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Fan Yao†, Hongyu Fang, Miloš Doroslovački and Guru Venkataramani
Department of Electrical and Computer Engineering,

The George Washington University, Washington, DC, USA
Email: {albertyao, hongyufang ee, doroslov, guruv}@gwu.edu

Abstract—Recent studies have shown how adversaries can
exploit hardware cache structures to launch information leakage-
based attacks. Among these attacks, timing channels are es-
pecially worrisome since adversaries communicate simply by
modulating the timing of shared resource accesses, and do not
leave any physical trace of the communication. Therefore, guard-
ing the system against such attacks is critical. Unfortunately,
most existing mitigation mechanisms either require non-trivial
hardware modifications and/or incur high runtime overheads.

In this paper, we propose COTSknight, a new framework that
guards the system against several classes of cache timing chan-
nel attacks by making novel use of Commercial Off-The-Shelf
(COTS) architectural support for cache resource monitoring and
prioritization. We find that the adversary’s attempt to modulate
cache access latency during attacks can be captured using
cache occupancy patterns. COTSknight leverages efficient signal
processing techniques on cache occupancy patterns to determine
the potential for timing channel attacks. Once suspicious domains
are identified, COTSknight disbands timing channels using dy-
namic cache partitioning schemes in hardware. We implement a
prototype of our COTSknight framework on an Intel Xeon v4
server and evaluate its efficacy extensively using different spatial
encoding schemes, as well as serial and parallel implementations
of Last Level Cache (LLC) timing channels. Our results show
that COTSknight can successfully thwart several classes of timing
channel attacks by allocating disjoint LLC ways to malicious
processes. Even in benign cache-intensive workloads, we observe
a 6% cache partition trigger rate that results in a relatively
small 5% worst-case performance degradation. Interestingly, for
some benign applications, upon COTSknight’s cache partition,
we observe an improved performance by up to 9.2% through
eliminating cache interference.

I. INTRODUCTION

Among the many forms of sensitive information leakage,
timing channels are particularly notorious for leaking secrets
leaving no physical evidence of a secret communication having
taken place [7]. In other words, the spy receiving secrets
in these timing channels rely on observing modulations of
resource access latencies, and do not explicitly receive any
bits. Such timing channels can manifest as either side channels
(where a benign victim unknowingly leaks sensitive data to
a malicious spy), or as covert channels (where a malicious
insider trojan process intentionally colludes with a spy process
to manipulate the access timing of a shared resource, and
reveals secrets illegitimately). Recently, Spectre and Meltdown
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attacks [42] have shown that timing channels can easily
manifest on mainstream hardware, and stress the need for
hardware-based information security to be considered as a first
order design constraint in computer architecture.

A number of prior works have studied how to manipulate
or leverage cache access timing for information leakage chan-
nels [28], [29], [26], [38]. Specifically, caches offer a rich
medium for implementing such timing channels due to two
major reasons: 1. cache is one of the most commonly shared
hardware resources, and hence offers large attack surface for
adversaries to exploit; 2. caches access latencies for a cache
hit and miss are noticeably different, and as such, these can be
manipulated such that a spy can infer secrets relatively easily
during timing channel attacks [38]. Recent studies have shown
successful high-speed cache-based timing channel attacks on
both native and virtualized environments [26], [27].

Existing approaches that detect or defend against cache
timing channel attacks fall into one of the two categories:
1. Secure cache designs that prevent the adversaries from
manipulating cache latencies [25], [34], 2. Pre-emptive cache
locking and/or aggressive cache partitioning to isolate pro-
cesses among mutually distrusting processes [24]. While pre-
emptive cache partitioning methods may cause unnecessary
performance degradation on all of the applications running
in the system, custom cache designs often result in high
implementation cost and hardware complexity. Furthermore,
custom caches suffer from lack of flexibility against evolving
adversaries. Therefore, we need a more practical (ready to use)
and an adaptive solution that minimizes hardware complexity
while actively defending against adversaries in a robust man-
ner. Toward this end, recent works have shown the promise
of leveraging COTS hardware as powerful and cost-effective
security knobs [14].

In this paper, we propose COTSknight, a novel framework to
defend against cache timing channel attacks. COTSknight re-
purposes COTS hardware to annul timing channels, and does
not require modifications to the existing hardware. We observe
that cache block replacements by adversaries during their
timing channel attacks create distinctly observable patterns on
their cache occupancy profiles, which is a stronger indicator
than other statistics such as cache misses. Fortunately, recent
Intel Xeon v3 and newer processors have incorporated two
important performance tuning features, namely, the Cache
Monitoring Technology (CMT), that allows for fine-grained



monitoring of cache occupancy on individual domains, and
the Cache Allocation Technology (CAT), that enables dynamic
cache way partitioning for applications [10]. COTSknight
makes smart use of these two hardware features to boost
system security against timing channels. We note that cur-
rently, CMT and CAT technologies are made available only
in Last Level Cache (LLC). Therefore, we demonstrate our
COTSknight on LLCs in this paper. Without loss of generality,
we note that COTSknight is applicable to any cache with
COTS hardware support for cache monitoring and partitioning.

