show that server executes 130212 runtime instructions and 111595
static instructions, while the client side executes 124151 runtime instructions
and 111123 static instructions. We remove one of the four target features one-
at-a-time to analyze how many instructions are involved in each feature.

HeartBeat: It is one of the well-known bugs in OpenSSL is CVE-2014-0160,
namely, Heartbleed, which could be exploited by adversaries to steal sensitive
data from the SSL server. Heartbleed is rooted in the feature HeartBeat in SSL,
an extension designed to make sure that each end of the communication is still
alive by sending a number of data and expecting the same message being echoed
back. However, the receiver of the heartbeat request, rather than checking the
actual size of the HeartBeat payload, simply allocates a memory buffer with the
size declared in the length field of the received packet. If a HeartBeat request
message is shorter than the claimed value, then extra content will be sent back
(up to 64KB) and revealed, containing sensitive memory content from the server.
The HeartBeat feature can be automatically removed using CustomPro to pro-
duce customized program binaries that cannot generate or process HeartBeat
packets, while other features are still intact. In practice, this provides system
administrators with a swift, automatically-generated fix through program cus-
tomization, without the need or time-overhead to perform full system analyze
and patch construction. Our experiments show that 658 static instructions are
removed from server and 636 instructions are removed from client.

ETM: Similar to heartbeat, the feature encrypt-then-mac(ETM) is also
an extension in the process of handshake. After encrypting the plaintext, a
MAC(message authentication code) of the ciphertext is calculated and appended
to the end of ciphertext. The ETM helps to verify the integrity of the cipher-
text. A bug related to ETM has been reported in CVE-2017-3733, where the
program will crash if the ETM is defined in the process of renegotiation while it
is not in the original handshake (or vice-versa). CustomPro can eliminate such
vulnerability by removing the ETM feature from both client (793 instructions
removed) and server sides(643 instructions removed) in an automated fashion.

Renegotiation: An interesting case in our study of customizing OpenSSL
is about the feature renegotiation. Renegotiation is a feature that enables the
connection to change some parameters without establishing a new SSL session
so as to save resources. The vulnerabilities about renegotiation reported in CVE
database (such as CVE-2009-3555 and CVE-2015-0291) cause the MIIT attack
and DoS. However, as CustomPro taint and discover target instructions through
the packets/fields, we cannot distinguish the feature renegotiation since the rene-
gotiation request will basically result in another handshake (initialized by a hello
request). As shown in table 1, the customized version of either client or server
is the same as the original one.

7.2 Customizing MQTT

Message Queuing Telemetry Transport (MQTT) is a protocol using a certain
topic to subscribe and publish message which is always used in internet of things
(IOT). There are three entities in MQTT communications, e.g., broker, publisher
and subscriber. The subscriber signs up for a topic via broker, in order to receive
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Table 2: Number of instructions in Mosquitto after removing unwanted features

# Inst
Removed Features

Publisher:
insecure

Publisher:
publishing file

Broker:
loading config

Dynamic 1213 1172 8229
Static 1117 1069 7192

messages published by publisher (and through the broker). The MQTT packets
contain three fields that include fix header, variable length header, and payload.
The fix header consists of control header and packet length. The variable length
header is used when some extra program features are enabled. In this paper, we
perform feature customization on Mosquitto ver 1.5.

We run the default Mosquitto broker, subscriber and publisher with all three
target features. The numbers of runtime instructions in broker, subscriber and
publisher are 8937, 1117 and 1235, respectively. The numbers of static instruc-
tions in broker, subscriber and publisher are 7717, 1022 and 1132, respectively.
Table 2 shows number of instructions after removing target features.

Among those removed features, some are particularly security concerning.
The option “insecure” let subscriber and publisher skip the verification of the
server hostname, which means a malicious third party could gain the access to
the MQTT communication. The feature “publish file” is a feature that allows the
publisher to send files (instead of message updates to subscribers), potentially
offering a mechanism for malicious code injection.

8 Discussion

In this section, we discuss some limitations of our CustomPro framework, which
will be considered as possible directions for future work.

Backward tainting: The tainting module in the feature identification phase
currently can only deal with forward tainting but not backward tainting, e.g.,
only the instructions that process the inbound packets can be possibly tainted,
given that the inbound packets are marked as the source of this forward tainting.
If the taint source is the outbound packet, then the instructions that generate
such a packet cannot be identified through such forward tainting. To support
tainting on outbound packet, backward tainting module can be added to the
tainting implementation in TEMU. However, this is only needed when the first
packet is generated, because the following packets will all contain the initial
taint information (which are provided by our across-host taint propagation), as
they are always triggered by some incoming packets from other protocol entities.
Hence, one possible future work is to leverage static backward tainting to identify
code that generates the first packet, and improve protocol customization.

Rewriting obfuscated binaries: Our current rewriting module performs
rewriting on static binary, which requires the precise addresses for instruction
rewriting. Obfuscated binaries cannot be supported in our proof of concept im-
plementation. Also, instead of replacing instructions with NOPs and program
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crash, as a future work, we plan to silent undesired feature invocations and let
the program continue execution, such that the (execution of) desired features
will not be interrupted by unexpected invocations to undesired features.

