
An Algorithm for Detecting Contention-Based Covert
Timing Channels on Shared Hardware

Jie Chen

George Washington University

Washington, DC

jiec@gwu.edu

Guru Venkataramani

George Washington University

Washington, DC

guruv@gwu.edu

ABSTRACT
As we increasingly rely on computers to process and manage
our personal data, safeguarding sensitive information from
malicious hackers is a fast growing concern. Among many
forms of information leakage, covert timing channels oper-
ate by establishing an illegitimate communication channel
between two processes and transmitting information via tim-
ing modulation, violating the underlying system’s security
policy. Recent studies have shown the vulnerability of pop-
ular computing environments, such as cloud, to these covert
timing channels. In this work, we propose an algorithm
to detect the possible presence of covert timing channels
on shared hardware that use contention-based patterns for
communication. Preliminary experiments demonstrate that
our algorithm is able to successfully detect di↵erent types
of covert timing channels at varying bandwidths, message
patterns, and has zero false alarms.

1. INTRODUCTION
Information leakage is a fast growing concern a↵ecting

computer users exacerbated by the increasing amount of
shared hardware resources inside the processor chip. Every
year, there are hundreds of news reports on identity thefts
and leaked confidential information to unauthorized parties.
NIST National Vulnerability Database reports an increase
of 11⇥ in the number of information leak/disclosure-related
software issues over the past five years (2008-2013), com-
pared to the prior decade (1997-2007) [22].

Covert timing channels are information leakage channels
where a trojan process intentionally modulates the timing of
events on certain shared system resources to illegitimately
reveal sensitive information to a spy process [26]. Note
that the trojan and the spy do not communicate explic-
itly through send/receive or shared memory, but covertly
via modulating certain events (Figure 1). In contrast to
side channels where a process unintentionally leaks informa-
tion to a spy process, covert timing channels have an insider
trojan process (with higher privileges) that intentionally col-

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from Permissions@acm.org.

HASP ’14, June 15 2014, Minneapolis, MN, USA

Copyright 2014 ACM 978-1-4503-2777-0/14/06...$15.00.

http://dx.doi.org/10.1145/2611765.2611766.

Trojan' Spy'

Shared'
Resource'

Modulate'
5ming'

Decode
secret'

Figure 1: A Covert Timing Channel uses timing modulation
on a shared resource to divulge secrets.

ludes with a spy process (with lower privileges) by dynami-
cally establishing a communication protocol and exfiltrating
the system secrets at runtime.

In order to achieve covert timing based communication on
shared processor hardware, a fundamental strategy that the
trojan process needs to use is modulating the timing of events
through intentionally creating contention1, and the spy pro-
cess deciphers the secrets by observing the di↵erences in re-
source access times. On hardware units such as buses/inter-
connects, the trojan creates distinguishable contention pat-
terns on the shared resource. Note that this basic strategy of
creating contention for timing modulation has been observed
in numerous covert timing channel implementations [10, 11,
23, 35, 37, 38].

In this paper, we propose an algorithm that detects the
presence of covert timing channels by dynamically tracking
contention patterns on shared processor hardware. We ex-
plore low-cost hardware support that gathers data on certain
key indicator events during program execution, and provides
software support to compute the likelihood of covert timing
channel on specific shared hardware. Many prior works on
covert channels have studied mitigation techniques for spe-
cific hardware resources [35, 10, 11, 29]. These techniques
can neatly complement our detection algorithm by mitigat-
ing the damages caused by covert timing channels. Note
that detection of network-based covert information transfer
channels [1], software-based covert timing channels (such as
data objects, file locks) [16] and side channels [2, 17, 19, 36]

1We use ”contention” to collectively denote methods that
alter either the latency of a single event or the inter-event
intervals.

are beyond the scope of our work.
Our detection algorithm can be extremely beneficial to

users as we transition to an era of running our applications
on remote servers that host programs from many di↵erent
users. Recent studies [28, 38] show how popular comput-
ing environments like cloud are vulnerable to covert timing
channels. Static techniques to eliminate timing channel at-
tacks such as program code analyses are virtually imprac-
tical to enforce on every third-party software executing on
cloud, especially when most of these applications are avail-
able only as binaries. Also, adopting strict system usage
policies (such as minimizing system-wide resource sharing
or fuzzing system clock to reduce the possibility of covert
timing channels) could adversely a↵ect overall system per-
formance. To overcome these issues, dynamically detecting
covert channels is a much-needed first step before adopting
damage control strategies like limiting resource sharing or
bandwidth reduction.

