
..

DETECTING HARDWARE COVERT
TIMING CHANNELS

..

MANY POPULAR COMPUTING ENVIRONMENTS ARE VULNERABLE TO COVERT TIMING

CHANNELS. WITH IMPROVEMENTS IN SOFTWARE CONFINEMENT MECHANISMS, SHARED

PROCESSOR HARDWARE STRUCTURES WILL BE NATURAL TARGETS FOR SUCH AN ATTACK.

THE AUTHORS PRESENT A MICROARCHITECTURE-LEVEL FRAMEWORK THAT DETECTS THE

POSSIBLE PRESENCE OF COVERT TIMING CHANNELS ON SHARED HARDWARE.

EXPERIMENTAL RESULTS DEMONSTRATE THEIR ABILITY TO DETECT DIFFERENT TYPES OF

COVERT TIMING CHANNELS ON VARIOUS HARDWARE STRUCTURES AND COMMUNICATION

PATTERNS.

......Covert timing channels are
information leakage channels in which a
Trojan process intentionally modulates the
timing of events on a shared system
resource to illegitimately reveal data secrets
to a spy process. Note that the Trojan and
the spy do not communicate explicitly
through send/receive or shared memory,
but covertly via modulating certain hard-
ware events. In contrast to side channels,
wherein a process unintentionally leaks
information to a spy process, covert timing
channels have an insider Trojan process
(with higher privileges) that intentionally
colludes with a spy process (with lower priv-
ileges) to exfiltrate the system secrets.

To achieve covert-timing-based commu-
nication on shared processor hardware, a fun-
damental strategy used by the Trojan process
is to modulate the timing of events by inten-
tionally creating conflicts. We use “conflict”
to collectively denote methods that alter
either a single event’s latency or the interevent

intervals. The spy process deciphers the
secrets by observing the differences in
resource access times. On computational
logic and buses and interconnects, the Trojan
creates conflicts by introducing distinguish-
able contention patterns. On memory struc-
tures, the Trojan creates conflicts through
repetitive patterns of intentional memory
block replacements such that the spy can
decipher the message bits based on the mem-
ory hit and miss latencies. This basic strategy
of creating conflicts for timing modulation
has been observed in numerous covert timing
channel implementations.1–5

In this article, we present a framework
that detects hardware covert timing channels
by dynamically tracking conflict patterns on
shared processor hardware. We design low-
cost hardware support that dynamically gath-
ers data on certain key indicator events on
shared hardware devices, and use software
support to compute the likelihood of covert
timing channels operating on them. (For

Guru Venkataramani

Jie Chen

Milo�s Doroslovački

George Washington University

0272-1732/16/$33.00�c 2016 IEEE Published by the IEEE Computer Society

...

17

information on other approaches, see the
“Related Work in Covert Channels” sidebar.)

Our framework can protect users from sen-
sitive information leakage as we transition to
an era of running applications on remote serv-
ers that host programs from many different
users. Prior studies show how popular com-
puting environments such as cloud computing
are vulnerable to covert timing channels.4,5

Static techniques to eliminate timing channels,
such as code analyses, are virtually impractical
to enforce on every third-party software appli-
cation and on code binaries. Furthermore,
adopting strict system usage policies could
adversely affect the overall system perform-

ance. To overcome these issues, our dynamic
detection is a desirable first step before adopt-
ing damage-control strategies.

This article offers new technical contribu-
tions over our prior work, CC-Hunter.6 First,
we design algorithms that denoise the system
activity log to identify the key indicator events
responsible for covert timing transmission.
We also incorporate a low-cost cache conflict
miss detector to replace the generation-bit-
based detector in CC-Hunter. Finally, we
present additional experimental results that
show different communication protocols in
cache covert timing channels and demonstrate
the efficacy of our solution.

..

Related Work in Covert Channels
Butler Lampson first introduced the notion of a covert channel.1

Wei-Ming Hu proposed fuzzing the system clock that could signifi-

cantly affect the normal system performance.2 Richard Kemmerer pro-

posed a shared matrix methodology to statically check whether a

resource has potential for covert activity.3 Unfortunately, such static

code-level or abstract model analyses are impractical on every single

third-party application in today’s computing environments.

Zhenghong Wang and Ruby Lee proposed secure hardware cache

designs to defend against cache side channels.4 John Demme and col-

leagues introduced a metric called the side-channel vulnerability

factor to quantify the difficulty level to exploit a system for side chan-

nels.5 Andrew Ferraiuolo and colleagues designed a secure memory

scheduling algorithm to protect the shared memory controller.6 Has-

san Wassel and colleagues proposed a new data transmission for on-

chip networks to prevent information leakage.7 Many of these preven-

tative techniques complement our design and provide enhanced sys-

tem security.

