
NEGATIVE CORRELATION, NON-LINEAR FILTERING, AND DISCOVERING OF
REPETITIVENESS FOR CACHE TIMING CHANNEL DETECTION

Hongyu Fang1, Fan Yao2, Milos̆ Doroslovac̆ki1, Guru Venkataramani1

1The George Washington University, Washington, DC
2 University of Central Florida, Orlando, FL

ABSTRACT

Physically shared micro-architecture can be exploited by
adversaries to communicate covertly via timing modulation
without leaving any physical traces. Among different micro-
architecture units, caches provide one of the largest attack
surfaces because it is frequently accessed by multiple pro-
cesses and it cannot be disabled. In this work, we show that
by collecting cache occupancy traces, we can distinguish
adversary from benign workloads through multiple signal
processing techniques. When two processes are communi-
cating by creating conflict misses, they would take cache
memory space from each other. Consequently. the cache
occupancies of two involved processes would be negatively
correlated. Besides, the activity of the adversary in occupy-
ing the victim’s cache space would be repetitive as a result of
long-term, continuous transmission of secret information in a
covert manner. By filtering the non-negatively correlated part
and analyzing the repetitiveness of cache occupancy trace,
we can achieve zero false negative rate and 4% false positive
rate in cache timing channel detection.

Index Terms— Cache Timing Channel, Non-linear Fil-
tering, Correlation, Fourier Analysis

1. INTRODUCTION

With rapid growth in the use of computer systems for stor-
ing and accessing user data, protecting sensitive information
and shielding them from malicious entities is an important
task for computer designers. The recent attacks exploiting
micro-architecture [1, 2, 3] have further stressed the need for
hardware and information security to be considered as an im-
portant and critical hardware design requirement. Among the
many forms of information leakage attacks, timing channels
are particularly notorious for their stealthy exfiltration of sen-
sitive information, leaving no physical evidence for forensic
examination. These timing channels simply rely on the modu-
lation of access times on shared hardware resources, that can-
not be easily audited by software security monitors.

This material is based on work supported by the US National Science
Foundation under CNS-1618786, and Semiconductor Research Corporation
contract 2016-TS-2684.

Among various architectural units in a microprocessor,
cache memory is a critical performance resource that is or-
ganized in an array of rows (blocks of 64 bytes) and ways
(sets of blocks within each row; typically 4 or 8). Caches are
one of the largest attack surfaces due to two major reasons:
1. CPU caches (especially, last level cache) are one of the
most commonly shared hardware resources among process-
ing cores (pipelines), and hence different application domains
typically have access to it. 2. Cache hierarchy is tightly cou-
pled with processor pipelines that cater to data and instruction
accesses, and cannot be simply disabled for security reasons.

As shown in Figure 1, there are two application domains
(processes) involved in a cache timing channel attacks: the
sender and the receiver of secrets. The sender has access to
sensitive data that is typically not allowed to be communi-
cated to processes with lesser privileges or outside entities as
per the system security policy. In other words, the sender is an
insider process that is looking to leak secrets. The receiver is
a process that has lesser privileges and acts as a spy to receive
sensitive information stealthily. Any software-based commu-
nication between sender and receiver is prohibited by Oper-
ating Systems due to the sender having access to sensitive
data, and hence, the sender and receiver exploit the shared
cache through manipulating its access timing in an orches-
trated manner in order to communicate indirectly.

As shown in Figure 2, at the beginning of transmission,
the receiver occupies all of the cache ways with its own mem-
ory lines (prime phase). Then the sender either replaces re-
ceiver’s memory lines with its own memory lines or stays idle.
After sender’s activity, the receiver accesses its memory lines
again, and measures the access latency (probe phase). A high
latency indicates that sender has replaced the memory lines,
while a low latency means sender did not access the mem-
ory lines. The sender can encode bit by controlling receiver’s
access latency. For instance, the sender can encode bit ‘1’ by

 Operatng System

Sender Receiver

Shared Micro-architecture

Fig. 1: The scenario of cache timing channel.