In summary, the contributions of our paper are:
1. We propose to detect shared hardware-based covert

timing channels by monitoring for contentions.
2. We design algorithms that extract recurrent (yet, some-

times noisy) contention patterns from the event train, and
show our implementation in hardware and software.

3. We evaluate the e�cacy of our solution using the covert
timing channels on two di↵erent types of shared hardware
resources, namely memory bus/QPI and integer divider. We
also conduct sensitivity experiments to study low bandwidths
and randomly generated message bit patterns, where we suc-
cessfully detect the presence of covert timing channels.

2. UNDERSTANDING COVERT TIMING
CHANNELS

Trusted Computer System Evaluation Criteria (or TC-
SEC, commonly referred to as The Orange Book) [6] defines
covert channel as any communication channel that can be ex-
ploited by a process to transfer information in a manner that
violates the system’s security policy. In particular, covert
timing channels are defined as those that would allow one
process to signal information to another process by modu-
lating its own use of system resources in such a way that
the change in response time observed by the second process
would provide information.

Note that, between the trojan and the spy, the task of con-
structing a reliable covert channel is not very simple. Covert
timing channels implemented on real systems take signifi-
cant amounts of synchronization, confirmation and trans-
mission time even for relatively short-length messages. As
examples, (1) Okamura et al. [23] construct a memory load-
based covert channel on a real system, and show that it takes
131.5 seconds just to covertly communicate 64 bits in a re-
liable manner achieving a bandwidth rate of 0.49 bits per
second; (2) Ristenpart et al. [28] demonstrate a memory-
based covert channel that achieves a bandwidth of 0.2 bits
per second. This shows that the covert channels create non-
negligible amounts of tra�c on shared resources to accom-
plish their intended tasks.

TCSEC points out that a covert channel bandwidth ex-
ceeding a rate of one hundred (100) bits per second is con-
sidered “high” based on the observed data transfer rates be-
tween several kinds of computer systems. In any computer
system, there are a number of relatively low-bandwidth covert

channels whose existence is deeply ingrained in the system
design. If bandwidth-reduction strategy to prevent covert
timing channels were to be applied to all of them, it be-
comes an impractical task. Therefore, TCSEC points out
that channels with maximum bandwidths of less than 0.1
bit per second are generally not considered to be very fea-
sible covert timing channels. This does not mean that it
is impossible to construct very low bandwidth covert timing
channel, just that it becomes very expensive and di�cult for
the adversary (spy) to extract any meaningful information
out of the system.

3. THREAT MODEL AND ASSUMPTIONS
Our threat model assumes that the trojan wants to in-

tentionally communicate the secret information to the spy
covertly by modulating timing on certain hardware. We
assume that the spy is able to seek the services of a com-
promised trojan that has su�cient privileges to run inside
the target system. As confinement mechanisms in software
improve, hardware-based covert timing channels will become
more important. So, we limit the scope of our work to shared
processor hardware.

In this preliminary study, we do not consider cache-based
covert channels that usually rely upon data storage in spe-
cific cache blocks to alter access timing and communicate
data.

A covert timing channel could have noise due to two factors-
(1) processes other than trojan and spy use the shared re-
source frequently, (2) trojan artificially inflates patterns of
random conflicts excessively to evade detection. In both
cases, the reliability of covert communication is severely af-
fected resulting in loss of data for the spy as evidenced by
many prior studies [24, 27, 39]. For example, Xu et al. [39]
find that the covert transmission error rate is at least 20%
when 64 concurrent users share the same processor with tro-
jan/spy. Therefore, we point out that it is impossible for a
covert timing channel to just randomly inflate conflict events
or operate in extremely noisy environments simply to evade
detection. In light of these prior findings, we model moder-
ate amounts of interference by running a few other (at least
three) active processes alongside the trojan/spy processes in
our experiments.

In this work, our focus is on the detection of covert tim-
ing channels rather than showing how to actually construct
or prevent them. We do not evaluate the robustness of
covert communication itself that has been demonstrated ad-
equately by prior works [28, 39, 38]. We note that prevention
strategies can be appropriately deployed once the presence
of covert timing channels is confirmed.

We assume that covert timing based communication hap-
pens through recurrent patterns of conflicts over non-trivial
intervals of time. Our algorithm cannot detect the covert
timing attacks that happen instantly where the spy gains
sensitive information in one pass.

Finally, we assume that the trusted software modules (in-
cluding the operating system kernel and security enforcing
layers) are free of bugs and vulnerabilities (that could likely
result in exposing the secrets directly).