Casen Hunger and colleagues studied the same underlying phe-

nomenon—that cache covert channels are created through conten-

tion.8 Although they observed the destructive read property and

proposed anomaly detection as the solution, CC-Hunter instead

detects contention channels by analyzing the event trains generated

specifically from contention events, such as conflict misses for a

cache channel.9 Dmitry Evtyushkin and colleagues used the Trojan

to warm up the branch predictor such that the spy can decipher the

bit based on the branch misprediction latency.10 In essence, an

oscillatory pattern of conflicts happens between the Trojan and the

spy on the branch history buffer, in which the Trojan intentionally

flips the predictor bits (similar to the cache block replacement done

by the Trojan to create a conflict miss). With additional hardware

support to track such conflicts on branch history buffer entries, our

algorithm (described in the “Understanding Cache Conflict Miss

Patterns” section of the main article) can be adapted to detect tim-

ing channels on branch predictors.

References
1. B.W. Lampson, “A Note on the Confinement Problem,”

Comm. ACM, vol. 16, no. 10, 1973, pp. 613–615.

2. W.-M. Hu, “Reducing Timing Channels with Fuzzy Time,” J.

Computer Security, vol. 1, no. 3, 1992, pp. 233–254.

3. R.A. Kemmerer, “Shared Resource Matrix Methodology: An

Approach to Identifying Storage and Timing Channels,” ACM

Trans. Computer Systems, vol. 1, no. 3, 1983, pp. 256–277.

4. Z. Wang and R. Lee, “New Cache Designs for Thwarting

Software Cache-Based Side Channel Attacks,” Proc. 34th

Ann. Int’l Symp. Computer Architecture, 2007, pp. 494–505.

5. J. Demme et al., “Side-Channel Vulnerability Factor: A Metric

for Measuring Information Leakage,” Proc. 12th Ann. Int’l

Symp. Computer Architecture, 2012, pp. 106–117.

6. A. Ferraiuolo et al., “Lattice Priority Scheduling: Low-Overhead

Timing Channel Protection for a Shared Memory Controller,” to

be published in Proc. Int’l Symp. High-Performance Computer

Architecture, 2016.

7. H.M. Wassel et al., “SurfNoC: A Low Latency and Provably

Non-Interfering Approach to Secure Networks-on-Chip,” ACM

SIGARCH Computer Architecture News, vol. 41, no. 3, 2013,

pp. 583–594.

8. C. Hunger et al., “Understanding Contention-Based Channels

and Using Them for Defense,” Proc. IEEE 21st Int’l Symp.

High Performance Computer Architecture, 2015, pp. 639–650.

9. J. Chen and G. Venkataramani, “CC-Hunter: Uncovering Covert

Timing Channels on Shared Processor Hardware,” Proc. 47th

Ann. IEEE/ACMInt’lSymp.Microarchitecture,2014,pp.216–228.

10. D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh,

“Understanding and Mitigating Covert Channels through

Branch Predictors,” ACM Trans. Architecture and Code

Optimization, vol. 13, no. 1, 2016, doi:10.1145/2870636.

..

SECURITY

..

18 IEEE MICRO

Defining Covert Timing Channels
Trusted Computer System Evaluation Criteria
(TCSEC), also called the Orange Book, defines
a covert timing channel as one that would
allow one process to signal information to
another process by modulating its own use of
system resources in such a way that the change
in response time observed by the second proc-
ess would provide information.7

Note that, between the Trojan and the spy,
the task of constructing a reliable covert tim-
ing channel is not simple. Covert timing chan-
nels implemented on real systems require
significant amounts of synchronization, con-
firmation, and transmission time, even for rel-
atively short messages. For example, Keisuke
Okamura and Yoshihiro Oyama constructed a
memory-load-based covert channel on a real
system and showed that it takes 131.5 seconds
just to covertly communicate 64 bits in a reli-
able manner, achieving a bandwidth rate of
0.49 bits per second (bps).3 Thomas Risten-
part and colleagues demonstrate a memory-
based covert channel that achieves a band-
width of 0.2 bps.4 This shows that the covert
channels create nonnegligible amounts of traf-
fic on shared resources to accomplish their
intended tasks.

