
Are Coherence Protocol States Vulnerable to Information Leakage?

Fan Yao, Miloš Doroslovački and Guru Venkataramani
Department of Electrical and Computer Engineering,

The George Washington University, Washington, DC, USA
Email: {albertyao, doroslov, guruv}@gwu.edu

Abstract—Most commercial multi-core processors incorporate
hardware coherence protocols to support efficient data transfers
and updates between their constituent cores. While hardware
coherence protocols provide immense benefits for application per-
formance by removing the burden of software-based coherence,
we note that understanding the security vulnerabilities posed by
such oft-used, widely-adopted processor features is critical for
secure processor designs in the future.

In this paper, we demonstrate a new vulnerability exposed by
cache coherence protocol states. We present novel insights into
how adversaries could cleverly manipulate the coherence states
on shared cache blocks, and construct covert timing channels to
illegitimately communicate secrets to the spy. We demonstrate 6
different practical scenarios for covert timing channel construc-
tion. In contrast to prior works, we assume a broader adversary
model where the trojan and spy can either exploit explicitly
shared read-only physical pages (e.g., shared library code), or use
memory deduplication feature to implicitly force create shared
physical pages. We demonstrate how adversaries can manipulate
combinations of coherence states and data placement in different
caches to construct timing channels. We also explore how
adversaries could exploit multiple caches and their associated
coherence states to improve transmission bandwidth with symbols
encoding multiple bits. Our experimental results on commercial
systems show that the peak transmission bandwidths of these
covert timing channels can vary between 700 to 1100 Kbits/sec.
To the best of our knowledge, our study is the first to highlight
the vulnerability of hardware cache coherence protocols to timing
channels that can help computer architects to craft effective
defenses against exploits on such critical processor features.

Keywords-coherence protocols; covert timing channels; infor-
mation leakage; hardware security

I. INTRODUCTION

Cyber attacks, that exploit malicious insiders and exfiltrate
secret information, are a growing concern for computer users.
Covert channels are one such class of insider threats, where
a trojan process, that has access to sensitive user-related
information (e.g., user’s personal data), secretly exfiltrates the
data to a spy process even when the underlying system security
policy explicitly prohibits any such communication [1]. Also,
note that the trojan cannot directly reveal secrets to the outside
world (since system security auditors can be easily catch such
activity), and has to rely on covert modes of operation to
exfiltrate secrets to the spy. In contrast to side channels where
a victim process unwittingly exposes sensitive application
profile to the spy monitoring its activity, covert channels work
by intentional collusion between two malicious processes,
namely the trojan and spy.

Among several covert channel implementations, timing-
based attacks are extremely stealthy since the trojan and

Coherent Cache Cache Coherence Protocol Coherent Cache

Manipulate Cache Coherence StatesInfer Coherence States (through timing)

Spy Trojan

Fig. 1: Illustration of a trojan and spy exploiting cache
coherence states

spy communicate simply by manipulating the access timing
to shared resources. These covert timing channels leave no
physical trace of an attack, and are extremely difficult to detect
just through forensic examination of the system state [2].
Recently, Flush+Reload [3] demonstrated a side channel that
exploits the latency difference between cache hits and DRAM
accesses. Irazoqui et al. [4] further extend this work and
demonstrate a potential side channel by exploiting different
latencies due to remote cache hit (i.e., cache hit in another
socket kept coherent with the requesting socket) and DRAM
accesses. We note that these prior works rely on access latency
difference between DRAM vs. caches, and as such, do not
demonstrate the vulnerability of hardware coherence protocol
and its states.

In this paper, we systematically unravel the vulnerability
exposed by cache coherence states to covert timing channels
(Figure 1). For the first time, we show how exclusive and
shared coherence states may present a significant vulnerability
that can be taken advantage by adversaries for covert timing
channel construction purposes. In contrast to prior works, we
assume a broader adversary model where the trojan and the
spy can force create coherence transactions through either
explicitly created read-only shared physical pages (e.g., shared
library code) or implicitly created shared physical memory
pages through a OS feature named Kernel Same Page Merging
(KSM). Our study presents novel insights into the behavioral
characteristics of a class of covert timing channels that exploit
coherence states, their peak bandwidths, and transmission rates
in the presence of external noise.

We note that our study highlights the need to understand
the vulnerability exposed by cache coherence protocols, and
motivates further studies on how to design performance-
friendly defenses against such covert timing channels. Fur-

ther, we demonstrate attacks using multi-bit symbols through
exploiting multiple cache access latency values resulting from
combinations of coherence states and cache locations.

Our study is significant for several key reasons. Most mod-
ern processor vendors offer support for hardware-based cache
coherence, and this trend is likely to stay for the foreseeable
future [5]. While hardware cache coherence protocols improve
system performance by obviating the need for applications to
explicitly maintain data coherence, they could inadvertently
possess certain characteristics prone to security breaches.
Therefore, understanding the vulnerability exposed by such
oft-used hardware features is critical to improving the overall
system security. It is worth noting that covert channels, that
exploit specific hardware units or accelerator structures, can be
defended by either closely auditing their usage or disabling
them altogether where possible. In sharp contrast, hardware
cache coherence-based threats pose challenges due to the
following reasons: 1. Coherence protocol encompasses caches
from multiple levels and possibly different sockets as well, and
hence the attack surface that can be exploited by the adversary
is significantly large, 2. Unlike specific hardware functional
units, cache coherence mechanisms cannot be simply de-
activated since most currently popular and legacy software
programming models depend on them. Therefore, our work
necessitates a more careful understanding of how coherence
protocols could be exploited that could help system designers
to devise smarter ways to defend against such channels.

In summary, the contributions of our work are as follows:
1) We present novel insights into the vulnerabilities exposed

by hardware cache coherence protocols. In particular, we show
how the adversaries could exploit coherent cache blocks in
exclusive and shared states present in different levels of the
cache hierarchy.

2) We illustrate 6 different ways in which the trojan could
exploit the read latency differences for cache data blocks,
arising from various combinations of coherence states and data
locality. We demonstrate the feasibility of covert transmission
between trojan and the spy through implementing all of these
combinations on real processors.

3) We show experimental results to: a) Analyze the band-
width capacities of various timing channel implementations,
b) Explore multi-bit symbol transmission that encode data
by exploiting the latency differences stemming from mul-
tiple combinations of coherence states and cache locations
(effectively increasing the achievable peak bandwidth from
700 Kbits/sec with binary encoded symbols to about 1100
Kbits/sec with multi-bit encoding). c) Understand the behavior
of timing channels in the presence of external noise, and study
the effect on their transmission rates when error correction
mechanisms are incorporated.

II. BACKGROUND

A. Covert Channels

Trusted Computer System Evaluation Criteria (TCSEC or
Orange Book developed by US Department of Defense) [1]
defines covert channel as any communication channel that

can be exploited by a process to transfer information in a
manner that violates the system’s security policy. Among the
various types of covert channels, timing channels work by
allowing a trojan process to signal information to a spy process
by modulating its own use of system resources in such a
way that the change in response time observed by the spy
would provide information. TCSEC notes that covert channels
with low bandwidths represent a lower threat than those with
higher bandwidths. This is because, lower bandwidth channels
become increasingly more expensive for the adversary with
diminishing returns in terms of information gain (e.g., the
adversary gets almost no useful or meaningful information on
covert channels with bandwidth rate of 0.1 bits/sec or below).
Based on measurements from several different computer sys-
tems, TCSEC classifies a high bandwidth covert channel to
have a minimum rate of 100 bits/sec.