4. DESIGN OVERVIEW
From the perspective of covert timing channels that ex-

ploit shared processor resources such as bus/interconnect

and integer divider, trojan and spy rely on patterns of high
and low contention to communicate on the corresponding
shared resource. Consequently, a recurrent (yet sometimes
noisy) pattern of contention (conflicts) shall be observed in
the corresponding event time series when the trojan covertly
communicates the message bits to the spy process.

We design pattern detection algorithms to identify the
recurrence patterns in the corresponding event time series.
Our solution is inspired from studies in neuroscience that an-
alyze patterns of neuronal activity to understand the physio-
logical mechanisms associated with behavioral changes [15].

To demonstrate our algorithm’s e↵ectiveness, we use two
realistic covert timing channel implementations, one of which
(memory bus [38]) have been demonstrated successfully on
Amazon EC2 cloud servers. We evaluate using the cycle-
accurate full system simulator MARSSx86 [25] that runs
Ubuntu 11.04. The simulator models a quad core proces-
sor running at 2.5 GHz, each core with two hyperthreads,
and has a few (at least three) other active processes to cre-
ate real system interference e↵ects. We model a private 32
KB L1 and 256 KB L2 caches. Prior to conducting our ex-
periments, we validated the timing behavior of our covert
timing channel implementations on marss against measure-
ments in a real system environment (dual-socket Dell T7500
server with Intel 4-core Xeon E5540 processors running at
2.5 GHz, Ubuntu 11.04). Note that the two covert timing
channels described below are randomly picked to test our
detection algorithm. Our algorithm is neither limited to
nor derived from their specific implementations, and can be
used to detect covert timing channels on all shared proces-
sor hardware using recurrent patterns of conflicts for covert
communication.

4.1 Covert Timing Channels on Shared hard-
ware

To illustrate the covert timing channels that occur on
shared hardware structures and their associated indicator
events, we choose memory bus and integer divider (a simi-
lar implementation was shown using multipliers by Wang et
al [35]).

In case of the memory bus covert channel, when the trojan
wants to transmit a ’1’ to the spy, it intentionally performs
an atomic unaligned memory access spanning two cache
lines. This action triggers a memory bus lock in the system,
and puts the memory bus in contended state for most mod-
ern generations of processors including Intel Nehalem and
AMD K10 family. The trojan repeats the atomic unaligned
memory access pattern for a number of times to su�ciently
alter the memory bus access timing for the spy to take note
of the ‘1’ value transmission. Even on x86 platforms that
have recently replaced the shared memory bus with Quick-
Path Interconnect (QPI), the bus locking behavior is still
emulated for atomic unaligned memory transactions span-
ning multiple cache lines [12]. Consequently, delayed inter-
connect access is still observable in QPI-based architectures.
To communicate a ‘0’, the trojan simply puts the memory
bus in un-contended state. The spy deciphers the transmit-
ted bits by accessing the memory bus intentionally created
through cache misses. It times its memory accesses and
detects the memory bus contention state by measuring the
average latency. The spy accumulates a number of memory
latency samples to infer the transmitted bit. Figure 2 shows
the average loop execution time observed by the spy for a

��
����
����
����
����

�����
�����

�� ��� ���� ���� ���� ���� �	��

�
��
�
�
��

�����������������������������
Figure 2: Average latency per memory access (in CPU cy-
cles) in Memory Bus Covert Channel

����

����

����

����

����

����

�� ���� ���� ���� ���� ���� ����

	

��
�
��
��

�����������������������������
Figure 3: Average loop execution time (in CPU cycles) in
Integer Divider Covert Channel

randomly-chosen 64-bit credit card number. A contended
bus increases the memory latency making the spy to infer
‘1’, and an un-contended bus helps the spy to infer ‘0’.

For integer divider, both the trojan and the spy processes
are run on the same core as hyperthreads. The trojan com-
municates ‘1’ by creating a contention on all of the division
units by executing a fixed number of instructions. To trans-
mit a ‘0’, the trojan simply puts all of the dividers in an un-
contended state by simply executing an empty loop. The spy
covertly listens to the transmission by executing loop itera-
tions with a constant number of integer division operations
and timing them. A ‘1’ is inferred on the spy side using iter-
ations that take longer amounts of time (due to contentions
on the divider unit created by the trojan), and ‘0’ is inferred
when the iterations consume shorter time. Figure 3 shows
the average latency per loop iteration as observed by the spy
for the same 64-bit credit card number chosen for memory
bus covert channel. We observe that the loop latency is high
for ‘1’ transmission and remains low for ‘0’ transmission.