TCSEC points out that a covert channel
bandwidth exceeding a rate of 100 bps is clas-
sified as a high-bandwidth channel based on
the observed data-transfer rates between sev-
eral kinds of computer systems. In any com-
puter system, there are several relatively low-
bandwidth covert channels whose existence is
deeply ingrained in the system design. If the
bandwidth-reduction strategy to prevent cov-
ert timing channels were to be applied to all
of them, it would become an impractical
task. Therefore, TCSEC points out that
channels with maximum bandwidths of less
than 0.1 bps are generally not considered to
be feasible covert timing channels. This does
not mean that it is impossible to construct a
very low-bandwidth covert timing channel,
but it becomes expensive and difficult for the
adversary (spy) to extract any meaningful
information from the system.

Threat Model and Assumptions
Our threat model assumes that the Trojan
wants to intentionally and covertly commu-

nicate the secret information to the spy
through recurrent conflict patterns to modu-
late the timing on certain hardware over non-
trivial amounts of time. We do not consider
covert channels based on networks or soft-
ware layers and side channels.

A hardware-based covert timing channel
could have noise due to two factors: processes
other than the Trojan and spy using the
shared resource frequently, and the Trojan
artificially inflating the patterns of random
conflicts to evade detection. In both cases,
the reliability of covert communication is
severely affected, resulting in loss of data for
the spy.4,8 Therefore, it is impossible for a
covert timing channel to randomly inflate
conflict events or operate in noisy environ-
ments simply to evade detection. In light of
these prior findings, we model moderate
amounts of interference by running a few
(at least three) active processes alongside
the Trojan and spy processes in our
experiments.

In this article, we use two different, realis-
tic covert timing channel implementations
on interconnect (memory bus) and memory
(level-2, or L2, cache) that have been demon-
strated successfully on Amazon EC2 cloud
servers.4,5

Memory Bus Covert Timing Channel
When the Trojan wants to transmit a 1 to
the spy, it intentionally performs an atomic
unaligned memory access spanning two
cache lines. This action triggers a memory
bus lock in the system and puts the memory
bus in a contended state for most modern
generations of processors, including the
Intel Nehalem and the AMD K10 family.
The Trojan repeats the atomic unaligned
memory access pattern several times to suf-
ficiently alter the memory bus access timing
for the spy to note the 1 value transmission.
To communicate a 0, the Trojan simply
puts the memory bus in an uncontended
state. The spy deciphers the transmitted bits
by accessing the memory bus intentionally
through main memory accesses. It times its
memory accesses and detects the memory
bus contention state by measuring the aver-
age latency. The spy accumulates several
memory latency samples to infer the trans-
mitted bit.

...

SEPTEMBER/OCTOBER 2016 19

L2 Cache Covert Timing Channel
To transmit a 1, the Trojan visits the even-
numbered cache sets (G1) and replaces all of
the constituent cache blocks; for a 0, it visits
the odd-numbered cache sets (G0) and repla-
ces all of the constituent cache blocks. The
spy infers the transmitted bits as follows: It
replaces all of the cache blocks in G1 and G0,
and times the accesses to the G1 and G0 sets
separately. If the accesses to G1 sets take lon-
ger than the G0 sets, the spy infers 1. Other-
wise, it infers 0.

Detection Algorithms
We use the examples described earlier to illus-
trate our design approach. Note that our
algorithms are neither limited to nor derived
from these specific examples. Our algorithms
seek to detect and analyze the fundamental
property exploited by hardware covert timing
channels—namely, conflict patterns on indi-
cator events.

Detecting Recurrent Burst Patterns
To detect covert timing channels, we first
need to identify the event that is behind the
hardware resource contention. In our exam-
ple, the event to be monitored is the memory
bus lock operation. Next, we need to create
an event train—that is, a unidimensional
time series showing the occurrence of events.
Third, we should analyze the event train
using our recurrent burst pattern detection
algorithm.

Our algorithm comprises five steps.

Determine the interval (Dt) for a given event
train to calculate event density. Dt is the prod-
uct of the inverse of the average event rate
and a, an empirical constant determined
using the maximum and minimum achiev-
able covert timing channel bandwidth rates
on a given shared hardware device.

Construct the event density histogram using
Dt . For each interval of Dt, the number of
events are computed and an event density
histogram is constructed to subsequently esti-
mate the probability distribution of event
density. Low-density bins are to the left, and
as we move right, we see the bins with higher
numbers of events within the observation
interval of Dt.

Detect burst patterns. From left to right in
the histogram, threshold density is the first
bin that is smaller than the preceding bin,
and equal to or smaller than the next bin. If
there is no such bin, then the bin at which
the slope of the fitted curve becomes gentle is
considered as the threshold density. If the
event train has burst patterns, there will be
two distinct distributions (see Figure 1): one
in which the mean is below 1.0, showing the
nonbursty periods; and one in which the
mean is above 1.0, showing the bursty peri-
ods present in the right tail of the event den-
sity histogram.