Cache Ways Receiver primes

Sender evicts

Sender idles

Receiver misses

Receiver hits

Fig. 2: Sender/Receiver activity in Cache Timing Channels

evicting receiver’s memory lines and encode bit ‘0’ by staying
idle.

There are multiple protocols to implement cache timing
channels. The operations shown in the Figure 2 is the ba-
sis of them. The adversary can exploit multiple cache sets
to either transmit multiple bits in one prime+probe operation
or enhance its robustness against background noise in cache.
Besides, the sender and receiver may act in either round-robin
fashion or in parallel as shown in Figure 3. To implement
round-robin protocol, the sender and receiver synchronize be-
fore transmission. Then they act only after the other one fin-
ishes its activity. As for parallel protocol, the sender and re-
ceiver are not synchronized. The sender accesses the shared
cache multiple times to guarantee the receiver can observe
its activity. The receiver keeps accessing the shared cache
in a constant frequency. In this paper, we will demonstrate
the efficiency of our approach against both of these protocol
classes.

Prior studies have considered cache timing channel at-
tacks that manipulate accesses on various cache levels [4, 5,
6, 7, 8, 9, 10]. CC-hunter [11] detects covert timing channel
by capturing cache memory conflict misses between two pro-
cesses, and needs modest hardware to provide fine-grained in-
formation about mutual cache evictions. Recent works iden-
tify cache timing channel through analyzing the cache miss
patterns using existing performance counters [12, 13]. While
these techniques may be more cost-effective without addi-
tional hardware modifications, such cache miss-based detec-
tion could be evaded by sophisticated adversaries which cre-
ate self-eviction intentionally.

Shared Cache

Time

(a) Round-robin

Shared Cache

Time

(b) Parallel

Fig. 3: Protocols to implement Cache Timing Channels

Sender
Receiver

(a) Cache Occupancy Changes for Sender and Receiver

0 50 100 150 200

Time (x10 4 cycles)

-1.0

-0.5

0

0.5

1.0

C
ac
he

 O
cc

up
an

cy
 In

cr
em

en
t

gobmk
lbm

t1 t2

t3

(b) Cache Occupany Changes for Benign Workloads

Fig. 4: Cache occupancy changes of adversary and benign
workloads show significantly different pattern.

In this paper, we propose the use of a new statistic–cache
occupancy–that can be utilized for improved detection of
cache timing channels without extra hardware modifications.
Cache occupancy records the number of cache blocks owned
by a specific process in a certain cache during the observation
period. We find that, not only are the cache occupancy pat-
terns between the covert communicators highly correlated,
they also reveal repetitive and frequent pulses that can be
recognized through signal processing techniques. To experi-
mentally demonstrate our observation, we implement a cache
timing channel attack and two cache-intensive benign work-
loads, and compare cache occupancy changes. Figure 4a
shows a representative window capturing change in cache
occupancy over time for cache timing channel attack. As
we can see, the sender’s cache occupancy gain is in pro-
portion to receiver’s loss and vice versa. In other words,
each gain in cache occupancy by the sender is coupled by a
corresponding loss of occupancy on the receiver’s side, and
vice versa. Moreover, we can also observe a repetitive pat-
tern of gain-loss events in timing channels due to a series of
consecutive transmission. Figure 4b shows that cache occu-
pancy of benign workloads could be positively correlated or
non-correlated overtime. The changes of cache occupancy
of benign workloads do not have obvious repetitiveness. To
detect potential cache timing channel attack between two
processes, we focus on the negative correlation between two
traces of change of cache occupancy while filtering the pos-
itive correlation segments in traces since they are not related
to cache timing channel attack. Then we manage to reveal
the repetitiveness between the negatively correlated traces.
With this method, our detection mechanism achieve zero
false negative rate and less than 4% false positive rate.

In summary, the major contributions of our article are:
1. We show that the adversaries’ attempt to modulate cache
access latencies using conflict misses generates distinct cache
occupancy patterns during cache timing channels. By ana-
lyzing the cache occupancy profiles between two suspicious
processes, cache timing channel may be inferred.
2. We design and demonstrate a detection mechanism of
cache timing channel, and evaluate using real-world cache
timing channel attacks. Our results show that our method
can achieve zero false negative rate and less than 4% false
positive rate.