4.2 Recurrent Burst Pattern Detection
The first step in detecting covert timing channels is to

identify the event that is behind the hardware resource con-
tention. In the case of memory bus covert channel, the event
to be monitored is memory bus lock operation. In the case
of integer division covert channel, the event to be monitored
is the number of times a division instruction from one pro-
cess waits on a busy divider occupied by an instruction from
another process. Note that not all division operations fall in
this category.

The second step is to create an Event Train, i.e., a uni-
dimensional time series showing the occurrence of events (see
figures 4a and 4b). We notice a large number of thick bands
(or bursty patterns of events) whenever the trojan intends
to covertly communicate a ‘1’.

As the third step, we analyze the event train using our
recurrent burst pattern detection algorithm. This step con-
sists of two parts: (1) check whether the event train has
significant contention clusters (bursts), and (2) determine if
the times series pattern exhibits recurrent patterns of bursts.

Our algorithm is as follows:
1. Determine the interval (�t) for a given event train to

calculate event density. �t (Equation 1) is the product of the
inverse of average event rate and ↵, an empirical constant
determined using the maximum and minimum achievable
covert timing channel bandwidth rates on a given shared
hardware.

�t =
1

#events

acquisition time(sec)

⇤ ↵ (1)

In simple terms, �t is the observation window to count the
number of event occurrences within that interval. The value
of �t can be picked from a wide range, and is tempered by
↵ factor which ensures that �t is neither too low (when the
probability of a certain number of events within �t follows
Poisson distribution) nor too high (when the probability of
a certain number of events within �t follows normal distri-
bution). For covert timing channel with memory bus, �t
is determined as 100,000 CPU cycles (or 40 µs), and in the
case of covert timing channel with integer divisions, �t is
determined as 500 CPU cycles (or 200 ns).

�� ��� ���� ���� ����
���	
������	����������	��
���������������	���������

(a) Memory Bus

�� ��� ��� ��� ��� ���� ����
�	
�����������	���	
�	
��	����	
������
������	�������	��������

(b) Integer Divider
Figure 4: Event Train plots for Memory Bus and Integer
Divider showing burst patterns.

2. Construct the event density histogram using �t. For
each interval of �t, the number of events are computed, and
an event density histogram is constructed to subsequently
estimate the probability distribution of event density. An
illustration is shown in Figure 5. The x-axis in the histogram
plot shows the range of �t bins that have a certain number
of events. Low density bins are to the left, and as we move
right, we see the bins with higher numbers of events. The
y-axis shows the number of �t’s within each bin.

3. Detect burst patterns. From left to right in the his-
togram, threshold density is the first bin which is smaller
than the preceding bin, and equal or smaller than the next
bin. If there is no such bin, then the bin at which the slope
of fitted curve becomes gentle is considered as the threshold
density. If the event train has burst patterns, there will be
two distinct distributions- (1) one where the mean is below
1.0 showing the non-bursty periods, and (2) one where the
mean is above 1.0 showing the bursty periods present in the
right tail of the event density histogram. Figure 6 shows
the event density histogram distributions for covert timing
channels involving bursty contention patterns on memory
bus and integer dividerr. For both timing channels, we see
significant non-burst patterns in the histogram bin# 0. In
case of memory bus channel, we see significant bursty pat-

3 3 0 0 0 3 1 3
Event Train

Δt time

Event Density Histogram

Fr
eq

ue
nc

y
of

 Δ
t

Event density in Δt
Figure 5: Illustration of Event Train and its correspond-
ing Event Density Histogram. The distribution is compared
against the Poisson Distribution shown by the dotted line
to detect presence of burst patterns.

tern at histogram bin#20. For Integer Division, we see a
very prominent second distribution (burst pattern) between
bins#84 and #100 with peak around bin#90.

��

���

����

����

����

�� �� ��� ��� ��� ��� ���

��
	

�	
�
��
��
��
�

�	��������������	�����

����

(a) Memory Bus

��

���

���

���

���

���

�� ��� ��� ��� �	� ���� ����

�
�

��
��
��
��
��
�

����������������������������������

������

(b) Integer Divider
Figure 6: Event Density Histograms for Covert Timing
Channels using Memory Bus and Integer Divider.