Identify significant burst patterns (contention
clusters) and filter noise. To estimate the sig-
nificance of burst distribution and filter ran-
dom (noise) distributions, we compute the
likelihood ratio of the second distribution.
(The likelihood ratio is defined as the num-
ber of samples in the identified distribution
divided by the total number of samples in
the population. We omitted bin #0 from
this computation because it does not con-
tribute to any contention.) Empirically, we
find that the likelihood ratio of the burst
pattern distribution tends to be at least 0.9
(even on low-bandwidth covert channels
such as 0.1 bps), and less than 0.5 among
regular programs that have no known covert
timing channels despite having some bursty
access patterns.

250

200

150

100

50

0
0 302520
Memory bus lock density

histogram bins

15105

Fr
eq

ue
nc

y
of

 Δ
t

Figure 1. Event density histogram for

memory bus channel demonstrating the

memory bus lock density values measured

within Dt intervals and their corresponding

frequency of occurrence during runtime.

..

SECURITY

..

20 IEEE MICRO

Determine the recurrence of burst patterns.
We develop a pattern-clustering algorithm
that performs two basic steps: discretize the
event density histograms into strings, and use
k-means clustering to aggregate similar
strings. By analyzing the clusters that repre-
sent event density histograms with significant
bursts, we can find the extent to which burst
patterns recur, and hence detect the possible
presence of a covert timing channel.

Understanding Cache Conflict Miss Patterns
Unlike combinational structures in which
timing modulation is performed by varying
the interevent intervals (observed as bursts
and nonbursts), cache-based covert timing
channels rely on the latency of events to per-
form timing modulation. The Trojan and the
spy create a sufficient number of conflict
events (cache misses) alternatively among
each other that let the spy decipher the trans-
mitted bits based on the average memory
access times (hits and misses). This leads to
repetitive patterns of cache-conflict misses
between the Trojan and spy contexts.

As we noted earlier, establishing reliable
covert timing channels involves significant
overhead for both the Trojan and the spy
processes to first synchronize and then trans-
mit bits covertly from the Trojan to the spy
with a high reliance on noninterference from
other concurrently running processes in the
system.3,4,8 Consequently, covert transmis-
sion phases typically account for nontrivial
time intervals during which the spy and the
Trojan create numerous cache conflict miss
patterns alternatively among each other.
Therefore, analyzing the cache conflict miss
event train can provide insight into the possi-
ble presence of cache covert timing channel
activity.

Oscillation is defined as a property of perio-
dicity in an event train. This is different from
bursts that are specific periods of high-
frequency event occurrences in the event train.
Oscillation of an event train is detected by
measuring its autocorrelation, or the correla-
tion coefficient of the signal with a time-
lagged version of itself—that is, the correlation
coefficient between two values of the same var-
iable, Xi and Xiþp separated by lag p.

An autocorrelogram is a chart showing
the autocorrelation coefficient values for a

sequence of lag values. An oscillation pattern
is inferred when the autocorrelation coeffi-
cient shows significant periodicity with peaks
sufficiently high for certain lag values.

Figure 2 shows our conflict miss event
train analysis. In particular, Figure 2a shows
the event train (cache conflict misses), anno-
tated by whether the conflicts happen due to
the Trojan replacing the spy’s cache sets or
vice versa (the inset figure shows a legible ver-
sion of the cluttered event train pattern). T
! S denotes the Trojan (T) replacing the
spy’s (S’s) blocks because the spy had previ-
ously displaced those same blocks owned by
the Trojan at that time.

Note that every ordered pair of Trojan/spy
contexts has unique identifiers. For example,
S! T is assigned 0, and T! S is assigned 1.
The autocorrelation function is computed on
this conflict miss event train. Figure 2b shows
the event train’s autocorrelogram. A total of
512 cache sets were used in G1 and G0 for
transmission of 1 or 0 bit values. We observe

T -> S

S -> T

0
No. of cache conflicts
10k 20k 30k 40k

T -> S

S -> T

1.0
0.8
0.6
0.4
0.2

0
–0.2
–0.4
–0.6
–0.8
–1.0

0 200 400 600 800 1,000
Lag

A
ut

oc
or

re
la

tio
n

co
ef

fic
ie

nt

(a)

(b)

Figure 2. Level-2 (L2) cache conflict miss

pattern between the Trojan (T) and the spy

(S). (a) The event train. T! S shows the

Trojan’s conflict misses with the spy; S! T

shows the spy’s conflict misses with the

Trojan. (b) The event train’s

autocorrelogram.

