
Prefetch-guard: Leveraging hardware prefetchers to
defend against cache timing channels

Hongyu Fang, Sai Santosh Dayapule, Fan Yao, Milos̆ Doroslovac̆ki, Guru Venkataramani
Department of Electrical and Computer Engineering

The George Washington University
Washington, DC, USA

{hongyufang ee, saisantoshd, albertyao, doroslov, guruv}@gwu.edu

Abstract—Cache timing channels are a form of information
leakage that operate through modulating cache access latencies
and ultimately exfiltrate sensitive user information to adversaries.
Among the many forms of timing channels, covert channels
are particularly dangerous as they involve two insider processes
(trojan and spy) colluding with each other to send out sensitive
information, and are often difficult to detect or prevent. In
this paper, we propose Prefetch-guard, an efficient and low-
cost mitigation mechanism against cache-based timing channels.
Prefetch-guard leverages hardware prefetchers to obfuscate the
effect of timing modulation intentionally created by the trojan
and spy. Our detection mechanism identifies the target cache
sets that are being exploited for information leakage, and cache
blocks are prefetched to fuzz the pattern of cache misses and
hits created to construct timing channel between the trojan and
the spy. With prefetch-guard, we observe that the cache timing
channels suffer a 53% bit error rate which makes it very hard
or impossible for the spy to decipher any useful information.

I. INTRODUCTION

With a vast majority of computer users relying on shared
computing platforms for data storage and service needs, in-
formation security has become an important issue. To pre-
vent information leakage, Operating Systems and Hypervisors
prohibit any direct communication between untrusted users
or processes in different security domains. As software con-
finement mechanisms continue to improve, adversaries are
turning to hardware resources for exploits. Among the many
forms of information leakage through shared hardware, timing
channels are particularly notorious for their stealthy exfiltration
of sensitive information leaving no physical evidence for
future forensic examination [8]. These hardware-based timing
channels rely on the modulation of resource access timing such
that sensitive data can be secretly transmitted. Note that timing
channels can manifest either as side channels, where a benign
victim unknowingly leaks sensitive data to a malicious spy, or
as covert channels, where a malicious insider trojan process
intentionally colludes with a spy process to manipulate access
timing of a shared resource to exfiltrate secrets. Note that the
system security policy explicitly prohibits any form of direct
communication between trojan-spy pairs [9].

Caches are among the most exploited hardware structures
for timing channel attacks because of the following reasons:
1. Caches are usually shared between multiple CPU cores, and
hence, processes from different security domains have access
to the same caches. 2. Caches cannot be usually disabled or

isolated to avoid impacting application performance. There-
fore, caches form an ideal target for timing channel exploits.

In this work, we propose Prefetch-guard, an efficient, low-
cost approach to defend against cache timing channels by
leveraging hardware prefetchers. Our solution analyzes the
cache for suspicious cache access activity by using a low-cost
trigger pattern detector. Prefetch-guard targets the suspicious
cache sets, and then obfuscates any trojan-initiated timing
modulation (corresponding to covert bit transmission). This is
achieved through prefetching the cache blocks that counter any
cache replacement (and non-replacement/hits) as instrumented
by the trojan on suspected cache sets. The use of a front-
end detector ensures that the performance of benign processes
remain unaffected and the cache sets belonging to them are
not targeted by Prefetch-guard.

Prefetch-guard provides two key advantages over prior
solutions: 1. Scalability: Prefetch-guard targets misbehaving
trojan-spy processes and the cache sets belonging to them.
Therefore, regardless of the total number of processes running
in the system, we can effectively annul the timing channel ac-
tivity between any number of pairs without adversely affecting
benign applications that utilize the rest of the cache sets. We
note that cache partitioning-based defenses [20] are hard to
scale because the number of cache partitions are limited. If
the cache is partitioned heavily, benign processes may slow
down because of insufficient cache capacity. 2. Lower cost:
Prefetch-guard leverages existing hardware prefetchers, and
makes minimal hardware changes to track conflict misses.

In summary, the major contributions of our paper are:

1) We propose Prefetch-guard, an efficient, low-cost and
scalable solution to counter cache-based timing channels. Our
approach leverages hardware prefetcher module to obfuscate
the trojan-spy communication in a targeted manner such
that the spy will not be able to correctly decipher the bits
transmitted by the trojan.