COTSknight comprises three main components: 1. Cache
occupancy monitor, that creates traces of cache occupancy pat-
terns among mutually distrusting domains, 2. Occupancy pat-
tern analyzer, that identifies suspicious domain pairs involved
in timing channel-based communication, and 3. Cache way
allocation manager, that dynamically partitions cache ways
among suspicious application domains to prevent information
leakage. We demonstrate the usefulness of our framework on
LLCs that currently support cache monitoring and allocation
technologies.

The key benefits of COTSknight are two-fold: 1. COTS-
knight prevents information leakage channels in the system by
smartly leveraging off-the-shelf hardware support. 2. COTS-
knight effectively identifies suspicious domains without indis-
criminately separating all domains in a pre-emptive manner.

In summary, the specific contributions of our work are:
1) We demonstrate a practical way to defend caches against

timing channel attacks by making novel use of COTS perfor-
mance monitoring and boosting features (namely, CMT+CAT)
available in recent commercial processors.

2) We design COTSknight, a novel framework that offers a
holistic infrastructure for both detecting and defending against
cache-based timing channels. COTSknight monitors cache
occupancy traces and quantitatively determines the strength
of timing channels before deploying defenses.

3) We implement COTSknight prototype on an Intel Xeon
v4 server and evaluate its efficacy extensively using timing
channel variants with different spatial encoding schemes, as
well as serial and parallel implementations. Our results show
that COTSknight can successfully thwart various classes of
timing channel attacks.

II. BACKGROUND

A. Cache Timing Channel Attacks

Cache timing channels typically involve two processes:
trojan and spy in the case of covert channels; victim and spy
for side channels. Since direct communication between these
pairs is explicitly prohibited by the underlying system security
policy, the spy process turns to infer secrets by observing the
modulated latencies during cache accesses [32].

B. Timing Channel Protocols

Cache timing channel protocols can be categorized along
two dimensions: time and space. In the time dimension, 1. se-
rial protocols operate by time-interleaving the cache accesses
by the victim/trojan and spy in a round-robin fashion (note that

such serial protocols are more conducive to covert channels
where trojan can explicitly control synchronization [36]); 2.
parallel protocols do not enforce any strict ordering of cache
accesses between the victim/trojan and spy, and let the spy
decode the bits in parallel (observed more commonly in side
channels [26], [16]). The spy takes multiple measurements to
eliminate bit errors due to concurrent accesses.

In space dimension, the attacks can be classified based on
the encoding scheme used to communicate secrets [22]. 1. On-
off encoding works by manipulating the cache access latencies
of a single group of cache sets; 2. pulse position encoding uses
multiple groups of cache sets.

C. Cache Occupancy Monitoring and Way Allocation

The CMT allows for uniquely identifying each logical core,
i.e., hardware thread with a specific Resource Monitoring ID
(RMID) [10]. Each unique RMID can be used to track the
corresponding LLC usage by periodically reading from its
Model Specific Register (MSR). It is possible for multiple
threads to share the same RMID allowing for their LLC
usage to be tracked together. Such a capability enables flexible
monitoring at user-desired domain granularity such as a core,
a multi-threaded application or a virtual machine.

Additionally, the CAT technology enables an agile way
for partitioning the LLC ways. With CAT, caches can be
configured to have several different partitions on cache ways,
called Classes of Service (CLOS) [2], [10]. A hardware
context, that is restricted to certain ways, can still read the
data from other ways where the data resides, however, it can
only allocate new cache lines in its designated ways, which
means evicting cache lines from other CLOS is not possible.
The default for all applications is CLOS0, where all cache
ways are accessible. It is worth noting that the current version
of CAT supports arbitrary runtime reconfigurations of CLOSes
transparently, which essentially makes dynamic response for
cache timing channels possible.

III. THREAT MODEL

Our threat model assumes information exfiltration due to
timing channels, a class of attacks that rely on timing modu-
lation using a shared resource (LLC in our paper). As noted
in Section II-A, we observe that, in order to decipher secrets,
the spy relies on the same pattern of interaction with trojan or
victim in terms of observing modulated cache latencies created
by cache block replacements.