B. Cache Coherence

Most modern processors, including Intel Xeon and AMD
Opteron families, support slight variants of MESI cache co-
herence protocol to preserve data coherence in private caches
[6], [7]. The MESI protocol has four states, namely:

1) Modified (M) state, where the cache block is present
only in one private cache and is dirty, i.e., the data has been
modified compared to the value in main memory. This also
implies that the current core/processor has write permission
to modify the block. 2) Shared (S) state, where the cache
block is present in more than one private cache and is clean,
i.e., the data matches the value in the main memory. This
implies that current CPU only has read permission to the
block. 3) Exclusive (E) state, where the cache block is present
only in the current cache, but is clean, i.e., the data matches
the contents in main memory. In this state, the current CPU
only has read permissions. However, since the cache block
is present only in the current cache, it lets the owner CPU
to acquire write permissions and upgrade to M state without
the need to generate invalidation requests to other cores. Also,
any read misses to this block by other cores will downgrade
the coherence state in the current CPU to S state. This dual-
intent coherence state improves the performance by enabling
quick transitions to M or S from the E state depending on the
memory operation. 4) Invalid (I) state, where the cache block
is invalid, and does not have read or write permissions.

Depending on the processor family, there are other special-
ized cache coherence states to further optimize performance.
For instance, the Intel Xeon processor family implements the
MESIF protocol, where the F state is meant to designate the
processor that will forward the cache block to the requestor.
AMD processor family implements MOESI, where O state
is created to designate the owner processor after a modified
cache block transitions to shared state. This avoids write-back
operations to memory whenever the modified blocks are shared
between processors. We note that such additional states simply
serve to improve performance, and do not fundamentally add
new functionality to M, E, S, or I states. For clarity, we do

2

not consider such performance-optimizing coherence states in
our current work.

Furthermore, Intel Xeon and AMD Opteron support cache
coherence across multiple sockets (processors) through high
speed links between the processors [6], [7], [8]. This enables
multiple processors (multiple CPUs) to share data among them
using the underlying coherence protocol.

III. ATTACK MODEL

We assume that the trojan and spy are running on the same
machine that features one or more multi-core processors. In
contrast to the attack model assumed by Irazoqui et al. [4] that
requires multiple sockets, our demonstrated attacks can work
equally well when the trojan and spy are co-located on the
same socket. In order to control coherence states, we assume
that the trojan is capable of spawning multiple threads that
would run on multiple cores either within the same socket
or across multiple sockets. Through this capability, the trojan
can put a block in shared (S) state by explicitly making two
trojan threads load a memory block. The trojan intention-
ally modulates the cache access timing through placing the
shared data block in different coherence states and possibly
in different levels of the memory hierarchy (local processor’s
caches, another processor’s caches in a multi-processor). The
pattern of timing differences between shared block accesses in
different coherence states and locations enables a spy to infer
the transmitted bit(s) from the trojan.

We note that trojan just cannot directly reveal secrets since
system security auditors can detect such activity and prevent
a trojan from doing damages to sensitive user information.
Therefore, we assume that a malicious trojan would actively
seek to covertly communicate with a spy and exfiltrate infor-
mation through covert means.

Also, as software confinement mechanisms continue to
improve and provide stronger isolation guarantees between
processes, hardware structures and their associated mecha-
nisms will be natural targets for covert timing channels. In
this vein, we illustrate the vulnerabilities exposed by cache
coherence protocols that provide for timing differences in
cache accesses depending on the coherence state.

IV. SHARING PHYSICAL MEMORY

Prior to constructing timing channels, the trojan and the spy
should first have shared physical memory such that timing of
accesses to these addresses can be manipulated. As noted in
Section III, prior techniques [3], [4] have shown their timing
channel implementations by explicitly sharing library code
and data between the trojan and spy. In effect, the coherence
protocols would maintain states on such blocks to keep a
coherent memory view supported by the underlying hardware.
Our attack model would work with a similar setup. However,
this setup could imply that we assume the trojan (with access
to sensitive data) and the spy (that can’t access sensitive data)
to have shared code or data, which could be difficult in systems
where strict isolation guarantee policies are enforced.

We note that a more agile adversary could circumvent the
explicit code or data sharing requirement by exploiting a
feature called memory deduplication supported by the OS.

Kernel Same Page Merging (or KSM) is a kernel feature
inside the OS that allows the system to share identical memory
pages (i.e., pages with the same memory contents) between
different processes. This feature is routinely used to enhance
system performance and avoid having to duplicate physical
memory pages holding identical data. In current Linux sys-
tems, the KSM is a kernel thread that periodically scans the
entire memory to identify identical memory pages and make
them to be candidates for merging. After the merging process
is over, a single physical copy of the page is kept and all of
the duplicate copy pages are updated to point to this single
physical page in the page table. The physical pages belonging
to the duplicate pages are then released back to the system
that can be used later for storing more physical pages with
distinct memory contents. The single physical copy (at the
end of the merging process) is marked as copy on write
and resides in read-only sharing mode. In other words, write
operations to these read-only shared pages are not possible
since the kernel will separate them into two separate pages if
one of the sharers happen to modify the contents of the page,
preventing any unexpected direct communication between the
sharer processes. This feature is widely adopted to compact
memory, avoid unnecessary memory duplication and reduce
memory page misses [9], [10].

From the above description, it is clear that the processes
may begin to share pages unknowingly behind the scenes
due to the OS merging of identical physical pages belonging
to different processes. This feature can be now exploited
by the trojan and spy to force create shared memory even
without explicitly having to share any library code or data
between them. In particular, since covert channels are created
by colluding parties, the trojan and spy could intentionally
generate physical pages with identical bit patterns known to
both of them ahead of time. KSM scans the process memory
spaces in the order of their starting times (earliest first). To
avoid noise from external processes that may accidentally have
the exact same bit patterns, the trojan and spy will have to go
through a trial communication phase where they perform a
series of cache flushes and reloads on this page to make sure
that no other process is currently sharing this page as a result
of memory deduplication. If an external sharing of this page
is detected (via timing measurements), the trojan and spy may
repeat creating shared memory through deduplication using
another set of identical bit patterns known to both of them.

V. COHERENCE STATES AND LATENCY

To understand the effect of cache coherence states and the
corresponding cache access latency, we perform experiments
that load (read) data in specific cache coherence states (S and
E) from specific cache locations (local and remote caches with
respect to the requestor). We construct a micro-benchmark
with threads that could be pinned to either one or multiple

3

0 50 100 150 200 250 300 350 400
CPU Cycles

0%

20%

40%

60%

80%

100%
Cu

m
ul

at
iv

e
Di

st
rib

ut
io

n
Fu

nc
tio

n

local shared
local excl.
remote shared
remote excl.