4. Identify significant burst patterns (contention clusters)
and filter noise. To estimate the significance of burst distri-
bution and filter random (noise) distributions, we compute
the likelihood ratio2 of the second distribution. Empirically,
based on observing realistic covert timing channels [38, 29],
we find that the likelihood ratio of the burst pattern distri-
bution tends to be at least 0.9 (even on very low bandwidth
covert channels such as 0.1 bps). On the flipside, we observe
this likelihood ratio to be less than 0.25 among regular pro-
grams that have no known covert timing channels despite
having some bursty access patterns. We set a conservative
threshold for likelihood ratio at 0.5, i.e., all event density
histograms with likelihood ratios above 0.5 are considered
for further analysis.

5. Determine the recurrence of burst patterns. Once the
presence of significant burst patterns are identified in the
event series, the next step is to check for recurrent pat-
terns of bursts. We limit the window of observation to
512 OS time quanta (or 51.2 secs, assuming a time quan-
tum of 0.1 secs), to avoid diluting the significance of event
density histograms involved in covert timing channels. We
develop a pattern clustering algorithm that performs two

2Likelihood ratio is defined as the number of samples in
the identified distribution divided by the total number of
samples in the population [21]. We omit bin#0 from this
computation since it does not contribute to any contention.

basic steps- (1) discretize the event density histograms into
strings, and (2) use k-means clustering to aggregate simi-
lar strings. By analyzing the clusters that represent event
density histograms with significant bursts, we can find the
extent to which burst patterns recur, and hence detect the
possible presence of covert timing channel. We note that
our algorithm can detect covert timing channels regardless
of burst intervals (i.e., even on low-bandwidth bursts or ran-
dom noise due to interference from the system environment),
since it uses clustering to extract recurring burst patterns.

5. IMPLEMENTATION
For implementation, we explore a hardware-software coop-

erative approach, where the hardware gathers the key indi-
cator events and the software analyzes the patterns to detect
the possibility of covert timing channels. In this section, we
show the hardware modifications and software support that
shall be needed by our algorithm.

5.1 Hardware Support
In current microprocessor architectures, we note that most

hardware units are shared by multiple threads, especially
with the widespread adoption of Simultaneous Multithread-
ing (SMT) support. Therefore, all of the microarchitectual
units are potential candidates to be a medium for covert
timing channel.

For preliminary implementation, we design a dedicated
auditor hardware that has the ability to randomly audit any
microarchitectual unit. To minimize implementation com-
plexity, at any given time, we assume that the auditor unit
selects a limited number (say, two) of hardware units to mon-
itor. Note that the auditor does not have any fundamental
limitation in monitoring more than two hardware units at a
time. The philosophy of auditing a small number of hard-
ware units or instructions have been commonly adopted by
most runtime (performance) monitors simply to minimize
design cost [8, 7, 30].

The Instruction Set is augmented with a special instruc-
tion that lets the user to program the auditor and choose
the certain hardware units to audit. This special instruction
shall be a privileged instruction that only a subset of system
users (usually the system administrator) can utilize for sys-
tem monitoring. The hardware units have a programmable
bit, which when set, places the hardware unit under audit
for covert timing channels. The hardware units are wired to
fire a signal to the auditor on the occurrence of certain key
indicator events seen in covert timing channels.

For most of the core components such as execution clus-
ters and logic, the indicator events are conflicts detected by
a hardware context when another context is already using
them. On certain uncore components such as memory bus,
conflicts are created using special events such as bus locking
that trigger the signal to the auditor.

To accumulate the event signals arriving from the hard-
ware units, the auditor contains (1) a 32-bit count-down reg-
ister initialized to the value of �t, (2) two 16-bit register to
accumulate the number of event occurences within �t, and
(3) two histogram bu↵ers with 128 entries (each entry is 16-
bits long) to record the event density histograms. Whenever
the event signal arrives from the unit under audit, the accu-
mulator register is incremented by one. At the end of each
�t, the two 16-bit accumulator values are updated against
the corresponding entry in the histogram bu↵ers, and the

count-down register is reset to �t. At the end of OS time
quantum, the histogram bu↵ers are recorded by the software
module.

5.1.1 Area, Latency and Power Estimates
We use Cacti 5.3 [14] to estimate the area, latency and

power needed for our auditor hardware. Table 1 shows the
results of our experiments. For the two histogram bu↵er, we
model 128-entries that are each 16-bits long. For registers,
we model two 128-byte vector registers, two 16-bit accumu-
lators, and one 4-byte countdown register. Overall, we note
that our area overheads are insignificant compared to the
total chip area (e.g., 263 mm2 for Intel i7 processors [13]).
The auditor hardware has latencies that are less than pro-
cessor clock cycle time (0.33 ns for 3 GHz). Given that the
auditor hardware is accessed only when conflicts happen, it
is unlikely that the auditor hardware would extend the clock
cycle period. Similarly, the dynamic power drawn by audi-
tor hardware are in the order of a few milliwatts compared
to 130 W peak in Intel i7 processors [13].