In this paper, we demonstrate a sophisticated form of
attacker that does not rely on any prior memory sharing, and
launch attacks on caches simply by creating conflict misses
(replacement) on cache sets. Flush+Reload, another popular
attack strategy, requires the shared memory blocks that is hard
to achieve in settings where code or data sharing is prohibited.
Furthermore, cache block flushing instructions, such as clflush,
have been shown to be vulnerable to other types of attacks (in-
cluding Rowhammer attacks [20]). Hence, some recent system
implementations have designed mechanisms to restrict clflush
usage [41]. In light of this, we do not consider flush+reload
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Fig. 1: Cache timing attacks with on-off and pulse-position
encoding. ‘m’ and ‘h’ denote cache miss and hit respectively.

attack. However, for evict+time and evict+reload attacks [15],
[28] where cache replacements are used to alter latencies, our
solution design would still be applicable (See our design in
Section V to track cache occupancy change patterns).

IV. TRACKING CACHE OCCUPANCY CHANGES

Cache access latencies are modulated by creating cache
conflict misses with their (private) data blocks [36], [28],
[26]. There are two possible ways to achieve this by targeting
different numbers of cache block groups that encode bits.
On-off encoding [35], [27]: In this class of attacks, the
trojan/victim and spy contend on a single group of cache sets
(first 4 blocks in Figure 1a). During prime phase, the spy fills
cache sets with its own data (gray blocks). The trojan/victim
either 1. accesses the same group of cache sets to fill them
with its own data (dotted blocks), or 2. remains idle and
spy’s contents are left intact (gray blocks). The spy probes
these cache blocks and measures access latencies. Longer
latency values indicate cache conflict misses (marked as m in
Figure 1a), while shorter latencies indicate cache hits (marked
as h). Secret bits are deciphered based on cache latencies.
Pulse-position encoding [30], [36], [26]: In Figure 1b, the
trojan/victim and spy exploit two distinct groups of cache sets
to communicate the bits. Initially, the spy primes both groups
of cache sets by filling all of the ways with its own data. The
trojan/victim may either replace contents in the first (odd) or
second (even) group of cache sets. The spy probes both groups
of cache sets, and depending on the group with higher cache
access latency, the secret bits are decoded. This encoding
scheme can be generalized to multi-bit symbols when multiple
groups of cache sets are chosen for communication.

Figure 2 illustrates the changes in LLC occupancy un-
der the two encoding methods. In on-off encoding, when
trojan/victim accesses cache, the trojan’s cache occupancy
should first increase (due to trojan/victim fetching its cache
blocks) and then decrease (during spy’s probe phase when
trojan/victim-owned blocks are replaced). Similarly, the spy’s
cache footprint would first decrease (due to trojan/victim’s
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Fig. 2: LLC occupancy changes for trojan/victim and spy.
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Fig. 3: LLC occupancy rate of change for (trojan/victim, spy)
and (lbm, gobmk) pairs.

filling in the cache blocks) and then increase (when spy probes
and fills the cache with its own data). When trojan/victim does
not access the cache, neither of the processes change their
respective LLC occupancies. Under pulse-position encoding,
regardless of trojan/victim’s activity, we observe a seesaw
(swing) pattern in their LLC occupancies.

To demonstrate our observation, we implement a timing
channel with on-off encoding (shown in Figure 1a), and study
cache occupancy changes. Figure 3 shows a representative
window capturing rate of change in LLC occupancy over
time. In Figure 3a, the trojan/victim’s cache occupancy gain
in proportion to spy’s loss and vice versa.

Besides timing channel variants in space dimension, note
that this phenomenon exists along time dimension as well. In
a parallel protocol, since the spy decodes a single bit with
multiple measurements, there will be a cluster of such swing
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patterns during every bit transmission, whereas serial protocols
will likely show a single swing pattern.

To contrast with regular applications that have no known
timing channels, we also show a representative benign appli-
cation pair from SPEC2006 benchmarks [17] with relatively
high LLC activity, namely lbm and gobmk. We observe that
these application pairs do not usually show any repetitive
pulses or negative correlation in their occupancy rates. As
we can see from Figure 3b, the occupancy patterns are
rarely correlated (no obvious swing pattern), e.g., there are
time periods when both applications have unaligned negative
dips, or one application’s LLC occupancy fluctuates while the
other remains unchanged, or the two LLC occupancies almost
change in the same direction.

Based on the discussion above, we make the following key
observation: Timing channels in caches fundamentally rely on
cache block replacements (that influence spy’s timing) and
create repetitive swing patterns in cache occupancy regardless
of the specific timing channel protocols. By analyzing these
correlated swing patterns, there is a potential to uncover
the communication strength in such attacks. We note that
merely tracking cache misses on an adversary will not be
sufficient as an attacker may inflate cache misses (through
issuing additional cache loads that create self-conflicts) on
purpose in order to evade detection.