2) We show the design of our Prefetch-guard framework
that profiles for suspicious target cache sets, and illustrate
obfuscation methods that perturb the cache access timing mod-
ulation orchestrated by the trojan. This effectively increases
the error rate when the transmitted bits are deciphered by the
spy, and disrupts the timing channel activity.



Way	#0 #1 #2 #3

S_addr0 S_addr1 S_addr2 S_addr3

Spy	primes

S_addr0 S_addr1 S_addr2 S_addr3 T_addr0 T_addr1 T_addr2 T_addr3

Trojan	transmits	‘0’ Trojan	transmits	‘1’

Low	Latency

Spy	probes

High	Latency

Spy	probes

Fig. 1: Illustration of Prime+Probe cache attack. The spy first
primes and fills the cache sets with its own data. Trojan may
replace spy’s contents depending on the transmitted bit. Spy
probes infers the bit using cache access latency.

II. BACKGROUND & RELATED WORK

A. Cache Timing Channels

Timing channels usually involve two processes: trojan/vic-
tim and spy, where the spy learns of sensitive secrets from
trojan/victim through timing modulation on caches. Access
timing is altered through a pattern of cache hits and misses.

Among all implementations of cache timing channels,
prime+probe techniques are among the most exploited class
of attacks that do not have any need to have shared memory
data (Figure 1). Therefore, we use these attacks in our study.

B. Defenses Against Hardware Covert/Side Channels

Several side and covert channels have been studied by prior
works. To name a few recent studies, power analysis [6],
[16], program execution [13] or access latency [1], [7], [21],
[22] are among a few examples. In many such channels,
the adversary can reveal secrets about sensitive processes or
endanger system security without leaving any trace. Prior
works have proposed counter strategies for power and storage
channels through memory safety and inspection [5], [15], [18].
For timing channels, mitigation techniques such as injecting
noise may lead to severe performance degradation of all
running processes.

Cache side- and covert timing channels have been demon-
strated on real hardware in prior studies [2], [12]. Venkatara-
mani et al. [17] propose a generic framework for cache
covert timing channel detection using correlation between
cache conflict misses. For L1 cache timing attack, Bao et
al. [3] explore the implication of faster 3D integrated caches
to perform low cost obfuscation. CATalyst [11] proposes a
secure cache partition for applications where victim processes
can voluntarily utilize such secure partitions.

Fuchs et al. [10] propose a disruptive prefetching scheme
that utilizes existing prefetch policies to pollute caches and
is aimed at L1 caches. In contrast, we perform targeted
prefetching to counter cache blocks owned by the trojan and
spy, and Prefetch-guard may be integrated with any cache.

C. Prefetcher

Data prefetching has been utilized to bridge the performance
gap created between processors and DRAM. The on-chip

L1 Cache L1 Cache L1 CacheL1 Cache

Last Level Cache Conflict Miss 
Tracker

Prefetcher Prefetcher Prefetcher Prefetcher

Conflict
Information

Prefetch Requests to Obfuscate Trojan/Spy

Prefetch
Controller

Suspicious Set IDs
& Cache Addrs

Trigger
Recognizer

Fig. 2: Overview of Prefetch-guard design. Modifications
needed for Prefetch-guard are shown using gray blocks, where
solid frame denotes hardware add-ons and dotted frame de-
notes modules that can be implemented in software.

hardware prefetchers work by monitoring the cache misses,
and predicting the memory addresses that satisfy CPU’s data
needs in the near future. The common types of hardware
prefetchers based on spatial locality are Stream: which loads
next sequential addresses in the page, and Stride: which brings
the addresses at a fixed stride from the requested address. To
satisfy temporal locality, prefetchers use global history buffer-
based policy that predicts the next cache reference based on
previous access pattern [14].

III. THREAT MODEL AND ASSUMPTIONS

Our attack model assumes that a trojan can access sensitive
information that a spy is trying to steal. The spy and trojan run
on different cores that share a cache (e.g., Last Level Cache
or LLC) to implement their cache-based timing channels. Any
form of inter-process communication between the trojan-spy
is prohibited by the OS under the system security policy. Our
threat model assumes the most elusive Prime+Probe technique
(that does not require any shared memory between trojan and
spy) to create conflict patterns for covert communication.