...

SEPTEMBER/OCTOBER 2016 21

that, at a lag value of 533 (which is close to
the actual number of conflicting sets in the
shared cache, 512), the autocorrelation value
is highest at about 0.893. The slight offset
from the actual number of conflicting sets
was observed due to random conflict misses
in the surrounding code and the interference
from conflict misses due to other active con-
texts sharing the cache.

Implementation
Here, we show how to obtain events of inter-
est from the system activity log, and we then
describe the hardware modifications and soft-
ware support to implement our framework.

Denoising System Events
During system runtime, we register the event
parameters relating to timing channel activity
that occurs within microarchitectural units.
This produces event data sequences that
should be further denoised to extract features
for decision making about the possible pres-
ence of a covert communication.

Registration. There are two types of usage for
the shared resource: processes that use the
resource normally, and those that exploit the
resource to perform covert communication.
To track the shared resource usage and ulti-
mately detect the possibility for covert com-
munication, our detection framework counts
the number of accesses within a time period
Dt (that is, access intensity) and continues
counting for nonoverlapping intervals of size
Dt . This produces a sequence of access inten-
sities that is used in analysis to detect the pres-
ence of covert communication processes.
Additionally, access durations and origins of
access requests are recorded. We use a small
and a big aggregation period Dt simultane-
ously. In this way, we have resource access
characterization at two different time scales.
The small-time-scale analysis shows details of
access dynamics, whereas the big-time-scale
analysis extracts trends (that is, long-term
dependencies).

Denoising. Many different processes use the
shared resources simultaneously, and it is
important to filter the sequences produced
by processes that are not involved in any

known covert timing-based communication.
There are two possible situations: The covert
timing activity produces sufficiently distinct
signals and thus regular activities can be con-
sidered as noise, or the covert timing activity
blends itself with regular activities and thus it
becomes hard to distinguish its signals. To
isolate access bursts from regular activity that
produces low-intensity signals, we use the
soft-limiter thresholding technique for noise
reduction.9 Soft limiter zeros the values
below the specified threshold, whereas the
threshold value trims the values above the
threshold. Our detection framework deter-
mines the optimal threshold that provides
the best recovery based on the knowledge of
statistical properties of noise and the shapes
that should be cleaned out. For processes that
blend into normal system activity for certain
periods, we note that they still exhibit perio-
dicity and thus can be searched through
Fourier techniques (such as bispectrum).

Hardware and Software Support
The instruction set architecture is augmented
with a privileged instruction that lets the user
program certain hardware units to audit. The
hardware units have an audit bit that, when
set, instructs them to fire a signal to the mon-
itor upon certain key event occurrences.

Although it is desirable to monitor all
hardware units, doing so would require smart
time-multiplexing of our detector that could
quickly become a performance bottleneck if
all of the hardware units were monitored
simultaneously. Alternatively, the use of multi-
ple instances of hardware detectors to accom-
modate the monitoring of all hardware units
can be cost-prohibitive. Therefore, our design
provides the capability to monitor up to two
different hardware units at any time. A privi-
leged administrator-user is responsible for
choosing the hardware units to monitor on
the basis of his or her knowledge of the cur-
rently running applications. We believe that
this design tradeoff can prevent unnecessary
overheads on most regular user applications.

To accumulate the event signals arriving
from the hardware units, the monitor con-
tains two 32-bit countdown registers initial-
ized to Dt values, two 16-bit registers to
accumulate the number of event occurrences
within Dt , and two histogram buffers with

..

SECURITY

..

22 IEEE MICRO

128 entries (16 bit-entry) to record the event
density histograms. At the end of each Dt ,
the corresponding 16-bit accumulator value
is updated against its entry in the histogram
buffer, and the countdown register is reset to
Dt . At the end of the OS time quantum, the
software module records the histogram
buffers.

A conflict miss happens in a set associative
cache when several blocks map into the same
cache set and replace each other even when
there is enough capacity left in the cache. To
efficiently track the conflict misses in hard-
ware, we incorporate a separate hardware buf-
fer that records the cache block tags that get
replaced from the cache. If an incoming cache
block tag matches an entry in the hardware
buffer (storing the recently replaced cache
block tags), this denotes that the incoming
cache block was prematurely replaced for
cache conflict reasons. Therefore, a cache
conflict miss is detected. The number of
entries in this conflict-miss-tracking hardware
buffer is equal to the total number of cache
sets, where the buffer entries are directly
mapped with one entry per cache set. Jamison
Collins and Dean Tullsen showed that the
accuracy of classifying conflict misses from
capacity misses remains unchanged beyond
maintaining 10 or more partial cache tag
bits.10 In our design, we use a 1-Kbyte buffer
that holds 16-entry partial tags for the 512 L2
cache sets.