V. SYSTEM DESIGN

In this section, we first discuss CMT-based LLC occupancy
monitoring and trace analysis to detect timing channels. We
then outline our cache way allocation mechanism that dynam-
ically partitions LLC to prevent potential information leakage.
Our design overview is shown in Figure 4.

A. LLC Occupancy Monitor

From the architecture perspective, the finest granularity for
LLC occupancy monitor (referred to as monitor) is at the level
of logical cores that can be readily setup by configuring a per-
thread architectural MSR (i.e., IA32 PQR ASSOC) [3]. How-
ever, this requires every thread migration between cores to be
manually bookmarked. To counter this problem, application-
level and Virtual Machine (VM) level monitoring are available
that can automatically manage remapping of RMIDs when
applications or VM guests swap in or out of logical cores [1],
[3]. Also, CMT integrates a query-based model where any
core in a processor package can query the LLC occupancy of

other cores. COTSknight capitalizes this capability and uses a
separate, non-intrusive thread to collect LLC occupancy traces
for all of the currently running domains.

B. Occupancy Pattern Analyzer

Once LLC traces are gathered, the LLC occupancy analyzer
(abbreviated as analyzer) checks for any potential timing chan-
nel activity. Note that the timing channel attacks can happen
within a certain period during the span of entire program
execution, and hence, we adopt a window-based analysis of
LLC occupancy traces. The window size can be chosen by the
system administrator based on her needs: swiftness of defense
vs. runtime overhead trade-offs.

Assume that we have n windows (indexed by i) of raw
LLC occupancy traces for a pair of application domains (D1 ,
D2 ). xi and yi (0 ≤ i ≤ n − 1) are the LLC occupancy
sample vectors obtained by reading LLC occupancy MSRs
periodically within the ith window for domains D1 and D2,
respectively. We can then get the time-differentiated cache
occupancy traces for each domain, denoted as ∆xi,j and ∆yi,j
(i.e., the LLC occupancy difference between two consecutive
samples). Figure 5 shows time-differentiated LLC occupancy
traces for covert and side channels that implement serial
protocol with on-off encoding and parallel protocol with pulse-
position encoding respectively.

As the second step, the analyzer focuses on finding mirror
images of pulses in the two time-differentiated cache oc-
cupancy traces. Recall from Section IV where the spy and
trojan/victim communicate by growing their own cache space
through taking away the corresponding cache space from each
other to create conflict misses that alter cache access timing for
the spy. To capture such unique patterns, we take the product
of ∆xi and ∆yi as zi. Additionally, to filter the noise effects
from surrounding cache activity, we zero-out all non-negative
zi,j values that do not correspond to gain-loss swing patterns
in LLC occupancy.

We note that zi elegantly characterizes the swing pattern
and cancels noise from other background processes: When
cache occupancy of one process changes while the other
one remains stationary, the product at that point would be
zero. When two processes are both influenced by a third-
party process, their cache occupancy might change in the
same direction, so that the product of two time-differentiated
occupancy trace points would be positive. Negative values
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Fig. 5: LLC occupancy traces for covert channel (with serial, on-off) and side channel (with parallel, pulse-position).
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Fig. 6: LLC trace analysis through computing normalized autocorrelation and power spectrum on covert and side channels.

occur when the cache occupancy patterns of the two processes
move in opposite directions due to mutual cache conflicts.

In effect, the series zi contains information about mutual
eviction behavior between the two processes. Our goal now
is to check if z series contains repeating patterns that may be
caused by intentional eviction over a longer period of time
(denoting illegal communication activity). For every window,
we compute the normalized autocorrelation function for zi,
denoted as r′i(m), where m (samples) is the lag of series
zi. According to the Cauchy-Schwarz Inequality [23], if the
time-differentiated curves ∆xi and ∆yi are strictly linearly
dependent, r′i(0) would equal to 1. Conversely, the lack of
linear dependency between ∆x and ∆y would be indicated
by r′i(0) being close to 0. Note that benign applications may
also exhibit short swing patterns on LLC cache occupancy,
but are highly unlikely to repeat over a longer time period.
To reduce noise from such short swings, we compute average
of all autocorrelation function r′i over n windows, which we
denote using r′(m).

With increase in lag value (m), the eviction pattern would
begin to mismatch more heavily. Consequently, normalized
autocorrelation at lag m, r′(m), would begin to decrease.
When the lag m equals to length of the complete pattern
(wavelength, mw), some of the patterns would rematch and
the r′(mw) would rise back to higher values. Note that there
still might exist a small offset in the repetitive pattern, and
this may cause r′(mw) to be not as high as r′(0). However,
r′(mw) is very likely to be a local maximum in the presence of
timing channel activity. As m increases further, we note that
the local maxima caused by rematched patterns would begin
to appear repeatedly.

