
rPRAM: Exploring Redundancy Techniques to
Improve Lifetime of PCM-based Main Memory

Jie Chen, Zachary Winter, Guru Venkataramani, H. Howie Huang

Department of Electrical and Computer Engineering,

George Washington University, Washington DC, USA

Abstract—Future main memory systems will confront the
scaling challenges posed by DRAM technology and should adapt
themselves to use the emerging memory technologies like Phase
Change Memory (PCM, or PRAM). PCM offers advantages such
as storage density, non-volatility, and lower energy consumption.
However, they are constrained by limited write endurance and
reduced performance. In this paper, we propose a novel PCM-
based main memory system, rPRAM, that explores advanced
redundancy techniques to resuscitate faulty PCM pages and reuse
these pages to store data. Our preliminary experiments show that
rPRAM has the potential to extend the lifetime of PCM based
memory commensurate with the existing schemes like ECP, while
incurring only a negligible fraction of hardware cost compared
to ECP.

I. INTRODUCTION

With multi-core processors rapidly becoming mainstream,

offering sufficient memory bandwidth and storage density to

satisfy the applications’ demands has become a big challenge

for DRAM systems. DRAM technology is also facing tech-

nology limitations in scaling beyond 30 nm [4]. Therefore, it

is imperative to explore emerging resistive-memory types such

as Phase Change Memory (PCM) as alternatives to DRAM.

PCM, in particular, has been shown to exhibit enormous

potential as a DRAM replacement because they scale to

smaller feature sizes like 9nm, can offer up to 4× more density

at only small orders of magnitude (2×-4×) slowdown in per-

formance [7]. Consequently, PCM-based hybrid memory has

been proposed for future generation main memory systems [6].

A major challenge when using PCM arises from its limited

write endurance. PCM-based devices are expected to sustain

an average of 108 writes per cell, when the cell’s programming

element breaks and the write operations can no longer change

the values. Current solutions focus on wear-leveling [5] and

reducing the number of writes to PCM [3]. However, once

a PCM page begins to exhibit faults, it will be discarded as

unusable by the memory controller.

To the best of our knowledge, Dynamically Replicated

Memory (DRM) [1] was the first technique to rejuvenate pages

that had faults and put them back to use for data storage.

DRM picks pairs of faulty pages that do not have faults

in the same bit position and stores replicated data in both

pages. This redundant storage helps to recover the original data

through reading the non-faulty byte from at least one of the

paired pages. DRM leverages on the high probability of finding

two compatible faulty pages and hence, one could eventually

reclaim what would otherwise be decommissioned memory

space. A caveat with this approach is that simply replicating
the data in both pages can rapidly degrade the effective
capacity of the memory system. Another recent proposal,

Error Correcting Pointers [8], handles errors by encoding the

locations of failed cells in a table and by assigning new cells to

replace them. The disadvantage with this approach is the high

cost and complexity in redesigning the PCM chip specially to

accommodate the dedicated ECP pointers. ECP incurs a static

area overhead of about 12% just to store these pointers.

Our premise is that, we need to invent low cost and efficient

mechanisms to reuse faulty pages in a managed way and

significantly extend PCM life. To this end, we propose rPRAM
(redundancy PRAM), that explores extending PRAM device

lifetime based on advanced redundancy techniques inspired by

RAID (Redundant Arrays of Inexpensive Disks) technology.

While a wide range of levels from RAID 0 to 6 are available,

our work specifically adopts a robust approach by forcing the

faulty pages to use RAID 4 (block level striping with dedicated

parity, where there is a dedicated parity block for every group).

As faulty pages begin to incur higher numbers of faults per

page, we reduce the number of faulty blocks per group because

of increased complexity in finding compatible faulty pages

(i.e., too many iterations are needed to pick compatible faulty

pages). In rPRAM, we leverage two important observations

that DRM scheme makes with regards to managing faulty

pages: (1) We find two pages compatible only when the

corresponding pages do not have faulty bits in the same bit

position. (2) The PCM pages are deemed unusable once they

have at least 160 bit failures because finding compatible pairs

of pages becomes exponentially harder beyond this limit [1].

Our motivation behind exploring parity-based technique to

improving the lifetime of PCM was driven by wanting to:

• Increase the space efficiency in the usage of faulty pages:
For DRM, mirroring replicates data across two faulty pages–

the storage density is 50%. In rPRAM, a group of G faulty

pages have a dedicated block, P that stores the parity values

for all of the G pages. Therefore, the storage density for G+1

(including the parity) pages is G/(G+1). For example, at a

group size of 3, the storage efficiency is 75%, that is 50% more

efficient than the DRM scheme. At higher values of G, we get

better efficiency in terms of storage density although finding

compatible pages for larger G values becomes increasingly

difficult.

• Utilize off-the-shelf memory components without extensive
hardware redesign: Prior techniques such as ECP [8] have

to custom design the PCM chip to integrate their pointer-

2011 International Conference on Parallel Architectures and Compilation Techniques

1089-795X/11 $26.00 © 2011 IEEE

DOI 10.1109/PACT.2011.40

201

based lifetime-enhancing techniques; whereas, our goal is to

maximize the use of off-the-shelf components and incorporate

techniques to enhance lifetime with minimum changes to

hardware design. This helps minimize the performance impact

on applications, as well as, reduce the cost associated with

including our proposed techniques into the existing hardware.