Fig. 2: Load operation latency in various (location, coherence
state) combinations.

cores. Each requestor thread periodically issues load opera-
tions to local and/or remote cache blocks that are in one of
the two coherence states: S or E. In this study, we use a dual-
socket Intel Xeon X5650 server, each with 6 cores running at
2.67 GHz frequency. Each processor has a 32 KB private L1,
256 KB private L2 caches, 12 MB shared L3 cache within each
socket. All of the caches are kept coherent in hardware. Our
experiments were conducted on a system with a representative
workload for a typical desktop server (i.e., applications such
as browser, dropbox, code editors were running alongside our
code as we made our measurements).

For our measurements, we generate 1,000 memory read
(load) operations for each combination pair of (location,
coherence state), and time these loads using rdtsc instruction.
We note that coherence transactions are generated in each case.
For example, in Local Shared configuration, the requested data
is a local L2 cache miss and is fetched from L3 cache in the
same (local) chip where the data is present in the S state. In
Local Exclusive, the requested data is local cache miss and is
fetched from another core’s L1 or L2 cache belonging to the
local chip where the data is present in the E state. Similarly,
in Remote Shared, the requested data is present in the S state
in the L3 cache of a different (remote) processor chip. In
Remote Exclusive, the requested data is present in the E state
in a L2 cache belonging to a remote chip. Figure 2 shows
the cumulative distribution function (CDF) for the various
(location, coherence state) combination pairs. Our results show
that these combination pairs show distinct bands of latency
distributions. We observe that accessing a cache block in the
E state incurs longer latency than accessing data block in S
state (e.g., 124 cycles for accessing local E state block and 98
cycles for local S state data block) triggered by cache lookup
in different coherence states (described in Section VI). Similar
latency difference could also be observed for accessing blocks
in remote caches as well. Our experiments demonstrate that
the latency values are contained within a relatively narrow
band for each configuration, and the bands corresponding
to different configurations are sufficiently distinct from each
other. This clearly demonstrates the viability of exploiting
the latency difference between these combination pairs to
implement timing channels.

Local Cache

Shared Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 3

Core
 1

Core
 4

Processor Socket

Exclusive cache block (maybe stale)

Local Cache

Core
 2

0 0 1 0

Core valid bits

(a) Cache block in E state

Local Cache

Shared Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 3

Core
 1

Core
 4

Processor Socket

Shared cache block (clean)

Local Cache

Core
 2

Core valid bits

0 0 1 1

(b) Cache block in S state

Fig. 3: Trojan explicitly controlling Cache Coherence States
as E or S by running on one or two cores within the multi-core
processor. The dotted lines show the service path for a data
block residing in E and S states respectively.

VI. EXPLOITING CACHE COHERENCE

In this section, we show some practical ways that the trojan
and spy processes can exploit cache latency differences to
exfiltrate sensitive data.

A. On-chip Cache Coherence

Figure 3 shows an illustration of the attack using on-chip
coherence. Here we assume a multi-core processor where each
core has a private write-back cache kept coherent using a
variant of MESI protocol, and all of the cores have access
to a shared last level cache (LLC).

During a read miss in the private cache, the miss request is
first sent to the shared LLC. The LLC maintains the core valid
bits vector for each block that denotes which of the coherent
private caches have a copy of the cache block [11]. An 1 bit
value indicates that the corresponding core caches that block
currently, and a 0 indicates that the corresponding core does
not have that block.

If the total number of 1’s in the vector is greater than one,
it indicates that two or more sharers exist for this block. In
other words, this denotes that the cache block is in the S state
in the memory subsystem, and the cache copy in the LLC is
clean. Since the LLC has a clean data copy, it can directly
service the cache miss request from the requesting core.

4

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 1

 Exclusive cache block 0 0 1 1

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 3

Core
 1

Core
 4

0 0 0 0 Invalidated Cache Line

Processor SocketProcessor Socket

Core
 3

Core
 4

… …

(a) Cache block in E state

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 1

 Shared cache block 0 0 1 1

Local Cache

On-chip Interconnect

Local CacheLocal Cache

Core
 1

0 0 0 0 Invalidated Cache Line

Processor SocketProcessor Socket

… …

Core
 3

Core
 4 Core

 3

Core
 4

(b) Cache block in S state

Fig. 4: Trojan explicitly controlling Cache Coherence States as E or S by running on one or two cores within the multi-socket,
multi-core processor. The dotted lines show the service path for a data block residing in E and S states respectively.

If the total number of 1’s in the core valid bits vector is
equal to one, it indicates that only one cache currently has the
block (i.e., owns the block). Note that this cache may have the
block in the E or M coherence states. Also, this may mean that
the LLC copy of the block is possibly stale, since the current
owner could have modified the block contents during cache
residency. To avoid sending possibly stale data back to the
requesting cache, the LLC forwards the cache request to the
owner. The owner cache responds to the requesting core with
the latest copy of the cache block, and downgrades itself to
the S state. The owner also performs a write-back to the LLC
to leave a clean copy for future read misses on this block. At
the end of this transaction, note that the core valid bits vector
is updated to reflect the new sharer (the requesting core), and
the total number of 1’s (sharer caches) increases to two.

If the total number of 1’s in the core valid bits vector is
equal to zero, it indicates that none of the caches currently have
the block. If the LLC has a clean copy of the data (i.e., cache
valid is 1), the LLC can service the miss request. Otherwise,
the miss request is forwarded to the lower level memory, e.g.,
DRAM. This case does not generate any coherence activity.

In order to communicate covertly, the trojan has to place a
cache block, B (that can be read by the spy as well) in either
of S or E coherence states, and let the spy observe B’s access
latency (using rdtsc or an equivalent instruction). The trojan
spawns two reader threads on two different cores, and lets both
of these trojan threads access the cache block B such that the
LLC will record at least two 1’s in its core valid bits vector.
When the spy generates a read miss on B, its miss is serviced
by the LLC since a clean copy will be available there.

Similarly, to intentionally place B in E coherence state, B
will be flushed from all coherent caches. The trojan spawns
one reader thread, that will then place a read miss for B. The
LLC’s core valid bits vector will record that only one sharer
exists for B. When the spy generates a read miss on B, its miss
will routed to the trojan’s local (private) cache. The spy’s read
miss on a cache block in E state creates a different latency
profile compared to a read miss on B that is in S state.

B. Inter-chip Cache Coherence
Many well-known family of processors provide inter-socket

cache coherence through high speed point-to-point links, e.g.,

AMD’s HyperTransport bus [7], and the Intel’s Quick Path
Interconnect [6]. Such high speed links provide for efficient
data sharing between the sockets including the ability to
maintain coherence between the caches.

The inter-socket coherence works similar to the on-chip
cache coherence (see Section VI-A) with slight modifications
to how the data miss requests are routed. When a core
requesting a cache block B generates a read miss and the
corresponding core’s LLC does not have B, the read miss
request is sent to other remote sockets first instead of DRAM.

If B is in S state in a remote socket, then a clean copy of
B is present in the corresponding remote LLC. The data reply
is sent back from this remote LLC to the requesting core’s
LLC that is then propagated up the memory hierarchy to the
requestor core. If B is in E state in a remote socket, then the
corresponding remote LLC routes the data miss request up to
the current owner (remote) core, which then responds with the
data reply. The current owner (remote) core then downgrades
its cache copy to S state.