9 Related Work

Vulnerability discovery and program customization: As software sys-
tems keep expanding and developing new features, more vulnerabilities are in-
troduced to the code. Existing works employ multiple techniques to discover and
mitigate bugs in programs such as symbolic execution [33, 24, 42], fuzzing [22],
dynamic tainting [36, 10] program customization [16, 14, 6, 7, 18, 40], hardware-
assisted profiling and analysis [43, 5], program analysis [27, 30] and learning-
based approaches [37, 41, 42, 20]. In this paper we leverage the tainting infor-
mation to guide the symbolic execution. Existing works have studied multiple
methods on a more effective symbolic execution. Driller [33] interactively applied
fuzzing and symbolic execution to explore code based on the observation that
fuzzer-generated inputs often fail to pass the input checking (while symbolic exe-
cution can easily generate the such conditions) and symbolic execution can easily
dive into the issue of path explosion (while fuzzing is a relatively light-weight
technique to explore code within certain scope). Directed greybox fuzzing lever-
ages annealing-based heuristic to generate inputs that can reach a certain point
in the program, achieving a better performance over directed white-box fuzzing
and undirected gray-box fuzzing. StraightTaint [24] also combine tainting (“in-
complete” taint propagation) and symbolic execution to improve the runtime
tainting performance (by lightweight logging) while still keep necessary infor-
mation for offline analysis. StatSym [42] employs runtime predicates to guide
the symbolic execution. It collects and analyzes certain program states from
the sampling execution (benign and buggy) then use them to guide symbolic
execution engine to explore the most possible places where a bug could happen.

De-bloating: De-bloating has been studied to analyze and mitigate pro-
gram bloat caused by feature creep [15, 14, 25, 39, 6]. At source code level, Yufei
Jiang et al. perform program slicing and data analysis to remove code segments
that are related to the target feature [15]. In particular, they discover and delete
code that has dependencies with its return value, parameter and call site. Some
knowledge of feature-related function (seed function) are required to bootstrap
the slicing. Jred [14] aims to remove unused methods in JAVA program and
libraries by analyzing the program call graph. It operates at IR level, i.e., the
JAVA bytecode is lifted into Soot IR. After trimming, IR is transformed into
Java bytecode to produce a light-weight program. While the goal of above works
is to remove redundant code from program, we offer more flexible ways to cus-
tomize the (combination of) program features. Most of the previous de-bloating
techniques can only work with code in high level languages while CustomPro
can be directly applied to binaries.

Binary reuse: Binary reuse has been addressed by several works
[47, 34, 48]. The reuse of binary code, different from source code, carries great
difficulty. Methods proposed in [3] identify self-contained code fragment from
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binary with the help of both static disassembling and dynamic execution mon-
itoring. There are also research works that focus on reconstructing program bi-
nary from dynamic traces, by utilizing instruction trace and memory dump [19].
However, neither of the above two methods fits in the context of program feature
customization due to limited degree of flexible modification, as it only focuses
on segment reuse and high level assembly code.

Binary analysis tools: A chain of binary tools have been widely used to
analyze binary code for different purposes, such as binary CFG analysis, vulner-
ability detection and binary rewriting. Specifically, binary rewriting tools such as
DynInst [32] and Pin [23] are able to perform binary modification either statically
or dynamically. In this paper, we employ DynInst to perform basic-block modi-
fication of program features. In feature identification module, we use TEMU [44]
to emulate a system where the web servers are launched then monitored. TEMU
also contains a tainting plugin (“tracecap”) that can taint the instructions from
network packets. Angr [31] is used to perform symbolic execution together with
the tainting information obtained through tracecap.

10 Conclusion

We design and evaluate a binary customization framework, CustomPro , for cus-
tomizing network protocols. CustomPro aims to generate customized program
binaries with just-enough features and can satisfy a broad array of customization
requirements. Feature identification and feature rewriting are two major mod-
ules of CustomPro , for discovering the target features using program tracing
and tainting-based symbolic execution, and for modifying the program features
through binary instrumentation to obtain a customized program. Our exper-
iment results demonstrate that CustomPro is able to effectively achieve the
customization objectives in terms of obtaining an instrumented binary with the
necessary functionalities and reducing the corresponding attack surface.
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exploiting non-uniform memory access based architectures. In Proceedings of the
on Great Lakes Symposium on VLSI 2017, pages 155–160. ACM, 2017.

44. H Yin and D Song. Temu: The bitblaze dynamic analysis component.
45. Michal Zalewski. American fuzzy lop, 2007.
46. Angeliki Zavou, Georgios Portokalidis, and Angelos Keromytis. Taint-exchange: a

generic system for cross-process and cross-host taint tracking. Advances in Infor-
mation and Computer Security, pages 113–128, 2011.

47. Junyuan Zeng, Yangchun Fu, Kenneth A Miller, Zhiqiang Lin, Xiangyu Zhang,
and Dongyan Xu. Obfuscation resilient binary code reuse through trace-oriented
programming. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security, pages 487–498. ACM, 2013.

48. Peng Zhang, Jianhui Li, Alex Skaletsky, and Orna Etzion. Apparatus, system, and
method of dynamic binary translation with translation reuse, November 24 2009.
US Patent 7,624,384.

20