Fourier transform is a powerful tool to extract the repetitive
patterns in signals. We compute discrete Fourier transform of
the autocorrelation function r′ (we assume that there are p+1
samples within each window):

R(k) =

p−1∑
m=−p+1

r′(m)Wm·k
2p−1 (1)

where W2p−1 = e−2πi/(2p−1). Here R is the power spectrum
of z. The presence of a single or equally-spaced multiple
spikes with concentrated (very high) signal power outside of
frequency 0 in R indicates repetitive pattern in the underlying
sequence. Note that this is a typical characteristic of timing
channels. Figure 6a illustrates the normalized autocorrelation
function of (trojan, spy) in covert channels [7]. r′(0) is very
close to one, so the two time-differentiated LLC occupancies
are linearly dependent. We can also visually observe repeated
occurrence of local maxima and a sharp peak around frequency
of 150 in the power spectrum, which indicates timing channel
activity. Figure 6b shows results for (victim, spy) in LLC side
channel [26], where a sharp peak in power spectrum around
290 is observed.

C. Cache Way Allocation Manager

After the Cache way allocation manager (allocator) receives
RMIDs of identified suspicious domains from the analyzer,
it will configure LLC ways to fully or partially isolate the
suspicious pairs. Note that all of the newly created domains
(i.e., newly spawned processes) are initially set to a default
CLOS (e.g., CLOS0) with access to all LLC ways.

Consider a newly discovered suspicious pair (D1, D2). The
allocator can simply create two non-overlapping CLOS1 and
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CLOS2 for assignment to D1 and D2. COTSknight heuristi-
cally assigns ways to each domain based on their ratio of LLC
occupancy sizes during the last observation period. To avoid
starvation, our policy sets the minimum number of ways for
any domain to be at least 4, which works reasonably well (See
our experimental results in Section VIII).

The allocator can apply different policies to manage the
partitioned domains at runtime. We list two candidate poli-
cies: 1. Aggressive Policy, that partitions the two suspicious
domains and keeps them separated until one of them finishes
execution. This policy guarantees the highest level of security,
and removes the need to track already separated domain pairs.
2. Jail Policy, that partitions the two domains for a period of
time, and then allows access to all of the LLC partitions after
reaching a certain timeout period. This policy provides the
flexibility to accommodate benign application pairs that need
to be partitioned tentatively.

VI. IMPLEMENTATION

We implement our framework prototype on a real system
with Intel Xeon E5-2698 v4 processor. The server runs Centos
7.0 with Linux kernel 4.10.12. COTSknight is deployed as
an OS-level service that has two major modules, the LLC
Occupancy Monitor and the COTSknight kernel (Figure 7).

LLC Occupancy Monitor. The monitor dynamically traces
the LLC occupancy for a watch-list of domains. It designates
newly created domains (e.g., VMs, applications) with RMIDs,
and also performs recycling of RMIDs. By default, all running
domains are monitored separately. The occupancy monitor
exports interface to the system administrator to override do-
main configurations. For instance, multiple domains belonging
to the same user can be grouped together. The monitor
periodically queries the LLC occupancy MSRs at a config-
urable sampling rate (setup by the system administrator). The
occupancy data for all the monitored domains are stored in a
secure memory buffer. When the monitor receives notification
from the COTSknight kernel about partitioned domains, it
removes them from its watch-list.

COTSknight Kernel. This module combines the analyzer and
allocator. It periodically empties the memory buffer by reading

Abbr. Encoding Timing Refs.

para-onoff On-off Parallel [35], [27], [4]
serial-onoff On-off Serial [7], [18]
para-pp Pulse-position Parallel [29], [26]
serial-pp Pulse-position Serial [30], [36], [16]

TABLE I: Cache timing attack classes studied in our paper.

the LLC occupancy traces for the monitored domains, and per-
forms signal analysis based on our methodology discussed in
Section V-B. Once newly suspicious domains are recognized,
it generates a new domain to CLOS mapping so that these
domains will be isolated and potential timing channels can
be annulled. It can flexibly manage the partitioned domains
based on the partition policy inputs provided by the system
administrator (discussed in Section V-C).

VII. EXPERIMENTAL SETUP

Our experimental testbed is an Intel Xeon V4 with 16 CLOS
and 20 LLC slices, and each LLC slice has 20×2048 64-byte
blocks. By default, all logical cores are assigned a RMID0
(the default resource monitoring ID), and the associated CLOS
configuration MSR is set to 0xFFFFF. This means that all
domains can use all of LLC ways initially. COTSknight
initializes a memory buffer to accumulate LLC MSR readings
sampled at 1,000 per second (maximum stable rate supported
by the current hardware).