We design two alternating 128-byte vector
registers that record the three-bit context IDs
of the replacer and the victim. When one vec-
tor register is full, the other vector register
begins to record the data. Meanwhile, the soft-
ware module logs the vector contents in the
background and then clears it for future use.

Our experimental results using Cacti 5.3
show that the hardware area overheads are
insignificant (less than 0:01 mm2) with
access latencies less than the processor clock
cycle time (0.4 ns for 2.5 GHz).11 Also, the
dynamic power drawn by the monitor is
approximately 3 to 4 mW.

As part of the software support, a separate
daemon process accumulates the data points
by recording the histogram buffer contents at
each OS time quantum (for contention-based
channels) or the 128-byte vector register
(for oscillation-based channels). Lightweight

code is carefully added to avoid perturbing
the system state and to record performance
counters as accurately as possible. The dae-
mon processes are scheduled on (currently)
unaudited cores to minimize perturbation
effects.

Evaluation and Sensitivity Study
Our experimentation platform includes a full
system environment by booting a Micro-
Architectural and System Simulator for x86-
based Systems (MARSSx8612) with Ubuntu
11.04. The simulator models a quad-core pro-
cessor running at 2.5 GHz and has at least
three other active processes to create real sys-
tem-interference effects. We model a private
32-Kbyte, level-1 (L1), four-way cache and a
shared 256-Kbyte, L2, eight-way cache with
64-byte blocks. Prior to conducting our experi-
ments, we validated the timing behavior of our
covert channel implementations running on a
MARSSx86 against the timing measurements
in a real system environment (dual-socket Dell
T7500 server with Intel 4-core Xeon E5540
processors at 2.5 GHz, Ubuntu 11.04).

Varying Bandwidth Rates
We conducted experiments by altering the
bandwidth rates of two covert timing channels
from 0.1 bps to 1,000 bps. Figure 3 shows the
results (observed over a window of OS time
quantum, 0.1 seconds). Although the magni-
tudes of Dt frequencies decrease for lower-
bandwidth memory bus channels, the likeli-
hood ratios for second (burst) distribution are
still significant (higher than 0.9). On low-
bandwidth cache covert channels such as
0.1 bps, despite observing periodicity in auto-
correlation values, we note that their magni-
tudes do not show significant strength. As we
reduced the sizes of the observation window to
less than the OS time quanta, the autocorrelo-
grams started to show significant repetitive
peaks for the 0.1-bps channel. Our experiments
suggest that autocorrelation analysis at finer
granularity observation windows can detect
lower-bandwidth channels more effectively.

Testing for False Alarms
We tested our recurrent burst and oscillation
pattern algorithms on 128 pairwise combina-
tions of several standard SPEC2006 (www.

...

SEPTEMBER/OCTOBER 2016 23

spec.org), Stream,13 and Filebench (http://
sourceforge.net/apps/mediawiki/filebench)
benchmarks run simultaneously on the same
physical core as hyperthreads. We picked two
types of servers from Filebench: webserver
and mail server. We chose the individual
benchmarks on the basis of their CPU-
intensive (SPEC2006) and memory- and I/
O-intensive (Stream and Filebench) behavior,
and we paired them in such a way as to maxi-
mize the chances of them creating conflicts
on a particular microarchitectural unit. Our
goal was to study whether these benchmark
pairs create similar levels of recurrent bursts
or oscillatory patterns of conflicts that were
observed in realistic covert channel imple-
mentations (which, if true, could potentially
lead to a false alarm). Figure 4 presents a rep-
resentative subset of our experiments. Most
benchmark pairs have either zero or random
burst patterns for both memory bus lock
events. The only exception is the mail server
pairs, wherein we observe a second distribu-
tion with bursty patterns between histogram
bins #5 and #8, but the likelihood ratio is less
than 0.5. In all of the autocorrelograms, we
did not observe the noticeable periodicity

typically expected of timing channels. There-
fore, we did not observe any false alarms.

Varying Cache Channel Attacks
Earlier, we showed a cache timing channel
that uses two groups of cache sets, odd (G0)
and even (G1). The Trojan creates cache con-
flict misses on one group based on the bit to
be transmitted, and the spy deciphers the bit
by measuring the access latency differences to
G0 and G1. In real-world situations, the
attacker could choose any combination of
cache sets to form groups and construct cov-
ert timing channels.