IV. PREFETCH-GUARD DESIGN

The design of our Prefetch-guard framework involves three
important modules: Conflict Miss Tracker, Trigger Pattern
Recognizer, and Prefetch Controller as shown in Figure 2.

A. Conflict Miss Tracker

Conflict misses occur exclusively in set-associative caches
when blocks are pre-emptively replaced from the cache even
before the full cache capacity is reached. That is, if a core
A’s cache block is replaced by another core B prematurely,
and when the core A accesses the same block again (which
was recently replaced), a conflict miss occurs. Conflict misses
occur when many blocks that map to the same cache set
are accessed successively, and the cache does not support
enough associativity to accommodate all of the blocks. Note
that such conflict misses would have never happened in a fully
associative cache.

In order to track such conflict misses, a simple hardware
buffer (Conflict Miss Tracker) maintains a list of addresses
that are replaced during cache misses in LLC, along with the
corresponding owner core ID for that block. If a currently
replaced address in the cache is not in this hardware track-
ing buffer, it would be added. Upon every cache miss, the



s_addr0
s_addr1
s_addr2
s_addr3

s_addr0
s_addr1
s_addr2
s_addr3

t_addr0
t_addr1
t_addr2
t_addr3

Trojan tx '0'

Trojan tx '1'

s_addr2
s_addr3
t_addr2
t_addr3

t_addr2
t_addr3
s_addr2
s_addr3

Obfuscated by Prefetch-guard

2 misses & 2 hits
observed by spy
(Undefined bit)

Fig. 3: Obfuscation of bits by Prefetch-guard

incoming address is checked against the buffer entries. If the
incoming address to the cache is found in the buffer, we infer
that this address was recently replaced by another cache block,
and a conflict miss is recorded [19]. We note that the conflict
miss tracker could achieve a high accuracy with less than 3%
area overhead in L2 cache and 1.5% access time overhead.

Since the trojan and spy pairs will do the evictions repeat-
edly using multiple addresses to covertly communicate with
each other, the identities of the trojan and victim can be easily
tracked. The output of Conflict Miss Tracker is the list of
evicted addresses, the owners of evicting and evicted memory
addresses (likely trojan and spy processes).

B. Trigger Pattern Recognizer

Prime+Probe typically involves three phases: 1) spy’s prime,
2) trojan/victim’s activity, and 3) spy’s probe. Initially, the
spy primes all of the cache sets by bringing its own blocks
into those sets. Then the trojan transmits its encoded bits
by evicting the spy’s cache blocks or by staying idle. After
trojan’s activity, the spy probes the cache blocks it primed,
and measures the access latency to infer the bits. We denote
the trojan evicting spy’s cache block as trojan→ spy. When
the spy probes, it issues the same set of addresses used during
prime phase, and measures cache access latency. Subsequently,
the spy primes again to observe trojan’s future transmissions,
which we denote as spy→ trojan. In a successful Prime+Probe
attack, we can observe repeated pattern of cache conflict
misses in the form of trojan→ spy and spy→ trojan. Once
the rate of conflict misses exceeds a threshold, T (determined
empirically through observing the behavior of several benign
workloads and cache timing channel exploits), the Trigger
Pattern Recognizer module initiates the hardware prefetcher to
launch counter-attack on the potential covert channel activity.

C. Prefetch Controller

Based on the input from Trigger Pattern Recognizer module,
the prefetch controller initiates prefetch requests to the L1
cache prefetcher hardware such that the underlying cache
timing channel can be effectively annulled.

To thwart the trojan-spy communication, the prefetch con-
troller needs information about the memory block addresses
that the trojan and spy exploit to create conflict misses.
During such covert communication, these memory addresses
are frequently involved in several rounds of conflict misses,
and therefore, would be recorded by Conflict Miss Tracker.

After the suspicious cache sets are labeled by the Trigger
Pattern Recognizer, these exploited addresses are sent to the
prefetch controller. Then the prefetch controller issues requests
to the L1 prefetcher to bring back memory addresses into the
cache to disrupt spy’s ability to correctly probe and decipher
the transmitted bit.