A. Cache Timing Channel Attacks

Table I shows the four attack variants (discussed in Sec-
tion II) along with the recent studies that have demonstrated or
characterized such attacks. We obtained source code for timing
channels from authors of prior works when possible, and
implemented the rest on our own based on their description.
We adapted techniques from Liu et. al. [26] to dynamically
generate address sets that create conflict misses. Every such
set contains at least S entries that map to the same cache
set (S is the LLC associativity). Each variant is configured
to perform the prime+probe attack using a specific number of
cache sets (32 to 128). For serial-onoff and para-onoff, all
target cache sets are treated as one group, and for serial-pp
and para-pp, we generate two equally-sized groups of cache
sets in our experiments.

B. Benign Applications

To evaluate COTSknight on benign workloads, we utilize
the SPEC2006 benchmarks [17] that exhibit a variety of
cache and memory access characteristics. We run combina-
tions of SPEC2006 benchmarks with reference inputs that
exhibit various level of cache intensiveness. With the prototype
implementation of COTSknight on real system hardware, we
are able to run each of the workloads from beginning to end
that can fully stress the capability of our proposed framework.
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Fig. 8: Power Spectrum in attack variants including trojan/victim-spy pairs.

VIII. EVALUATION

A. Analysis on Cache Timing Channels

We setup each attack variant (shown in Table I) to run
for 90 seconds on Intel Xeon v4 server. To emulate real
system environment, we co-schedule two other SPEC2006
benchmarks alongside the trojan and spy. We run each attack
variant multiple times with different co-scheduled process
pairs and numbers of target sets. The analyzer performs pair-
wise normalized autocorrelation on time-differentiated LLC
occupancy traces for 6 combination pairs of processes. In
all cases, the trojan/victim-spy processes can be identified as
these pairs consistently had the highest power in the frequency
domain. In fact, our experiments show that the attacker pair’s
peak power spectrum values are at least an order of magnitude
higher than that of the benign application pairs.

Figure 8 shows the analyzer’s results on representative
windows for trojan/victim-spy pairs. In the serial-onoff attack,
we observe a single concentrated, sharp peak with the power
value at around 300 in the frequency domain, while the other
data points are almost all zeros. This indicates the existence
of a dominating signal in the time domain corresponding
to the repetitive gain-loss occupancy pulses due to timing
channel activity (Figure 8a). The value in the horizontal axis
for the peak captures the cache operation frequency of the
two involved processes. We also observe a similar isolated
peak for the trojan/victim-spy pair in para-pp, as shown in
Figure 8d where the signal power is even higher compared to
serial-onoff case. We note that this is because both ‘0’ and
‘1’ bit communications cause gain-loss pulses compared to
serial onoff encoding, making the repetitive swinging patterns
in LLC occupancy between trojan/victim-spy even stronger.

Interestingly, in some of the attack variants, there exist two
sharp peaks (Figures 8b and 8c). This can be explained as
follows: In some cache timing channels, there are usually two
repetitive sets of behaviors at different frequency levels- 1.
prime+probe operations by the spy, and 2. cache accesses by
the trojan/victim. For example, in serial-pp, the spy performs
cache evictions during prime+probe periodically and the tro-
jan/victim activity can create variations in eviction patterns.
This creates two different frequencies that are observed as two
separate peaks in the power spectrum (Figure 8b). Similarly,
in para-onoff attack, for every trojan/victim operation, the spy
performs repeated multiple probes and during each probe, it

causes repetitive cache set evictions. These two aspects are
represented as periodic signals with two frequencies in the
power spectrum (Figure 8c).

B. Analysis on Benign Workloads

To generate benign workloads, we first classify SPEC2006
benchmarks into two groups: 1. H-Group, that has cache-
sensitive applications with high rate of Misses per Kilo In-
structions (MPKI) and LLC accesses (including GemsFDTD,
leslie3d, mcf, lbm, milc, soplex, bwaves, omnetpp, bzip2); and
2. L-Group that contains rest of the applications with relatively
low cache-sensitivity [19]. We generate workloads with three
levels of cache sensitivity from these two groups: (i) highly
cache-intensive workloads (hh-wd) where all four applications
are assembled from within H-Group; (ii) medium cache-
intensive workloads (hl-wd) with two applications randomly
selected from H-Group and the other two from L-Group;
(iii) low cache-intensive workloads (ll-wd) where all four
applications are chosen from L-Group.