To test our detection scheme’s robustness,
we demonstrate three variations of cache
channel attacks:

� MOD-3, in which G0 includes cache
sets whose set number is divisible by
3 and G1 includes cache sets whose
set number is not a multiple of 3.
This can be generalized to set number
i mod N ¼ 0, where N � 2. In fact,
prior work4 uses N ¼ 2.

� PRIME, in which G0 includes
prime-numbered cache sets and G1

Fr
eq

ue
nc

y
of

 Δ
t

50
2,480

40

30

20

10

0
0 5 10 15 20 25 30

Memory bus lock density

A
ut

oc
or

re
la

tio
n

co
ef

fic
ie

nt

0

1.00

0.75

0.50

0.25

–0.25

0

200 400 600 800 1,000
Lag

Fr
eq

ue
nc

y
of

 Δ
t

1,200

1,000

800

600

400

200

0
0 5 10 15 20 25 30

Memory bus lock density

2,192

A
ut

oc
or

re
la

tio
n

co
ef

fic
ie

nt 1.00
0.75
0.50
0.25

–1.00
–0.75
–0.50
–0.25

0

0 200 400 600 800 1,000
Lag

(a)

(b)

Figure 3. Bandwidth test using memory bus and L2 cache covert channels. (a) Bandwidth

rate of 0.1 bits per second (bps). (b) Bandwidth rate of 1,000 bps.

..

SECURITY

..

24 IEEE MICRO

includes nonprime-numbered cache
sets.

� RANDOM64, in which each of G0

and G1 include 64 cache sets that are
randomly selected by the Trojan and

spy processes prior to the start of cache
covert channel communication.

Figure 5 shows our results; we see that the
autocorrelograms exhibit significant periodicity

Fr
eq

ue
nc

y
of

 Δ
t

2,484
200

150

100

50

0
0 5 10 15 20 25 30

Memory bus lock density

1.0

0.8

0.6

0.4

0.2

0

–0.2A
ut

oc
or

re
la

tio
n

co
ef

fic
ie

nt

0 200 400 600 800 1,000
Lag

Fr
eq

ue
nc

y
of

 Δ
t

200

150

100

50

0
0 5 10 15 20 25 30

Memory bus lock density

2,499
1.0

0.8

0.6

0.4

0.2

0

–0.2A
ut

oc
or

re
la

tio
n

co
ef

fic
ie

nt

0 200 400 600 800 1,000
Lag

Fr
eq

ue
nc

y
of

 Δ
t

200

150

100

50

0
0 5 10 15 20 25 30

Memory bus lock density

2,477
1.0

0.8

0.6

0.4

0.2

0

–0.2A
ut

oc
or

re
la

tio
n

co
ef

fic
ie

nt

0 200 400 600 800 1,000
Lag

Fr
eq

ue
nc

y
of

 Δ
t

200

150

100

50

0
0 5 10 15 20 25 30

Memory bus lock density

2,490
1.0

0.8

0.6

0.4

0.2

0

–0.2A
ut

oc
or

re
la

tio
n

co
ef

fic
ie

nt

0 200 400 600 800 1,000
Lag

(a)

(b)

(c)

(d)

Figure 4. Event density histograms and autocorrelograms in pair combinations of SPEC2006,

Stream, and Filebench. (a) gobmk sjeng. (b) stream stream. (c) mailserver mailserver. (d)

webserver webserver.

...

SEPTEMBER/OCTOBER 2016 25

with magnitude above 0.90. This shows that
our algorithm works well irrespective of how
attackers pick their cache sets, because we track
oscillatory patterns of conflict misses, a funda-
mental characteristic of cache covert timing
channels.

I n this work, we have explored the first
steps toward detecting the hardware cov-

ert timing channels that will be increasingly
exploited by malicious users in the future to
exfiltrate sensitive secrets, especially with
rapid advancements in software confinement

mechanisms. As defense strategies are
deployed, adversaries may find unscrupulous
ways to subvert them by exploiting more
sophisticated timing channels involving mul-
tiple hardware devices and hardware-software
interfaces. Furthermore, emerging platforms
like heterogeneous architectures present the
malicious users with abundant resources for
exploitation. Such channels can be more
challenging, because several parts of the sys-
tem (possibly, hardware and software) may
need to be monitored, resulting in unaccept-
able application runtime overheads. Subse-
quently, more lightweight and effective
detection strategies are needed. As future
work, we plan to explore such complex sys-
tems and sophisticated implementations of
covert timing channels. MICRO

Acknowledgments
This material is based on work supported by
the US National Science Foundation under
CAREER Award CCF-1149557 and CNS-
1618786, and Semiconductor Research
Corp. (SRC) contract 2016-TS-2684. Any
opinions, findings, conclusions, or recom-
mendations expressed in this article are those
of the authors, and do not necessarily reflect
those of the NSF or SRC.