Similar to covert timing channels exploiting on-chip coher-
ence states, the trojan-spy pair can exploit block B’s presence
in E or S states in remote caches and the resulting access
timing differences. Figure 4 shows an illustration of this
exploit. To explicitly place a block B in S state on a remote
cache, all existing copies of B must be flushed from all of the
caches (through clflush or an equivalent instruction, or through
eviction of all the ways in the set [12]). The trojan spawns two
threads of itself on one of the sockets participating in hardware
cache coherence, and places a block in S state similar to how
we described for the on-chip scenario (see Section VI-A). On
a different socket, the spy spawns its thread, and generates a
read miss to B to observe its access latency. To explicitly place
a B in E state on a remote cache, all existing copies of B are
flushed. The trojan spawns its thread on one of the coherent
sockets, and places the block in E state similar to how we
described for the on-chip scenario (see Section VI-A). On a
different socket, the spy spawns its thread, and generates a
read miss to B in order to observe its latency.

VII. TIMING CHANNEL CONSTRUCTION

In this section, we describe the trojan and spy construction
process, and show how they would exploit cache access

5

Algorithm 1: Trojan Communication Protocol
Input: read-only cache block: B, Txbit[], CSc, CSb;

1 //CSc is the coherence state used in bit communication;
2 //CSb is the coherence state used for bit boundary;
3 spawn trojan threads;
4 synchronize with spy using shared cache block, B;
5 //B could be created implicitly via KSM or through explicitly
6 //shared data or library code;
7 //Spy-trojan communication protocol defines three counters:
8 //C1, C0 and Cb for communicating 1, 0 and boundary respectively;
9 i = 0;

10 while Txbit[i] != -1 do
11 Repeat Cb times: put B in CSb state;
12 if Txbit[i] == 1 then
13 Repeat C1 times: put B in CSc state;

14 else
15 Repeat C0 times: put B in CSc state;

16 i++;

latency differences created by combination pairs of cache
location and coherence state associated with the cache block.

We illustrate a template for the trojan and spy that can
be eventually integrated into a real-world adversarial setting
designed to exfiltrate sensitive secrets. For example, let us con-
sider a scenario where a spy process has the ability to observe
encrypted communication transmitted over a public network
between two processes with access to sensitive information.
As per the system security policy, the spy cannot directly
communicate with either of these entities due to it being on
lower security stratum, nor can it decipher the communicated
bits without knowing the decryption key. However, a malicious
insider trojan (that has access to secrets) could collude with
the spy to circumvent the system security and communicate
secrets covertly as follows:

1) To compromise symmetric cryptography techniques
(e.g., AES, DES), a trojan transmits symmetric encryp-
tion/decryption key covertly to the spy through modulating
accesses to the coherent caches on shared physical memory
blocks. With the already captured encrypted text and the now-
obtained decryption key, the spy could covertly receive the
message without any direct communication with the trojan.

2) To compromise asymmetric encryption standards (e.g,
RSA), a trojan and the spy intentionally sign up for the
RSA service under the pretense of encrypting their own texts.
Since trojan-spy share the same coherence fabric, the trojan
could covertly transmit its decryption key through modulating
accesses to the coherent cache. The spy could decrypt the
encrypted text and gather sensitive data.

A. Pre-transmission

In order to construct the convert timing channel using
cache coherence states, there are two considerations: 1. shared
physical read-only memory between trojan and spy to en-
able covert communication (Section IV), 2. synchronization
between trojan and spy prior to transmission.

In our experiments, read-only shared memory is implicitly
created through KSM when the trojan and spy intention-
ally write identical data to their individual pages with a

Algorithm 2: Spy Communication Protocol
Input: read-only cache block: B, Tvalues[]=-1;

1 //Two access latency bands, Tc and Tb;
2 //Ts is the sampling interval;
3 //wait for the trojan to begin transmission;
4 synchronize with trojan using shared cache block, B;
5 //B could be created implicitly via KSM or through
6 //explicitly shared data or library code;
7 while true do
8 flush B from cache;
9 //wait for Ts sec until trojan has an opportunity to reload;

10 load B and time the load (T);
11 if T is within Tb then
12 //transmission has started;
13 break;

14 //reception period
15 i = 0;
16 while true do
17 flush B from cache;
18 //wait for Ts for trojan to reload;
19 load B and time the load (T);
20 record T into Tvalues[i++];
21 if T is outside of Tc and Tb for N consecutive times then
22 //N is defined by the trojan and spy;
23 break;

24 //translation period (interpret 1’s and 0’s)
25 read Tvalues[] vector from index 0 to N;
26 i = 0; j = 0; count[] = 0;
27 while Tvalues[i]! = -1 do
28 Repeat until Tvalues[i] is within Tb band: i++;
29 bitc = 0;
30 Repeat until Tvalues[i] is within Tc band: bitc++; i++;
31 count[j++] = bitc;

32 //Thold, Threshold separates C1 and C0 and helps decipher bits;
33 j = 0;
34 while count[j] != 0 do
35 if count[j++] > Thold then
36 //Infer that the transmitted bit is 1;

37 else
38 //Infer that the transmitted bit is 0;

deterministic, pseudo-random number generator function that
begins with the same seed. Specifically, the trojan and spy
create shared memory as follows: 1. Allocate memory through
system calls such as alloc() and populate them with identical
contents. The allocated pages with similar content are merged
through invoking the system call madvice(). 2. The trojan and
spy will wait for a certain period (e.g, 30 seconds) for the
merging process to be complete. We note that this creation
of shared memory needs to be done exactly once prior to
entire trojan-spy communication. In very rare occasions, where
a third independent process has its page merged with the
memory page that is actively utilized by trojan/spy for covert
communication, we have to discard such a page, and create
another shared page that will be uniquely accessed by just the
trojan and spy without external interference. Such situations
can be prevented by creating a spare shared page initially, thus
avoiding any necessity to re-invoke KSM.

For synchronization, the trojan issues flush of the shared
cache block and then reloads the same block continuously for
a number of times (e.g., about 20 in our experiments), and

6

Processor 1 Processor 2

Flush

Timed read miss
Flush

Timed read miss
Flush

Timed read miss

bit ‘1’

Flush

Timed read miss
Flushbit boundary

Timed read miss

Timed read miss
Flush

Flush

Timed read miss
Flush

Timed read miss

bit ‘0’

bit boundary

Issue loads to B
repeatedly to maintain
E State

Issue loads to B
repeatedly to maintain
S State

Issue loads to B
repeatedly to maintain
S State

timetime

Fig. 5: Illustrative example of ‘1’ and ‘0’ transmission protocol
between trojan(s) and spy.

the spy periodically issues load instruction to the same cache
block. The trojan and spy time their respective load instruction
latency. Synchronization is considered complete when the
trojan observes a series of long latencies because of having to
load data from memory, and when the spy notices a sequence
of latencies eventually converging to a stable band of values.
This process indicates that the trojan and spy uniquely share a
block and that the spy is able to decipher the block’s presence
in trojan’s cache through timing the cache block accesses.
The actual transmission can start once the synchronization is
successful. Our experiments show that it takes, on average, 90
milli-seconds for trojan-spy synchronization. We note that this
step needs to be performed prior to covertly transmitting the
first bit or after every OS context switch that involves either
the trojan or the spy.