We run 60 benign multi-program workloads (20 in each sen-
sitivity level) where each application is an individual domain.
Figure 9 illustrates the analyzer’s results on representative
windows for benign workloads. Our results show that a vast
majority of domain pairs (79%) in benign workloads have
very low normalized autocorrelation (0-lag) for the time-
differentiated LLC occupancy traces. Obviously, their corre-
sponding power spectrums show no observable peaks in these
cases as observed in Figures 9a, 9b and 9c. Figure 9d shows an
interesting hh-wd workload where there is a high normalized
autocorrelation (0-lag) and a number of small peaks in the
frequency domain, (GemsFDTD and mcf ). However, note that
the peaks are simply numerous (unlike timing channels) and
their relative signal strengths are weak (< 20). We found that
the high autocorrelation (0-lag) results from a series of swing
pulses due to cache interference between GemsFDTD and mcf,
and the cache timing modulation is simply too chaotic (at
many different frequencies) for any real communication.

Figure 10 shows the cumulative distribution function of
peak signal power among the benign workloads in thousands
of analysis window samples (2.5 sec) during execution of
workloads. We observe the peak signal power to be less than
5 about 80% of the time, and higher than 50 for only about
2% of the time. This shows that a vast majority of benign
workload samples do not exhibit high peak signal power, and
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Fig. 9: Power spectrum for representative subset of benign workloads. Domain pairs with highest autocorrelation (0-lag) are
shown within parentheses.
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Fig. 10: Peak signal power CDF for benign workloads.

their power is significantly less than in the case of any known
timing channels (which usually have signal strength at well
above 100).

C. Effectiveness of COTSknight

We evaluate COTSknight’s effectiveness on two aspects:
1. ability to counter cache timing channels, and 2. partition
trigger rate and performance impact on benign workloads.
To minimize the victim’s performance impact, we note that
migrating the spy to a different server may be also considered
as an alternative mitigation strategy in side channels.

Defeating LLC timing channels. As noted in Section VIII-A,
we run multiple instances of cache timing channel attack
variants with different background processes, and also vary
the number of target cache sets. We observe that the power
peaks are well above 100 most of the time in all of our
timing channels. There are a few windows during the attack
setup phase where the peak values drop slightly below 100.
It is worth mentioning that, as a runtime protection scheme,
COTSknight’s dynamic way allocation mechanism has con-
siderably less impact even on false alarms, where we trigger
cache partitioning instead of terminating processes prema-
turely. We choose a rather conservative signal power threshold
of 50 to trigger LLC partitioning. COTSknight identifies all
of the trojan-spy domain pairs within five consecutive analysis
windows after they start execution.

Paritition trigger rate for benign workloads and the
corresponding performance impact. On benign workloads
in ll-wd category, we observe that LLC partitioning was never
triggered during their entire execution. Among all workloads
with low to high cache intensiveness, only 6% of the domain

pair population had LLC partitioning - these benchmarks
covered 2% of the analysis window samples. Figure 11 shows
the performance impact represented as normalized IPC for the
workloads that were actually LLC-partitioned at runtime (we
note that partitioning didn’t impact other benign workloads).
LLC partitioning minimally impacts most of the applications
(less than 5% slowdown), and interestingly, we observe per-
formance boost for many of them (up to 9.2% performance
speedup). The overall impact on all the applications that ran
with partitioned LLC was positive (about 1% speedup aver-
aged among all workloads that trigger way allocation). In other
words, the dynamic way allocation scheme can potentially help
the performance for benign workloads while it protects the
system. This happens because even benign applications can
suffer from significant cache contention and LLC partitioning
can be beneficial as it alleviates the interference (e.g., soplex
and omnetpp). From our results, we see that Aggressive Policy
(that fully partitions suspicious pairs) shows higher variations
in both performance gains and losses, while the conservative
Jail policy (that partitions tentatively for 30 seconds until
timeout) incurs better worse-case performance penalties.

Runtime Overhead. COTSknight implements the non-
intrusive LLC occupancy monitoring for only mutually dis-
trusting domains identified by the system administrator. The
time lag to perform the autocorrelation and power spectrum
analysis for the domain pairs is 25 ms, which means that
COTSknight offers rapid response to cache timing attacks.
COTSknight incurs less than 4% CPU utilization with 4 active
mutually-distrusting domains. Note that the runtime overhead
of COTSknight does not necessarily scale quadratically with
the number of system domains, since not all of them would
have active LLC traces in each analysis window and only
mutually-distrusting domains would need to be analyzed.