2. DETECTION STEP

To detect cache timing channel, we collect the raw cache oc-
cupancy traces of all applications. All traces are separated
into n windows and analyzed pairwise. xi and yi (0 ≤ i ≤
n− 1) are the cache occupancy vectors obtained for applica-
tions X and Y , respectively (we assume that there are p + 1
samples within each window). As discussed in Section 1, the
covert communication would have suspicious pattern of cache
occupancy changes. The cache occupancy changes of two ap-
plications are computed by:

∆xi,j = xi,j+1 − xi,j

∆yi,j = yi,j+1 − yi,j
(1)

where xi,j and yi,j are the jth samples (0 ≤ j ≤ p−1) in the
ith window for applications X and Y .

During communication, the sender and receiver would
evict each other’s memory lines from cache. One application
would gain cache occupancy while the other one is losing
the same amount of it. To extract this essential pattern, we
analyze the negative correlation between cache occupancy
traces of the applications. There would be multiple applica-
tions running together in a machine at the same time. To filter
the noise effects from background applications, we take the
product (zi) of ∆xi and ∆yi and zero-out all non-negative
values that do not correspond to gain-loss swing patterns in
cache occupancy:

zi,j =

{
∆xi,j∆yi,j , ∆xi,j∆yi,j < 0

0 , ∆xi,j∆yi,j ≥ 0.
(2)

Equation (2) captures the interacting behavior between
the two applications and filter the background noise that is
not related to potential cache timing channels. If cache occu-
pancy of one application changes while cache occupancy of
the other one remains the same, they cannot communicate be-
cause the application is either occupying empty cache or be-
ing influenced by a third-party application. The product at the
point would be zero. The cache occupancy change in a same
direction indicates the influence of third-party application. In
this case, the cache access latency of the pair of applications
is influenced by the background instead of the other one in

the pair, hence they cannot communicate. The product at the
point would be positive and set to zero according to Equation
(2).

The series zi contains information about mutual eviction
behavior between the two applications. In the most cases, the
communication would contains multiple bits. The cache tim-
ing channel would involve multiple gain-loss pattern as shown
in Figure 4a. The next step now is to check the repetitiveness
of z series. The autocorrelation function ri of zi is computed
by:

ri(m) =

{∑p−m−1
j=0 zi,jzi,j+m , m ≥ 0

ri(−m) , m < 0
(3)

where m is the lag of series zi and m∈[−p + 1, p− 1]. The
autocorrelation function is normalized by:

r′i(m) =
ri(m)√

(
∑p−1
j=0 ∆x4

i,j)(
∑p−1
j=0 ∆y4i,j)

. (4)

r′i(0) would equal to 1 when the traces of cache occu-
pancy changes are strictly linearly dependent according to the
Cauchy-Schwarz Inequality [14]. r′i(0) would be close to zero
if the traces of cache occupancy changes lacks linear depen-
dency.

The benign applications may also have short-term influ-
ence on the cache occupancy. To cancel the influence of the
background and benign applications, we take average of the
autocorrelation computed in every time window. The mean
autocorrelation function is defined as:

r′(m) =
1

n

n−1∑
i=0

r′i(m). (5)

When the lag value (m) increase from 0 to half of the
length of the complete pattern (wavelength, mw), the gain-
loss pattern would begin to mismatch. Consequently, r′(m)
would begin to decrease. When the lag m increase from
mw/2 to mw, some of the patterns would rematch and r′(m)
would rise back. Note that there still might exist a small off-
set in the repetitive pattern, and this may cause r′(mw) to be
not as high as r′(0). However, r′(mw) is extremely likely to
be a local maximum in the presence of timing channel activ-
ity. As m increases further, the cycle of pattern mismatch and
rematch would begin to appear repeatedly.