B. Trojan and Spy

To implement covert timing channels using coherence states,
the trojan and spy pick a (location, coherence state) combina-
tion pair to modulate timing and communicate bits (1 or 0),
and another distinct (location, coherence state) combination
pair to delineate bit transmission boundaries (i.e., to say that
a bit transmission has ended and another will start at the end
of boundary). These two combination pairs are denoted as
CSc and CSb respectively, where c stands for communication
and b denotes boundary. Correspondingly, we assume that the
bands of cache access latency values Tc and Tb are already
known to the trojan and spy through self-measurements on

Cache Location and Coherence State Notation Number of
for bit communication and boundary Trojan threads
(Local Exclusive, Local Shared) LExclc−LSharedb 2 (local)
(Remote Exclusive, Remote Shared) RExclc−RSharedb 2 (remote)
(Remote Exclusive, Local Exclusive) RExclc−LExclb 2 (1 local, 1 remote)
(Remote Exclusive, Local Shared) RExclc−LSharedb 3 (2 local, 1 remote)
(Remote Shared, Local Exclusive) RSharedc−LExclb 3 (1 local, 2 remote)
(Remote Shared, Local Shared) RSharedc−LSharedb 4 (2 local, 2 remote)

TABLE I: Trojan implementation along with states used for
bit communication and boundary. ‘Remote’ and ‘Local’ are
with respect to the spy’s location.

��

��

�� ��� ��� ��� ��� ��� ��� ��� ��� ��� ����

�
���
�
�
��
�

���������

Fig. 6: Bit pattern (100 bits) covertly transmitted by the trojan.

cache hardware (Figure 2). Within the bit transmission period,
the trojan and spy will also know how many consecutive times
a block B will be seen in CSc state to distinguish between the
transmission of bit values ‘1’ and ‘0’, denoted by C1 and C0
respectively. We note that having distinct communication and
boundary values remove the need for synchronization on each
bit transmission.

Algorithm 1 describes our implementation for the trojan.
The trojan is multi-threaded to explicitly control the placement
of blocks in S or E state either locally or remotely. For
every ‘1’ bit to be transmitted, it puts the cache block in CSc
coherence state for C1 times, and for every ‘0’ bit transmission,
the trojan places the cache block in CSc for C0 times. In-
between every bit transmission, the trojan places the cache
block in CSb for Cb times to denote bit boundaries.

The spy process is a single-threaded observer that times the
cache block accesses using repeated patterns of flushes and
reloads on them. Algorithm 2 describes our implementation
for the spy. We see that the spy has three phases: 1) Polling
for start of transmission by repeated flush and reload of a
shared block B. 2) Reception of transmitted bits by timing
each access to B, and recording latencies into Tvalues[] vector.
3) Translation of Tvalues[] by accumulating the consecutive
T values belonging to the same band, and distinguishing them
into bits ‘1’ and ‘0’, and ‘bit boundaries’.

Figure 5 gives a diagrammatic illustration of an example
communication protocol between the trojan and spy. In this
example, the trojan is located in a processor different from
that of the spy (Note that the trojan and spy could be in the
same processor as well). The trojan modulates the cache access
timing for the spy by placing a block B in E state when it wants
to transmit a bit, and through placing B in S state to indicate
boundaries between bits. The trojan spawns 2 threads on the
remote socket, and issues load requests to B from just one
thread to explicitly place it in E state and issues load requests

7

��
����
����
����
����
����

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

���

����

����

��� ��� ��� ��� ��� ���

���������������

(a) LExclc-LSharedb

��
����
����
����
����
����

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

����

����

����

��� ��� ��� ��� ��� ���

���������������

(b) RExclc-RSharedb

��
����
����
����
����
����

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

����
����
����
����
����

��� ��� ��� ��� ��� ���

���������������

(c) RExclc-LExclb

��
����
����
����
����
����

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

��
���

����
����
����
����
����

��� ��� ��� ��� ��� ���

���������������

(d) RExclc-LSharedb

��
����
����
����
����
����

�� ���� ���� ���� ���� ���� ���� ���� ����
�
�
��
�
�
�
�
��
�
�
��
�
�

��
���

����
����
����
����
����

��� ��� ��� ��� ��� ���

���������������

(e) RSharedc-LExclb

��
����
����
����
����
����

�� ���� ���� ���� ���� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

��
���

����
����
����
����
����

��� ��� ��� ��� ��� ���

���������������

(f) RSharedc-LSharedb

Fig. 7: Bit Reception by the Spy (corresponding to the bits transmitted in Figure 6) through measuring load latency (in CPU
cycles). The top portion in each subfigure shows the entire reception period, and the bottom portion shows a magnified view
for the reception of first five bits.

to B from both threads to explicitly place it in S state. In
particular, between cache block flushes initiated by the spy,
the trojan places B in E state for 3 consecutive times to signal
a ‘1’ bit, and places B in E state for just 1 time to signal a
‘0’ bit. For bit boundaries, the trojan places B in S state for 2
consecutive times between flushes initiated by the spy.

Table I shows 6 cases where the trojan and spy use two
distinct (location, coherence state) combination pairs for bit
transmission and bit boundary identification. The location
identifiers ‘local’ and ‘remote’ are with respect to the spy,
since it measures the load latencies and deciphers the bit
values/boundaries on its end.

VIII. EXPERIMENTAL RESULTS

We conduct experiments on a Intel Xeon X5650 2-socket
server with a total of 12 cores, the configuration described in
Section V. We pin the trojan and spy threads onto specific
cores using the sched setaffinity API. All of the reported
load latencies were obtained by inserting the rdtsc instruction.
We implement the 6 attack scenarios listed in Table I and
study their bandwidths. Additionally, we implement a covert
timing channel with symbols encoding multi-bits by leveraging
combination pairs of (location, coherence state) and encoding
data in larger-than-binary representations.

A. Spy’s Reception

Figure 6 shows the secret (bit) pattern that the trojan
intends to covertly communicate with the spy. Figure 7 shows
the results of load latencies observed on the spy side. For
each combination pair of (location, coherence state), we show
two sets of results: the top portion shows the load latencies
observed throughout the entire reception period, and bottom

portion shows a magnified view illustrating the communication
of the first five bits in the top figure for clarity. In this
magnified view, we observe that for each ‘1’ bit transmitted,
the spy observes the load latency in the Tc band, corresponding
to CSc, for four or five consecutive times (each dot in the figure
denotes a ‘timed’ load operation); for each ‘0’ bit transmitted,
the spy observes load latency in the Tc band for one or two
consecutive times (See discussion in Section VII-B). These
are shown as red dots in the bottom portion of each figure.
Similarly, the boundary between bit values are deciphered
by the spy when it observes load latency in the Tb band,
corresponding to CSb, for four to five times consecutively. Our
experiments show that the spy is able to correctly decipher the
transmitted bits for all 6 attack scenarios with 100% accuracy.