IX. DISCUSSION

COTSknight offers a new framework that builds on COTS
hardware and can be augmented with a host of signal process-
ing techniques to eliminate noise, randomness or distortion
to unveil the timing channel activity. We already incorpo-
rated filtering patterns that are non-negatively correlated and
window-based averaging techniques to eliminate short swings
for benign applications (See Section V-A).
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Fig. 11: Performance impact on benign workloads where COTSknight allocator triggers LLC partition. Instructions/Cycle (IPC)
is normalized to the baseline when no LLC partitioning is performed.

We note that COTSknight framework can be easily extended
with additional mechanisms to deal with even more advanced
attacks. For instance, one may think of a trojan-spy pair
that pseudo-randomizes the intervals between two consecutive
bits to obscure their communication pattern. To be clear, in
practice, cache timing channels with randomized bit intervals
are very hard to synchronize at these random times in a real
system environment amidst noise stemming from hardware,
OS and external processes. Even if such attacks were feasible,
COTSknight can be adapted to recognize them through a
signal pre-processing procedure called time warping [11], that
removes irrelevant segments from the occupancy traces.

In the current implementation, COTSknight leverages CAT
to dynamically partition cache ways among suspicious pro-
cesses. Our results in Section VIII-C have shown that the
partitioning rates and the resulting performance impact are
low. However, for long-running applications, restricting the
cache ways over time may not be desirable, and migrating
the spy processes to other processors can be employed as an
alternative option, especially for victims in side channels. Note
that migration of processes and virtual machines are widely
studied and well supported in existing systems.

X. RELATED WORK

Prior works have demonstrated covert and side channels
exploiting caches [26], [38]. The Prime+Probe technique is
most commonly exploited as it requires the least level of sys-
tem privileges and requirements (e.g., no need to have shared
memory). We have shown that COTSknight can effectively
mitigate these variants of attacks on such caches.

A number of works have been proposed to defend system
against cache timing channel attacks [25], [34], [7], [24], [13],
[12], [39]. Wang et al. [34] propose a new cache design
that randomizes the mapping of data blocks to cache lines
in the L1 cache. CC-Hunter [7], [33] detects covert timing
channel in caches by capturing fined-grained cache conflict
miss patterns between two processes. Yao et al. [40] propose
a statistical method to quantify the presence of cache timing
channels in NUMA-based architectures. Fang et al. [12] have
studies techniques that leverage hardware prefetchers to stop
cache timing channels. ReplayConfusion [37] records pro-
gram’s cache accesses, replays them using a different mapping
from addresses to caches and observes differences in cache

miss patterns. Unlike COTSknight that works with existing
hardware, most of these prior mechanisms require hardware
modifications. More importantly, COTSknight provides more
systematic protections as compared to pure detection ap-
proaches due to the judicious integration of runtime detection
and performance-friendly countermeasures.

Bazm el al. [6] have employed cache occupancy statistics to
detect anomalous behavior in conjunction with other perfor-
mance counters such as cache misses. However, their proposed
technique scans for unusual access behavior based on LLC
footprint, which can be subject to high false positive alarms.
Differently, COTSknight’s defense mechanism is based on
detecting pair-wise gain and loss patterns in cache occupancy
that is shown to be the unique characteristic for parties
involving timing channel activity, and our experimental results
show that COTSknight is both effective and efficient.

CATalyst [24] leverages the Cache Allocation Technology
(CAT) to reserve static cache partitions where secure pages
are pinned upon request from the application. In contrast,
COTSknight can successfully defeat these attacks without ap-
plication or user-level inputs. Aga et al. [5] have demonstrated
that CAT can be used to enhance rowhammer attack due to the
fact that smaller number of LLC ways can help increase the
speed of cache miss generation. DAWG [21] has proposed
secure cache partitioning by strictly isolating both cache
hits and misses between application domains. We note that
COTSknight can use alternate mitigation strategies such as job
migration instead of CAT as well. Also, such works highlight
the potential of developing robust and adaptive COTS-based
solutions to evolving adversaries. Such techniques can be
combined with memory protection [31] to improve overall
memory safety, including emerging memory types [8], [9].

XI. CONCLUSION

In this paper, we proposed COTSknight, a novel frame-
work to protect caches against timing channel attacks through
smartly leveraging COTS support for cache monitoring and
performance tuning. COTSknight leverages existing hardware,
and utilizes robust signal processing techniques to identify
the presence of cache timing channels. We implemented
COTSknight prototype on Intel Xeon v4 server and evalu-
ated its efficacy extensively using different spatial encoding
schemes, as well as serial and parallel implementations of LLC



timing channels. Our results showed that COTSknight can
successfully thwart several classes of timing channel attacks
through dynamic LLC partitioning. COTSknight introduces
less than 5% performance slowdown in the worst case for
benign applications. In conclusion, our work highlights the
promise of COTS hardware in providing flexible support for
robust and adaptive security against cache timing channels.
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