Table 1: Area, Power and Latency Estimates
Histogram Bu↵ers Registers

Area(mm2) 0.0028 0.0011
Power(mW) 2.8 0.8
Latency(ns) 0.17 0.17

5.2 Software Support
In order to place a microarchitectural unit under audit,

the user requests the auditor through a special software
API exported by the OS. The OS is responsible for privi-
lege checks before letting the user to monitor the unit.

A separate daemon process (part of our software sup-
port) accumulates the data points by recording the his-
togram bu↵er contents at each OS time quantum (for contention-
based channels). Lightweight code is carefully added to
avoid perturbing the system state, and to record perfor-
mance counters as accurately as possible [5]. To further
reduce perturbation e↵ects, the OS scheduler could be made
to schedule the processes on currently un-audited cores.

Since our analysis algorithms are run as background pro-
cesses, they incur minimal e↵ect on system performance.
Our pattern clustering algorithm is invoked every 51.2 secs
(Section 4.2) and takes 0.25 secs (worst case) per computa-
tion. We note that further optimizations such as feature di-
mension reduction reduces the clustering computation time
to 0.02 secs (worst case).

6. EVALUATION AND SENSITIVITY STUDY
First, we test our detection algorithm by varying the band-

width rates and message bit patterns. Second, we test our al-
gorithm on a variety of standard memory- and CPU-intensive
benchmarks. We evaluate using combinations of I/O-intensive
Filebench server benchmarks [9], memory-intensive Stream [20]
and SPEC2006 CPU benchmarks [31] with reference inputs.
For each run, we use taskset command to pin our bench-
marks onto two hyperthreads that share the same physical
core. These second set of experiments are to evaluate our
algorithms’ behavior on applications with no known covert
channel, and to test whether the normal burst patterns usu-
ally observed in such benchmarks trigger any false alarms.

6.1 Varying Bandwidth Rates
We conduct experiments by altering the bandwidth rates

of three di↵erent covert timing channels from 0.1 bps to 1000
bps. The results (observed over a window of OS time quan-
tum, 0.1 secs) are shown in Figure 7. While the magnitudes
of �t frequencies decrease for lower bandwidth contention-
based channels, the likelihood ratios for second (burst) dis-
tribution are still significant (higher than 0.9)3.

��

���

���

���

���

���

�� �� ��� ��� ��� ��� ���

�	

�

�

�
��
��
��
�

�
��	������������
����

����

��

��

��

��

��

���

�� ��� ��� ��� ��� ���� ����

�	

�

�

�
��
��
��
�

��
�
	������
	����
�����
����

������

(a) Bandwidth=0.1bps

��

���

���

���

���

���

�� �� ��� ��� ��� ��� ���

�	

�

�

�
��
��
��
�

�
��	������������
����

����

��

��

��

��

��

���

�� ��� ��� ��� ��� ���� ����

�	

�

�

�
��
��
��
�

��
�
	������
	����
�����
����

������

(b) Bandwidth=10bps

��

����

����

����

����

�����

�����

�� �� ��� ��� ��� ��� �	�

�
�

��
��
��
��
��
�

�����������������������
��

���

���

���

���

����

�� ��� ��� ��� ��� ���� ����

�	

�

�

�
��
��
��
�

��
�
	������
	����
�����
����

������

(c) Bandwidth=1000bps
Figure 7: Bandwidth test using Memory Bus and Integer
Divider

6.2 Encoded Message patterns
To simulate encoded message patterns that the trojan may

use to transmit messages, we generate 256 random 64-bit
combinations, and using them as inputs to the covert timing
channels. Our experimental results are shown in Figure 8.
Mean values of histogram bins are shown by dark bars that
are annotated by the range (maximum, minimum) of bin
values observed across the 128 runs. Despite variations in
peak magnitudes of �t frequencies (especially in integer di-
vider), we notice that our algorithm still shows significant
second distributions with likelihood ratios above 0.9.

6.3 Testing for False Alarms
We test our recurrent burst algorithms on 128 pair-wise

combinations of several standard SPEC2006, Stream and
3The histogram bins for second distribution (covert trans-
mission) are determined by the number of successive con-
flicts needed to reliably transmit a bit and the timing char-
acteristics of the specific hardware resource. For example,
�t for memory bus channel is 100,000 cycles and minimum
inter-access interval between successive conflicts is 5,000
CPU cycles. Therefore, the second distribution is clustered
around bin#20.