Fourier transform is a powerful tool to extract the repet-
itive patterns in signals. We compute discrete Fourier trans-
form of the autocorrelation function r′:

R(k) =

p−1∑
m=−p+1

r′(m)Wm·k
2p−1 (6)

where W2p−1 = e−2πi/(2p−1) and i is the imaginary con-
stant (i2 = −1). Here R is the power spectrum of z. The

-500 -250 0 250 500
Lag

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

. A
ut

oc
or

re
la

tio
n 0.93

100 200 300 400 500
Frequency

0

100

200

300

400

500

Si
gn

al
 P

ow
er

Fig. 5: Normalized autocorrelation and power spectral den-
sity (excluding zero-frequency) of cache timing channel

presence of a single or equally-spaced multiple spikes with
concentrated (very high) signal power outside of frequency 0
in R indicates repetitive pattern in the underlying sequence.
Note that this is a typical characteristic of timing channels.

In theory, one may think of a sender-receiver pair that
pseudo-randomizes the intervals between two consecutive
bits to obscure their communication pattern. However, cache
timing channels with randomized bit intervals are very hard
to synchronize at these random times in a real system envi-
ronment amidst noise stemming from hardware, Operating
System and external processes. As such, these attacks (if at
all, possible) may be subject to high transmission errors. We
are not aware of any such cache attacks with pseudo-random
intervals in the literature. Even in such hypothetical cases, the
repetitive swing pattern can be recovered with proper signal
filtering (See Section 4.2).

3. EXPERIMENTAL SETUP

Our experimental testbed is an Intel Xeon V4 with 20 Last
Level Cache (LLC) slices, and each LLC slice has 20×2048
64-byte blocks.

We run sender and receiver with two benign workloads
from SPEC2006 [15] to demonstrate that our work can dis-
tinguish cache timing channel in a complicated environment.
We run four variants of cache timing channel protocols as
we introduced in Section 1: single-group round-robin, single-
group parallel, multi-group round-robin and multi-group par-
allel. Each variant is configured to perform the prime+probe
attack using 32 cache sets. We implement cache timing chan-
nel protocols as we discuss in Section 1.

To evaluate our proposal on benign workloads, we utilize
benign workloads from SPEC2006. We run combinations of
four workloads with different cache-intensity level. The four
workloads are deployed on different cores of the processor.

4. EVALUATION

4.1. Efficiency of Proposed Method
As shown in Figure 5, the zero-lag normalized autocorrela-
tion of cache timing channel is closed to 1 and the peak signal
power density in the frequency domain is higher than 300. For
80% of benign workloads, the zero-lag normalized autocorre-
lation is lower than 0.5. Even some of the benign workloads
show high zero-lag normalized autocorrelation as presented
in Figure 6, the peak signal power density would be much

-500 -250 0 250 500
Lag

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

. A
ut

oc
or

re
la

tio
n

0.84

100 200 300 400 500
Frequency

0

20

40

60

80

100

Si
gn

al
 P

ow
er

Fig. 6: Normalized autocorrelation and power spectral den-
sity (excluding zero-frequency) of Benign Workloads (soplex,
omnetpp)

lower than those in the case of cache timing channel because
two benign benchmarks would not have repetitive mutual be-
havior. Our result shows that all cache timing channel vari-
ants can be detected by our method if we set the signal power
density threshold as 50.

Figure 7 shows the ROC curve of the proposed method.
The result shows that a vast majority of benign workloads do
neither exhibit strong negative correlation in terms of cache
occupancy change nor high repetitiveness of cache occupancy
gain-loss pattern. All the attacks can be detected for the false
positive rate as low as 4%.

4.2. Discussion: Transmission at Random Interval
In theory, sophisticated adversaries may use randomized
interval times between bit transmissions. Let us imagine
a sender and receiver that setup a pre-determined pseudo-
random number generator to decide the next waiting period
before bit transmission. Even if such attacks were feasible,
our method can be adapted to recognize them through a signal
pre-processing procedure called time warping [16, 17], that
removes irrelevant segments from the occupancy traces (for
which ∆x,∆y are 0 in Equation (1)) and aligns the swing
patterns. After this step, the periodic patterns are recon-
structed, and the cadence of cache accesses from adversaries
will be recovered.