B. Transmission Bandwidth

We conduct experiments to study the raw bit accuracy with
increasing transmission bit rates between the trojan and spy.
We perform this study by tuning two knobs: 1) Reduce the
number of consecutive caching operations for shared blocks
that communicate bit values and boundaries, i.e., values of C1,
C0 and Cb. 2) Reduce the interval between shared cache block
loads by the spy, i.e., the value of Ts. Refer to Algorithms 1
and 2 for further details on these parameters. Figure 8 shows
our results. In this study, we note that there are 3 possibilities
for raw bit error on the reception side: 1. certain bits may
be lost, 2. extra bits may be added due to duplication (very
rare and we did not observe any such occurrence in our
experiments), and 3. certain bits may be flipped (1 mis-
interpreted as 0, or vice versa). Accuracy is defined as the
ratio of number of raw bits correctly received by the spy to

8

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

(a) LExclc-LSharedb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

(b) RExclc-RSharedb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

(c) RExclc-LExclb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

 R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

(d) RExclc-LSharedb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

(e) RSharedc-LExclb

90%

92%

94%

96%

98%

100%

100 200 300 400 500 600 700 800 900 1000

R
aw

 B
it

A
cc

ur
ac

y

Bit Rate (Kbps)

(f) RSharedc-LSharedb

Fig. 8: Raw bit accuracy as captured by the spy with increase in transmission rates.

total number of raw bits transmitted by the trojan. As we
increase the bit rate to beyond 500 Kbps, we see that most
cases experience a rapid drop in raw bit accuracy. However,
there are two exceptions: 1. RExclc− LExclb begins with a
high initial bit rate of over 400 Kbps and declines to below
90% accuracy only beyond 800 Kbps. 2. RExclc−LSharedb
shows high immunity and a good raw bit accuracy of 96%
even at 800 Kbps. We note that the effective ‘information
bit’ accuracy rates can be kept potentially high by leveraging
higher raw bit transmission rates especially when the underly-
ing transmission protocol incorporates error correcting codes.
Methods to recover information bits due to omission and bit
flips is a well studied topic [13], and is outside the scope of
our work.

C. External Noise and Error Correction

To observe noise effects from co-located memory-intensive
applications, we run a highly memory-intensive workload,
kernel-build [14], that compiles a Linux kernel to benchmark
a system or test its stability. This application supports a variety
of options including multi-threaded implementation. Note that
this experiment simulates an extreme stress-test case where
a very high memory-intensive multi-threaded workload is co-
located with trojan/spy. In this setting, alongside our trojan and
spy processes, we spawn a different number of kernel-build
threads (1 to 8). Figure 9 shows our experimental results where
we observe that, with the increase in number of memory-
intensive threads, the bit accuracy levels on the spy side
experience a range of degradation.

Specifically, even with six background processes, the spy

processes in all of the 6 attack variants are able to achieve
fairly high bit accuracy (above 90% on average). However,
with 8 external kernel-build processes, we see an observable
impact on the trojan-spy communication (11% to 23% increase
in raw bit error rate). Meanwhile, we observed subtle differ-
ences between different cases. For example, since kernel-build
processes saturate the internal bus (L2-LLC) bandwidths, load
latency values to E state blocks in remote caches were highly
varied while remote LLC accesses (S state blocks) do not
suffer from high latency swings when measured by the spy.

To illustrate mechanisms that can improve bit accuracy un-
der noise, we propose and implement a simple error encoding
and retransmission protocol. For each packet (64 bytes), 16
parity bits are added to catch any bit flips within 4 Byte
chunks. After each packet transmission, the spy checks for
parity bits and if errors are detected, it will request for packet
resend by covertly transmitting NACK bit. This is achieved
by reversing the roles of spy as the transmitter and trojan as
the receiver just for transmitting the NACK bit. This process is
repeated until successful receipt of the packet. Figure 10 shows
the achievable bit rates for trojan-spy transmission without
noise and the effective rate with retransmission scheme under
medium noise (with 4 kernel-build processes) and high noise
(with 8 kernel-build processes) levels. Overall, we can see
that the retransmission scheme suffers less than 10% reduction
in transmission rate, and incurs 24% worst-case reduction
in transmission rate under high noise levels in return for
guaranteeing 100% bit recovery. Conceivably, the same NACK
mechanism can be used to track non-reception by the spy as
well. If the spy was context switched out, the trojan will not

9

���

����

����

����

����

�����

��������������� ��������������� ������������� ��������������� ��������������� �����������������

�
�
�

�
�
���
�
�
�
�
��
�
�

����
����
����
����
����

Fig. 9: Raw bit accuracy captured by the spy when co-located with external processes (kernel-build [14]).

��

����

����

����

����

����

����

����

����

���
�����

���
����

���
�����

���
����

���
�����

���
��

���
�����

���
����

���
�����

���
����

���
�����

���
����

��

�
��
�
�
���
�

�
�
���
�
�
��

�
��
�
�
�
�

�������� ���� ����

Fig. 10: Effective information bit transmission rate with error
correction scheme under medium (4 co-located kernel-build
processes) and high (8 co-located kernel-build) noise levels.

receive acknowledgment packet (NACK bit), and hence will
retransmit until a successful acknowledgment (NACK=0) is
received.

Our experimental results provide a useful insight that the
covert timing channels introduced due to coherence states can
be robust in terms of bit accuracy and high transmission rates.
Also, incorporating even a fairly simple error detection and
retransmission scheme can significantly improve bit accuracy
with a relatively small impact on peak bit rate.

D. Symbols Encoding Multi-bits

Besides just increasing the transmission speed, the volume
of information transmitted by a covert channel can be in-
creased by encoding multiple bits using symbols. Due to the
presence of multiple distinct latency bands corresponding to
(location, coherence state) combination pairs, we implement
a covert timing channel that transmits symbols encoding 2-
bits in every transmission. We utilize four combination pairs
(RExclc, LExclc, RSharedc, LSharedc) to encode one of four
distinct symbol values. The spy infers the symbol by issuing
load instructions (similar to our algorithm in Section VII-B)
and timing the load operation latency corresponding to com-
bination pairs.

Our experiments demonstrate a peak transmission rate of
around 1.1 Mbps, which is significantly higher than the
700 Kbps observed when using just one combination pair
of (location, coherence state) for encoding binary data for
transmission. Figure 11 shows spy’s reception of symbols
through timed load operations along with a magnified view
of the first 9 symbols or 18 bits (100101000110011011),
in which all four distinct symbols are observed. We note that

��
����
����
����
����
����

�� ��� ���� ���� ���� ����

�
�
��
�
�
�
�
��
�
�
��
�
�

���

����

����

����

����

��� ��� ��� ��� ��� ��� ���
���������������

Fig. 11: Multi-bit symbol transmission using 4 combination
pairs to encode 2-bit symbols. Magnified view of first 18 bits
reception is shown, that captures all 4 possible symbol values.

more sophisticated symbol encoding mechanisms may achieve
even higher transmission rates, and our main goal here is
simply to demonstrate alternative ways that an adversary can
exploit in order to achieve higher bandwidths.

E. Discussion

Applicability to Different Coherence Protocols. Cache co-
herence protocols in multi-core/multi-processor systems can
be categorized into two broad classes: 1. snoop-based pro-
tocols, that broadcast coherence messages on a shared bus,
and 2. directory-based protocols, that offer higher scalability
by maintaining status of cache blocks in directories distributed
throughout the system. The Intel Xeon processors evaluated in
our experiments deploy a variant of directory-based protocol
with LLC’s core-valid-bits that direct coherence messages to
specific cores with possibly valid blocks. On other directory-
based systems, note that additional hops to the home directory
based on address filters can further create different latency
profiles for the adversaries to exploit. For snoop-based proto-
cols, reads on E-state blocks will involve accesses to private
caches of other cores since they hold the exclusive ownership
of these blocks, while reads on S-state blocks are satisfied by
the lower level shared caches that already have a clean copy
of the cache block [15]. This is somewhat similar to LExclc-
LSharedb configuration in Table I. Therefore, our findings
extend to different classes of protocols.