Figure 3 shows our prefetch controller making the number
of cache misses and hits observed by the spy to be the same,
irrespective of trojan’s activity. In our illustration, for a 4-way
associative cache, the spy observes zero misses when trojan
transmits bit ‘0’ and four misses when trojan transmits bit ‘1’.
In the absence of any defense, the spy could easily discern the
bit because the latency difference between cache accesses will
be easily distinguishable. To obfuscate the spy’s probe phase,
the prefetch controller makes spy suffer from two misses all
the time. When trojan encodes bit ‘1’, the prefetcher brings
back half of the spy’s memory lines after the trojan’s activity
(note that trojan-spy pair could be inferred by our Trigger
Pattern Recognizer module IV-B). The spy would observe 2
conflict misses rather than 4 misses. And when trojan transmits
bit ‘0’, two of trojan-owned memory blocks are brought to the
cache before spy’s probe phase. With this strategy, the number
of observed misses is made independent on trojan’s activity,
and thus, it becomes impossible for the spy to infer trojan’s
activity by measuring cache access latencies.

V. EXPERIMENT SETUP

We evaluate Prefetch-guard using Gem5 [4], a cycle-
accurate, full-system simulator. We configure Gem5 with four
x86 cores, 32 KB private L1 and 512 KB, 8-way shared L2
caches. All the experiments are run on full system mode under
Linux kernel version 2.6.32.

We launch Prime+Probe attack on L2 cache shared by trojan
and spy running on different cores. The trojan transmits ‘1’ by
replacing all of spy’s cache blocks from the set with its own
addresses, and transmits ‘0’ by staying idle. The spy decodes
bits by measuring access latency of cache blocks through re-
issuing the same set of addresses used during its prime phase.

VI. EVALUATION

We record the spy’s observed cache latencies with and
without obfuscation strategy by Prefetch-guard (Section IV-C).
The estimated conditional probability densities of spy’s cache
access latencies are shown in Figure 4. When there is no
obfuscation (as shown in Figure 4a), the measured latencies for
bit ‘0’ and ‘1’ transmissions are significantly distinguishable.
Therefore, the spy can easily pick a threshold equal to the
mean of all observations to decipher bits.

With Prefetch-guard enabled, Figure 4b shows that the es-
timated conditional probability densities change significantly.
Specifically, the latency distributions of bit ‘0’ and bit ‘1’
overlap heavily, so that there is no clear boundary to separate
them. With threshold-based detection mechanisms, the bit
error rate for the spy is as high as 53%, which practically
disables any communication. We note that spy and trojan
can transmit predetermined symbol sequences to reveal these



0 500 1000 1500 2000
Measured Latency (cycle)

0.00

0.02

0.04

0.06

0.08
Pr

ob
ab

ilit
y 

De
ns

ity bit '0' bit '1'

(a) Attack

0 500 1000 1500 2000
Measured Latency (cycle)

0.000

0.002

0.004

0.006

0.008

0.010

Pr
ob

ab
ilit

y 
De

ns
ity bit '0' bit '1'

(b) With Prefetch-guard

Fig. 4: Conditional probability densities of spy’s cache latency
in single-group, round-robin attack

distributions, and find an optimum threshold. Even if this is
the case, our experiments show that the lowest achievable error
rate is 37%, still too high for any practical communication.

VII. CONCLUSION

In this paper, we proposed Prefetch-guard that utilizes hard-
ware prefetchers to prevent information leakage through cache
timing channels. Prefetch-guard analyzes the conflict misses
in shared caches, and targets the cache sets that are likely
to be exploited by malicious processes. Hardware prefetchers
are leveraged to obfuscate cache accesses on suspected cache
sets used in timing channels. Prefetch-guard retrieves back
the cache blocks owned by trojan and spy to disrupt the spy’s
probing of trojan’s transmitted bits. With Prefetch-guard, we
observe that the cache timing channels suffer a 53% bit error
rate which makes it very hard or impossible for spy to decipher
any useful information.

VIII. ACKNOWLEDGEMENT

This manuscript is based on work supported by the US
National Science Foundation under CAREER Award CCF-
1149557 and grant CNS-1618786, and Semiconductor Re-
search Corp. (SRC) contract 2016-TS-2684. Any opinions,
findings, conclusions, or recommendations expressed in this
article are those of the authors, and do not necessarily reflect
those of the NSF or SRC.

REFERENCES

[1] Murugappan Alagappan, Jeyavijayan JV Rajendran, Miloš Doroslovacki,
and Guru Venkataramani. Dfs covert channels on multi-core platforms.
In 25th IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), 2017.