0 20 40 60 80 100
False Positive Rate (%)

0

20

40

60

80

100

Tr
ue

 Po
sit

ive
 R

at
e (

%)

Fig. 7: ROC curve of the proposed detection method.

5. REFERENCES

[1] Google Project Zero, “Reading privileged mem-
ory with a side-channel,” 2018, https://google
projectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html.

[2] Fan Yao, Guru Venkataramani, and Miloš Doroslovački,
“Covert timing channels exploiting non-uniform mem-
ory access based architectures,” in Proceedings of the
on Great Lakes Symposium on VLSI 2017. ACM, 2017,
pp. 155–160.

[3] Murugappan Alagappan, Jeyavijayan Rajendran, Miloš
Doroslovački, and Guru Venkataramani, “Dfs covert
channels on multi-core platforms,” in Very Large Scale
Integration (VLSI-SoC), 2017 IFIP/IEEE International
Conference on. IEEE, 2017, pp. 1–6.

[4] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee, “Last-level cache side-channel attacks are
practical,” in Proceedings of Symposium on Security and
Privacy. IEEE, 2015, pp. 605–622.

[5] Fan Yao, Miloš Doroslovački, and Guru Venkataramani,
“Are Coherence Protocol States Vulnerable to Informa-
tion Leakage?,” in Proceedings of the International
Symposium on High Performance Computer Architec-
ture. IEEE, 2018.

[6] Hongyu Fang, Sai Santosh Dayapule, Fan Yao, Miloš
Doroslovački, and Guru Venkataramani, “Prodact:
Prefetch-obfuscator to defend against cache timing
channels,” International Journal of Parallel Program-
ming, pp. 1–24, 2018.

[7] Fan Yao, Miloš Doroslovački, and Guru Venkatara-
mani, “Covert timing channels exploiting cache coher-
ence hardware: Characterization and defense,” Interna-
tional Journal of Parallel Programming, pp. 1–26, 2018.

[8] Guru Venkataramani, Jie Chen, and Miloš
Doroslovački, “Detecting hardware covert timing
channels,” IEEE Micro, vol. 36, no. 5, pp. 17–27, 2016.

[9] Hongyu Fang, Sai Santosh Dayapule, Fan Yao, Miloš
Doroslovački, and Guru Venkataramani, “A noise-
resilient detection method against advanced cache tim-
ing channel attack,” in Proceedings of Asilomar Confer-
ence on Signals, Systems, and Computers, 2018.

[10] Hongyu Fang, Sai Santosh Dayapule, Fan Yao, Miloš
Doroslovački, and Guru Venkataramani, “Prefetch-
guard: Leveraging hardware prefetches to defend
against cache timing channels,” in 2018 IEEE Interna-
tional Symposium on Hardware Oriented Security and
Trust (HOST). IEEE, 2018, pp. 187–190.

[11] Jie Chen and Guru Venkataramani, “CC-hunter: Uncov-
ering covert timing channels on shared processor hard-
ware,” in Proceedings of International Symposium on
Microarchitecture. IEEE, 2014, pp. 216–228.

[12] Marco Chiappetta, Erkay Savas, and Cemal Yilmaz,
“Real time detection of cache-based side-channel at-
tacks using hardware performance counters,” Applied
Soft Computing, vol. 49, pp. 1162–1174, 2016.

[13] Mathias Payer, “Hexpads: a platform to detect stealth
attacks,” in Proceedings of International Symposium
on Engineering Secure Software and Systems. Springer,
2016, pp. 138–154.

[14] Alberto Leon-Garcia and Alberto Leon-Garcia, Prob-
ability, statistics, and random processes for electrical
engineering, Pearson/Prentice Hall 3rd ed., 2008.

[15] John L Henning, “SPEC CPU2006 benchmark descrip-
tions,” ACM SIGARCH Computer Architecture News,
vol. 34, no. 4, pp. 1–17, 2006.

[16] John R Deller Jr, John G Proakis, and John H Hansen,
Discrete time processing of speech signals, Prentice
Hall PTR, 2000.

[17] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid,
“Warp: Time warping for periodicity detection,” in
IEEE International Conference on Data Mining, 2005,
pp. 1–8.