Non-inclusive and Exclusive Caches. We study inclusive
caches in this work. For blocks present (hits) in non-inclusive
LLCs, latency difference between S and E state are still

10

distinct. Given that LLCs are typically large and that S-state
blocks are accessed relatively frequently by more than one
core, absence of S-state blocks in LLC should be rare. On
exclusive caches, both S- and E-state blocks may have similar
latency. But still, data accesses in different cache levels and
sockets will have distinct latency profiles. Therefore, we note
that changing the cache inclusion property alone may not be
sufficient to eliminate the timing channels studied in our work.

Potential Mitigation Techniques. To protect computer sys-
tems against the covert timing channels, we propose three
mitigation techniques: 1) Add targeted noise to shared memory
pages by having a monitor thread, that observes accesses to
shared memory pages and dynamically issues additional loads.
This method disrupts the covert timing channel by changing
the coherence states (e.g., convert E to S) and alter spy’s
timing values; 2) Setup timeouts for KSM to un-merge shared
pages with suspicious access pattern so that the trojan and
spy communication can be disrupted dynamically. 3) Change
hardware implementation, where LLCs are notified of changes
from E to M states (that could slightly increase coherence-
related traffic). This would enable LLCs to directly respond
with E-state blocks, and consequently, latency profiles for E-
and S-state blocks will be similar, thus closing the timing
channels. Additionally, hardware timing obfuscators can make
the latencies of local and remote caches indistinguishable,
especially for suspicious applications.

IX. RELATED WORK

Prior studies [16], [17] on Intel and AMD processors have
shown that the cache access latencies are usually within a
stable band of values that has been observed in our work.

A number of prior studies have demonstrated timing chan-
nels on caches [3], [12], [18], [19], [20], [21], microarchitec-
tural units [22], [23], memory bus [24], processor frequency
settings [25] and branch predictors [26], [27]. Most of these
attacks rely on modulating the access timing behavior of a
single hardware resource that may potentially be addressed
through carefully monitoring the unit, and if possible, isolating
or disabling them. In contrast, our work illustrates an attack
that leverages the oft-used hardware cache coherence mecha-
nism operating on multiple caches and coherence states.

Recently, Yao et al. [21] demonstrated covert timing chan-
nels that leverage non-uniform memory access latencies in
multiple sockets. Different from this attack, the proposed
covert timing channel exploits combinations of coherence
states and cache location to construct timing channels, along
with multi-bit symbols that significantly increases the trans-
mission rate. Finally, these prior adversary models [4], [21]
rely on user-initiated shared cache-blocks (via shared system
libraries). We adopt a broader adversary model where shared
physical memory could also be created using KSM.

Evtyushkin et al. [23] have shown a covert channel attack
that relies on applications using random number generation,
and may potentially be detected by tracking this module
call failures.Jiang et al. [28] demonstrated a side channel to

recover AES encryption keys using correlation analysis on
GPU platforms.

Detection and defenses for microarchitectural timing chan-
nel attacks have been studied. Demme et al. [29] introduced
a metric to quantify the difficulty level to exploit a sys-
tem for side channels. Wang et al. [30] proposed secure
hardware cache designs with partition-locking and random
permutation to thwart cache side channels. Venkataramani et
al. [31] proposed techniques to detect contention-based timing
channels. Hunger et al. [32] studied contention-based cache
covert channels and proposed anomaly-based detection. Liu
et al. [33] used Cache Allocation Technology to partition
LLC and mitigate information leakage channels. ReplayCon-
fusion [34] utilized record and replay mechanisms to de-
terministically replay programs with different cache address
mapping. Yao et al. [35] proposed techniques to detect Jump-
oriented programming based code re-use attacks. Sharp [36]
redesigned shared cache line replacement policy to avoid
inclusion property that is exploited by the spy to decipher
the victim’s activity. To defend against memory-based timing
channels, Ferraiuolo et al. [37] designed a secure memory
scheduling algorithm. Camouflage [38] reshapes the timing of
memory requests and responses to a deterministic distribution
that eliminate memory access pattern snooping by untrusted
parties. Recent works [39], [40] leverage computation logic in
emerging memory technology to cryptographically obfuscate
memory addresses and memory bus timing to thwart memory
bus attacks. Wassel et al. [41] proposed wave scheduling policy
to prevent timing channels in NoC architectures. We note that
none of these prior defenses are designed to protect system-
wide coherence protocols that entail multiple caches.

X. CONCLUSIONS

In this paper, we presented a critical vulnerability exposed
by an oft-used feature in most modern multi-core and multi-
socket processors, namely cache coherence protocol states. We
showed how adversaries could exploit cache coherence states
and construct covert timing channels in order to illegitimately
transmit sensitive secrets to untrusted parties by violating the
underlying system security policy. We demonstrated 6 practical
cases for covert timing channels on real-world commercial
processors. In contrast to prior works, we assume a broader
adversary model where the trojan and spy can either exploit
explicitly shared read-only physical pages, or use memory
deduplication feature to implicitly force create shared physical
pages. We demonstrate how adversaries can manipulate com-
binations of coherence states and data placement in different
caches to construct timing channels. We also showed how
adversaries could exploit multiple caches and their associated
coherence states to encode symbols with multiple bits, and
explored potential mitigation strategies. Our experimental re-
sults on commercial systems show that the peak transmission
bandwidths of these covert timing channels can vary between
700 to 1100 Kbits/sec.

11

ACKNOWLEDGMENT

This material is based on work supported by the US
National Science Foundation under CAREER Award CCF-
1149557 and CNS-1618786, and Semiconductor Research
Corp. (SRC) contract 2016-TS-2684. Any opinions, findings,
conclusions, or recommendations expressed in this article are
those of the authors, and do not necessarily reflect those of
the NSF or SRC.

REFERENCES

[1] Department of Defense Standard, Trusted Computer System Evaluation
Criteria. US Department of Defense, 1983.

[2] A. Chen, W. B. Moore, H. Xiao, A. Haeberlen, L. T. X. Phan, M. Sherr,
and W. Zhou, “Detecting covert timing channels with time-deterministic
replay,” in USENIX Symposium on Operating Systems Design and
Implementation, pp. 541–554, 2014.

[3] Y. Yarom and K. Falkner, “Flush+ reload: a high resolution, low noise,
L3 cache side-channel attack,” in USENIX Security Symposium, pp. 719–
732, 2014.

[4] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cross processor cache
attacks,” in Proceedings of Asia Conference on Computer and Com-
munications Security, pp. 353–364, ACM, 2016.

[5] M. M. Martin, M. D. Hill, and D. J. Sorin, “Why on-chip cache
coherence is here to stay,” Communications of the ACM, vol. 55, no. 7,
pp. 78–89, 2012.