• Explore design choices that will offer flexibility to the
user: The end user can make an informed choice that is most

suitable to her needs under a given cost budget.

II. EXTENDING PCM LIFETIME

In rPRAM, we assume that the PCM-based main memory

starts without any faults and does wear-leveling to uniformly

distribute the writes. For cases where Error Correcting Code

(ECC) exist on chip, the first few bit faults can be tolerated

using pre-built schemes. When the first bit fault (beyond

ECC tolerance limit) occurs, we temporarily decommission

the PCM page k and place it in a separate pool of faulty PCM

pages that are waiting to be matched with other compatible

pages. We then find a compatible group of g faulty PCM

pages, and store the corresponding parity in a separate high-

performance buffer to avoid performance bottleneck. In this

work, we use a small DRAM to store parity for faster access,

which we believe is more cost-effective than simply having

additional PCM pages for parity. This is mainly motivated by

two facts: (1) Parity information is much smaller than data

itself- typically G data blocks have one corresponding parity

block. (2) Parity needs to be accurate and cannot have errors

in order to recover the faulty data block.

As the number of faults per page increase, it becomes harder

to form a group of compatible faulty pages that don’t have

fault at the same byte positions. Experimentally, we observe

that the average number of random trials needed for three-way

matching of faulty PCM pages (with at least 80 bit faults)

is more than twice the number of trials required for two-

way matching. Therefore, in order to bound the complexity

associated with matching, we reduce the group size from three

to two once the faulty page incurs more than 80 bit faults.

We note that this involves disbanding the existing three-page

group, and invoking the matching algorithm to find a new

compatible two-page pair.

In our experiments, we measure the lifetime (as the total

number of writes to the PCM) in rPRAM and compare it

against prior schemes like Fail Stop (that does not have any

Error Correction capabilities and discards a PCM block after

the first fault occurs), DRM [1], ECP [8] schemes. We assume

a baseline of 4GB PCM Memory with 4KB page size and

perform writes at a granularity of 64 byte blocks. We assume

a 50% probability that any single write operation would flip

a particular bit. We model the PCM to have lifetimes that

follow normal distribution with a mean of 108 respectively

and variation coefficient of 0.2.

Figure 1 shows our preliminary results. We observe that in

a 4 KB page, there is a high probability of at least one byte

having a lifetime in the tail-end of the normal distribution. This

makes the Fail Stop scheme to quickly decommission all the

pages rapidly and the PCM’s effective capacity drops to zero.

�

���

���

���

���

���

��	

��

���

���

�

� � �� �� �� �� �� �� �� �� �� �� 	� 	�
�
� �� �� �� �� ���������

��������	�
���
�
	����������	���

��������

���

���

�����

Fig. 1. Effective capacity of PCM main memory versus the total number of
writes issued to the main memory.

DRM offers an extended lifetime of approximately 1.86× over

Fail Stop scheme, while ECP achieves a lifetime improvement

of 2.68×. rPRAM achieves lifetime improvement of 2.72×,

that is comparable to ECP at a fraction of ECP’s cost. Using

CACTI [2], we estimate that rPRAM incurs <1% area over-

heads (offchip and onchip) and uses off-the-shelf components

without having to custom design the PCM chip.

III. ACKNOWLEDGMENTS

This material is based upon work supported by the National

Science Foundation under Grant No. CCF-1117243 and OCI-

0937875.

REFERENCES

[1] Engin Ipek, Jeremy Condit, Edmund B. Nightingale, Doug Burger, and
Thomas Moscibroda. Dynamically replicated memory: building reliable
systems from nanoscale resistive memories. In Proceedings of the fifteenth
edition of ASPLOS on Architectural support for programming languages
and operating systems, ASPLOS ’10, pages 3–14, New York, NY, USA,
2010. ACM.

[2] HP Labs. Cacti 5.3. http://quid.hpl.hp.com:9081/cacti/, 2010.
[3] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. Architecting

phase change memory as a scalable dram alternative. In Proceedings of
the 36th annual international symposium on Computer architecture, ISCA
’09, pages 2–13, New York, NY, USA, 2009. ACM.

[4] Devices Process Integration and Structures. International technology
roadmap for semiconductors. http://www.itrs.net, 2007.

[5] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalak-
shmi Srinivasan, Luis Lastras, and Bulent Abali. Enhancing lifetime and
security of pcm-based main memory with start-gap wear leveling. In
Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, pages 14–23, New York, NY, USA, 2009.
ACM.

[6] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers.
Scalable high performance main memory system using phase-change
memory technology. In Proceedings of the 36th annual international
symposium on Computer architecture, ISCA ’09, pages 24–33, New York,
NY, USA, 2009. ACM.

[7] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C. Chen, R. M.
Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, and C. H. Lam.
Phase-change random access memory: a scalable technology. IBM J. Res.
Dev., 52:465–479, July 2008.

[8] Stuart Schechter, Gabriel H. Loh, Karin Straus, and Doug Burger. Use
ecp, not ecc, for hard failures in resistive memories. In Proceedings of
the 37th annual international symposium on Computer architecture, ISCA
’10, pages 141–152, New York, NY, USA, 2010. ACM.

202