[2] Alexandres Andreou, Andrey Bogdanov, and Elmar Tischhauser. Cache
timing attacks on recent microarchitectures. In IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2017.

[3] C. Bao and A. Srivastava. 3D integration: New opportunities in
defense against cache-timing side-channel attacks. In IEEE International
Conference on Computer Design, 2015.

[4] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Rein-
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar
Krishna, Somayeh Sardashti, et al. The gem5 simulator. ACM SIGARCH
Computer Architecture News, 2011.

[5] Marco Bucci, Luca Giancane, Raimondo Luzzi, and Alessandro Tri-
filetti. Three-phase dual-rail pre-charge logic. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 232–241.
Springer, 2006.

[6] Abhishek Chakraborty, Ankit Mondal, and Ankur Srivastava. Correlation
power analysis attack against stt-mram based cyptosystems. IACR
Cryptology ePrint Archive, 2017:413, 2017.

[7] Jie Chen and Guru Venkataramani. An algorithm for detecting
contention-based covert timing channels on shared hardware. In ACM
Proceedings of the Third Workshop on Hardware and Architectural
Support for Security and Privacy, 2014.

[8] Jie Chen and Guru Venkataramani. Cc-hunter: Uncovering covert timing
channels on shared processor hardware. In IEEE/ACM International
Symposium on Microarchitecture, 2014.

[9] Department of Defense Standard. Trusted Computer System Evaluation
Criteria. US Department of Defense, 1983.

[10] Adi Fuchs and Ruby B. Lee. Disruptive prefetching: Impact on side-
channel attacks and cache designs. In ACM International Systems and
Storage Conference, 2015.

[11] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas,
Gernot Heiser, and Ruby B Lee. Catalyst: Defeating last-level cache side
channel attacks in cloud computing. In IEEE International Symposium
on High Performance Computer Architecture, 2016.

[12] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In Symposium on
Security and Privacy, 2015.

[13] Alireza Nazari, Nader Sehatbakhsh, Monjur Alam, Alenka Zajic, and
Milos Prvulovic. Eddie: Em-based detection of deviations in program
execution. In ACM Proceedings of the 44th Annual International
Symposium on Computer Architecture., pages 333–346, 2017.

[14] Kyle J Nesbit and James E Smith. Data cache prefetching using a global
history buffer. In IEEE MICRO, 2004.

[15] Jianli Shen, Guru Venkataramani, and Milos Prvulovic. Tradeoffs in
fine-grained heap memory protection. In ACM Proceedings of the 1st
workshop on Architectural and system support for improving software
dependability, 2006.

[16] Arvind Singh, Monodeep Kar, Anand Rajan, Vivek De, and Saibal
Mukhopadhyay. Integrated all-digital low-dropout regulator as a coun-
termeasure to power attack in encryption engines. In IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), 2016.

[17] Guru Venkataramani, Jie Chen, and Milos Doroslovacki. Detecting
hardware covert timing channels. IEEE Micro, 36(5):17–27, 2016.

[18] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos
Prvulovic. Memtracker: An accelerator for memory debugging and
monitoring. ACM Transactions on Architecture and Code Optimization
(TACO), 6(2):5, 2009.

[19] Guru Prasadh V Venkataramani. Low-cost and efficient architectural
support for correctness and performance debugging. Georgia Institute
of Technology, 2009.

[20] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers, and
G Edward Suh. Secdcp: secure dynamic cache partitioning for efficient
timing channel protection. In IEEE Design Automation Conference,
2016.

[21] Fan Yao, Milos Doroslovacki, and Guru Venkataramani. Are coherence
protocol states vulnerable to information leakage? In 24th IEEE
International Symposium on High-Performance Computer Architecture,
2018.

[22] Fan Yao, Guru Venkataramani, and Miloš Doroslovački. Covert timing
channels exploiting non-uniform memory access based architectures. In
ACM Proceedings of the on Great Lakes Symposium on VLSI 2017,
2017.


	Introduction
	Background & Related Work
	Cache Timing Channels
	Defenses Against Hardware Covert/Side Channels
	Prefetcher

	Threat Model and Assumptions
	Prefetch-guard Design
	Conflict Miss Tracker
	Trigger Pattern Recognizer
	Prefetch Controller

	Experiment Setup
	Evaluation
	Conclusion
	Acknowledgement
	References