[6] “Intel QuickPath Architecture,” 2012. http://www.intel.com/pressroom/
archive/reference/whitepaper QuickPath.pdf.

[7] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes,
“Cache hierarchy and memory subsystem of the AMD Opteron proces-
sor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, 2010.

[8] P. Conway and B. Hughes, “The AMD Opteron northbridge architec-
ture,” IEEE Micro, vol. 27, no. 2, pp. 10–21, 2007.

[9] C. A. Waldspurger, “Memory resource management in VMware ESX
server,” ACM SIGOPS Operating Systems Review, vol. 36, no. SI,
pp. 181–194, 2002.

[10] A. Barresi, K. Razavi, M. Payer, and T. R. Gross, “CAIN: silently
breaking ASLR in the cloud,” in USENIX Workshop on Offensive
Technologies, 2015.

[11] “Using Intel VTune Amplifier,” 2013. https://goo.gl/E9Fp2m.
[12] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache side-

channel attacks are practical,” in Proceedings of Symposium on Security
and Privacy, pp. 605–622, IEEE, 2015.

[13] R. Gallager, “Low-density parity-check codes,” IRE Transactions on
Information Theory, vol. 8, no. 1, pp. 21–28, 1962.

[14] “kcbench.” https://linux.die.net/man/1/kcbench.
[15] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory

consistency and cache coherence,” Synthesis Lectures on Computer
Architecture, vol. 6, no. 3, pp. 1–212, 2011.

[16] D. Hackenberg, D. Molka, and W. E. Nagel, “Comparing cache archi-
tectures and coherency protocols on x86-64 multicore SMP systems,” in
Proceedings of International Symposium on Microarchitecture, pp. 413–
422, ACM, 2009.

[17] D. Molka, D. Hackenberg, R. Schöne, and W. E. Nagel, “Cache
Coherence Protocol and Memory Performance of the Intel Haswell-EP
Architecture,” in Proceedings of International Conference on Parallel
Processing, pp. 739–748, IEEE, 2015.

[18] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive last-level caches,” in USENIX Security
Symposium, pp. 897–912, 2015.

[19] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen, and R. Schlichting,
“An exploration of L2 cache covert channels in virtualized environ-
ments,” in Proceedings of Workshop on Cloud Computing Security,
pp. 29–40, ACM, 2011.

[20] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get
off of my cloud: exploring information leakage in third-party compute
clouds,” in Proceedings of Conference on Computer and Communica-
tions Security, pp. 199–212, ACM, 2009.

[21] F. Yao, G. Venkataramani, and M. Doroslovacki, “Covert timing chan-
nels exploiting non-uniform memory access based architectures,” in
Proceedings of Great Lakes Symposium on VLSI, pp. 155–160, ACM,
2017.

[22] O. Aciicmez and J.-P. Seifert, “Cheap hardware parallelism implies
cheap security,” in Proceedings of Workshop on Fault Diagnosis and
Tolerance in Cryptography, pp. 80–91, IEEE, 2007.

[23] D. Evtyushkin and D. Ponomarev, “Covert channels through random
number generator: Mechanisms, capacity estimation and mitigations,” in
Proceedings of Conference on Computer and Communications Security,
pp. 843–857, ACM, 2016.

[24] Z. Wu, Z. Xu, and H. Wang, “Whispers in the hyper-space: high-speed
covert channel attacks in the cloud,” in USENIX Security Symposium,
pp. 159–173, 2012.

[25] M. Alagappan, J. J. Rajendran, M. Doroslovacki, and G. Venkataramani,
“DFS covert channels on multi-core platforms,” in Proceedings of
International Conference on Very Large Scale Integration, IEEE, 2017.

[26] O. Aciiçmez, c. K. Koç, and J.-P. Seifert, “On the power of simple branch
prediction analysis,” in Proceedings of Symposium on Information,
Computer and Communications Security, pp. 312–320, ACM, 2007.

[27] D. Evtyushkin, D. Ponomarev, and N. Abu-Ghazaleh, “Understanding
and mitigating covert channels through branch predictors,” ACM Trans-
actions on Architecture and Code Optimization, vol. 13, no. 1, p. 10,
2016.

[28] Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery timing
attack on a GPU,” in Proceeding of International Symposium on High
Performance Computer Architecture, pp. 394–405, IEEE, 2016.

[29] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, “Side-
channel vulnerability factor: a metric for measuring information leak-
age,” ACM SIGARCH Computer Architecture News, vol. 40, no. 3,
pp. 106–117, 2012.

[30] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” ACM SIGARCH Computer Architec-
ture News, vol. 35, no. 2, pp. 494–505, 2007.

[31] G. Venkataramani, J. Chen, and M. Doroslovacki, “Detecting hardware
covert timing channels,” IEEE Micro, vol. 36, pp. 17–27, Sept 2016.

[32] C. Hunger, M. Kazdagli, A. Rawat, A. Dimakis, S. Vishwanath, and
M. Tiwari, “Understanding contention-based channels and using them
for defense,” in International Symposium on High Performance Com-
puter Architecture, pp. 639–650, IEEE, 2015.

[33] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B.
Lee, “CATalyst: Defeating last-level cache side channel attacks in
cloud computing,” in International Symposium on High Performance
Computer Architecture, pp. 406–418, IEEE, 2016.

[34] M. Yan, Y. Shalabi, and J. Torrellas, “ReplayConfusion: Detecting cache-
based covert channel attacks using record and replay,” in Proceedings of
International Symposium on Microarchitecture, pp. 1–14, IEEE, 2016.

[35] F. Yao, J. Chen, and G. Venkataramani, “Jop-alarm: Detecting jump-
oriented programming-based anomalies in applications,” in Proceedings
of International Conference on Computer Design, pp. 467–470, IEEE,
2013.

[36] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-
aware cache replacement policy (sharp): Defending against cache-based
side channel atacks,” in Proceedings of International Symposium on
Computer Architecture, pp. 347–360, ACM, 2017.

[37] A. Ferraiuolo, Y. Wang, D. Zhang, A. C. Myers, and G. E. Suh,
“Lattice priority scheduling: Low-overhead timing-channel protection
for a shared memory controller,” in International Symposium on High
Performance Computer Architecture, pp. 382–393, IEEE, 2016.

[38] Y. Zhou, S. Wagh, P. Mittal, and D. Wentzlaff, “Camouflage: Mem-
ory traffic shaping to mitigate timing attacks,” in Proceedings of In-
ternational Symposium on High Performance Computer Architecture,
pp. 337–348, IEEE, 2017.

[39] A. Awad, Y. Wang, D. Shands, and Y. Solihin, “Obfusmem: A low-
overhead access obfuscation for trusted memories,” in Proceedings of
the Annual International Symposium on Computer Architecture, pp. 107–
119, ACM, 2017.

[40] S. Aga and S. Narayanasamy, “Invisimem: Smart memory defenses for
memory bus side channel,” in Proceedings of the Annual International
Symposium on Computer Architecture, pp. 94–106, ACM, 2017.

[41] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T.
Chong, and T. Sherwood, “Surfnoc: A low latency and provably non-
interfering approach to secure networks-on-chip,” in Proceedings of
International Symposium on Computer Architecture, pp. 583–594, ACM,
2013.

12