��

���

����

����

����

�� �� ��� ��� ��� ��� ���

��
	

�	
�
��
��
��
�

�	��������������	�����

����

��

���

����

����

����

�� ��� ��� ��� ��� ���� ����

	

��

�
��
��
��
��
�

������
�������
�������������������

������

Figure 8: Test with 256 randomly generated 64-bit messages
on Memory Bus and Integer Divider. Black (thick) bars are
the means, and the red (annotations) arrows above them
show the range (min, max).

Filebench benchmarks run simultaneously on the same phys-
ical core as hyperthreads. The SPEC2006 applications are
run in random pairs. Stream and Filebench benchmarks
are run as cloned copies pinned onto a single core as hyper-
threads. Specifically, we pick two di↵erent types of servers
from Filebench- (1) webserver, that emulates web-server I/O
activity producing a sequence of open-read-close on multiple
files in a directory tree plus a log file append (100 threads
are used by default), (2) mailserver, that mail server that
stores each e-mail in a separate file consisting of a multi-
threaded set of create-append-sync, read-append-sync, read
and delete operations in a single directory (16 threads are
used by default). Despite having some regular bursts and
conflict cache misses, all of benchmark pairs are known to
not have any covert timing channels. Due to space con-
straints, we are unable to show all of our experimental re-
sults. Figure 9 presents a representative subset of our ex-
periments. We observe that most of the benchmark pairs
have either zero or random burst patterns for both memory
bus lock (first column) and integer division contention (sec-
ond column) events. The only exception is mailserver pairs,
where we observe a second distribution with bursty patterns
between histogram bins#5 and #8. Upon further examina-
tion, we find that the likelihood ratios for these distributions
was less than 0.25 (which is significantly less than the ra-
tios seen in all of our covert timing channel experiments).
Therefore, we did not observe any false alarms in our recur-
rent burst pattern detection algorithms.

7. RELATED WORK
The notion of covert channel was first introduced by Lamp-

son et al [18]. Hu et al [11] proposed fuzzing system clock
by randomizing interrupt timer period between 1ms and 19
ms. Unfortunately, this approach could significantly a↵ect
system’s normal bandwidth and performance in the absence
of any covert timing channel activity. Among studies that
consider processor-based covert timing channels, Wang et
al. [35] identify two new covert channels using exceptions on
speculative load (ld.s) instructions and SMT/multiplier unit.
Wu et al. [38] present a high-bandwidth and reliable covert
channel attack that is based on QPI lock mechanism where
they demonstrate their results on Amazon’s EC2 virtualized
environment. Ristenpart et al. [28] present a method of cre-
ating cross-VM covert channel by exploiting the L2 cache,
which adopts the Prime + Trigger + Probe [32] to measure
the timing di↵erence in accessing two pre-selected cache sets
and decipher the covert bit. Our algorithm is tested using
examples derived from prior covert timing channel imple-
mentations on shared hardware.

To detect and prevent covert timing channels, Kemmerer
et al. [16] proposed a shared matrix methodology to stati-
cally check whether potential covert communications could
happen using shared resources. Wang et al [34] propose
a covert channel model for an abstract system specification.
Unfortunately, such static code-level or abstract model anal-
yses are impractical on every single third-party application
executing on a variety of machine configurations in today’s
computing environments, especially when most of these ap-
plications are available in binary-only format.

Other works have studied side channels and solutions to
minimize information leakage. Side channels are information
leakage mechanisms where a certain malware secretly pro-
files a legitimate application (via di↵erential power, inten-

��

���

����

����

����

�� �� ��� ��� ��� ��� ���

��
	

�	
�
��
��
��
�

�	��������������	�����

����

��

���

����

����

����

�� ��� ��� ��� ��� ���� ����

	

��

�
��
��
��
��
�

������
�������
�������������������

������

(a) gobmk sjeng

��

���

����

����

����

�� �� ��� ��� ��� ��� ���

��
	

�	
�
��
��
��
�

�	��������������	�����

����

��

���

����

����

����

�� ��� ��� ��� ��� ���� ����

	

��

�
��
��
��
��
�

������
�������
�������������������

������

(b) bzip2 h264ref

��

���

����

����

����

�� �� ��� ��� ��� ��� ���

��
	

�	
�
��
��
��
�

�	��������������	�����

����

��

���

����

����

����

�� ��� ��� ��� ��� ���� ����

	