..
References
1. J. Gray III, “On Introducing Noise into the

Bus-Contention Channel,” IEEE Computer

Society Symp. Security and Privacy, 1993,

pp. 90–98.

2. W.-M. Hu, “Reducing Timing Channels with

Fuzzy Time,” J. Computer Security, vol. 1,

no. 3, 1992, pp. 233–254.

3. K. Okamura and Y. Oyama, “Load-Based

Covert Channels between Xen Virtual

Machines,” Proc. ACM Symp. Applied

Computing, 2010, pp. 173–180.

4. T. Ristenpart et al., “Hey, You, Get Off of

My Cloud: Exploring Information Leakage in

Third-Party Compute Clouds,” Proc. 16th

ACM Conf. Computer and Comm. Security,

2009, pp. 199–212.

5. Z. Wu, Z. Xu, and H. Wang, “Whispers in

the Hyper-Space: High-Speed Covert Chan-

nel Attacks in the Cloud,” Proc. USENIX

Conf. Security Symp., 2012, article 9.

1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00

A
ut

oc
or

re
la

tio
n

co
ef

fic
ie

nt

0 200 400 600 800 1,000
Lag(a)

1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00

A
ut

oc
or

re
la

tio
n

co
ef

fic
ie

nt

0 200 400 600 800 1,000
Lag(b)

1.00

0.75

0.50

0.25

0.00

–0.25

–0.50

–0.75

–1.00

A
ut

oc
or

re
la

tio
n

co
ef

fic
ie

nt

0 200 400 600 800 1,000
Lag(c)

Figure 5. Autocorrelograms for cache covert channels with varying

combinations of cache sets. (a) MOD-3. (b) PRIME. (c) RANDOM64.

..

SECURITY

..

26 IEEE MICRO

6. J. Chen and G. Venkataramani, “CC-Hunter:

Uncovering Covert Timing Channels on

Shared Processor Hardware,” Proc. 47th

Ann. IEEE/ACM Int’l Symp. Microarchitec-

ture, 2014, pp. 216–228.

7. Trusted Computer System Evaluation Crite-

ria, US Dept. of Defense, 1983.

8. H. Okhravi, S. Bak, and S. King, “Design,

Implementation and Evaluation of Covert

Channel Attacks,” Proc. IEEE Int’l Conf.

Technologies for Homeland Security, 2010,

pp. 481–487.

9. S. Mallat, A Wavelet Tour of Signal Process-

ing: The Sparse Way, Academic Press,

2009.

10. J.D. Collins and D.M. Tullsen, “Hardware

Identification of Cache Conflict Misses,”

Proc. 32nd Ann. ACM/IEEE Int’l Symp.

Microarchitecture, 1999, pp. 126–135.

11. S. Thoziyoor et al., CACTI 5.1, tech. report

HPL-2008-20, HP Labs, Apr. 2008.

12. A. Patel et al., “MARSSx86: A Full System

Simulator for x86 CPUs,” Proc. 48th Design

Automation Conf., 2011; doi:10.1145/

2024724.2024954.

13. J.D. McCalpin, “Memory Bandwidth and

Machine Balance in Current High Perform-

ance Computers,” IEEE Technical Commit-

tee Computer Architecture Newsletter,

Nov. 1995.

Guru Venkataramani is an associate profes-
sor in the Department of Electrical and
Computer Engineering at George Washing-
ton University. His research interests include
computer architecture, hardware support
for debugging, security, and many-core
computing. Venkataramani received a PhD
in computer science from Georgia Tech. He
is a senior member of IEEE and ACM.
Contact him at guruv@gwu.edu.

Jie Chen is a senior performance engineer at
MathWorks. His research interests include
computer architecture, application perform-
ance, power efficiency, memory system reli-
ability, and hardware security. Chen received a
PhD in computer engineering from George
Washington University, where he performed
the work for this article. Contact him at
jiec@gwmail.gwu.edu.

Milo�s Doroslovački is an associate profes-
sor in the Department of Electrical and
Computer Engineering at George Washing-
ton University. His research interests include
adaptive signal processing, communica-
tions, and distributed estimation. Doroslo-
vački received a PhD in electrical engineer-
ing from the University of Cincinnati. He is
a member of IEEE and EURASIP. Contact
him at doroslov@gwu.edu.

...

SEPTEMBER/OCTOBER 2016 27