��

�
��
��
��
��
�

������
�������
�������������������

������

(c) stream stream

��

���

����

����

����

�� �� ��� ��� ��� ��� ���

��
	

�	
�
��
��
��
�

�	��������������	�����

����

��

���

����

����

����

�� ��� ��� ��� ��� ���� ����

	

��

�
��
��
��
��
�

������
�������
�������������������

������

(d) mailserver mailserver

��

���

����

����

����

�� �� ��� ��� ��� ��� ���

��
	

�	
�
��
��
��
�

�	��������������	�����

����

��

���

����

����

����

�� ��� ��� ��� ��� ���� ����

	

��

�
��
��
��
��
�

������
�������
�������������������

������

(e) webserver webserver
Figure 9: Event Density Histograms in pair combinations of
SPEC2006, Stream & Filebench

tional fault injection etc.) to obtain sensitive information.
Wang et al. [36, 33] propose two special hardware cache de-
signs, Partition-Locking (PL), Random Permutation (RP)
and New cache to defend against cache-based side channel
attacks. Kong et al. [17] show how secure software can use
the PL cache. Martin et al. [19] propose changes to the
infrastructure (timekeeping and performance counters) typ-
ically used by side channels such that it becomes di�cult
for the attackers to derive meaningful clues from architec-
tural events. Demme et al. [3] introduce a metric called
Side Channel Vulnerability Factor (SVF) to quantify the
level of di�culty for exploiting a particular system to gain
side channel information. Coppens et al [2] use compiler
transformations to obfuscate key dependent control behav-
ior in branches and mitigate side channel attacks. Many of
the above preventative techniques neatly complement our
detection algorithm, in that they serve to provide enhanced
security to the system.

Demme et al [4] have explored simple performance coun-
ters for malware analysis. This strategy is not applicable for
a number of covert channels because they use specific tim-
ing events to modulate hardware resources that may not be
measurable through the current performance counter infras-
tructure. For instance, the integer divider channel should
track cycles where one thread waits for another (unsup-
ported by current hardware). Using simple performance
counters as alternatives will only lead to high number of
false positives. Second, our algorithm understands the time
modulation characteristics in covert timing channel imple-
mentations. Using machine learning classifiers without con-
sidering covert timing channel-specific behavior could result
in high number of false alarms.

8. CONCLUSION AND FUTURE WORK
In this paper, we present an algorithm to detect the pos-

sible presence of covert timing channels on shared proces-
sor hardware. Our algorithm works by detecting recurrent
burst on certain key indicator events associated with the
covert timing channels. We test the e�cacy of our solu-
tion using example covert timing channels on two di↵erent
types of processor hardware- memory bus/QPI and integer
divider. We conduct sensitivity studies by altering the band-
width rates and message bit combinations. Through exper-
iments on I/O, memory, CPU-intensive benchmarks such
as Filebench [9], SPEC2006 [31] and Stream [20] that are
known to have no covert channels, we show that our frame-
work does not have any false alarms.

As future work, we will explore how to incorporate de-
tection mechanisms for cache-based covert timing channels,
and e�ciently integrate the respective mitigation techniques
after detecting covert timing channels on hardware.

9. ACKNOWLEDGMENT
This material is based upon work supported by the Na-

tional Science Foundation under CAREER Award CCF-
1149557.

10. REFERENCES
[1] S. Cabuk, C. E. Brodley, and C. Shields. Ip covert

channel detection. ACM Transactions on Information
and System Security (TISSEC), 12(4):22, 2009.

[2] B. Coppens, I. Verbauwhede, K. D. Bosschere, and
B. D. Sutter. Practical mitigations for timing-based
side-channel attacks on modern x86 processors. In
Proceedings of the 2009 30th IEEE Symposium on
Security and Privacy, SP ’09, 2009.

[3] J. Demme, R. Martin, A. Waksman, and
S. Sethumadhavan. Side-channel vulnerability factor:
A metric for measuring information leakage. In
Proceedings of ISCA, 2012.

[4] J. Demme, M. Maycock, J. Schmitz, A. Tang,
A. Waksman, S. Sethumadhavan, and S. Stolfo. On
the feasibility of online malware detection with
performance counters. In Proceedings of ISCA, 2013.

[5] J. Demme and S. Sethumadhavan. Rapid identification
of architectural bottlenecks via precise event counting.
In International Symposium on Computer Architecture
(ISCA), pages 353–364. IEEE, 2011.

[6] Department of Defense Standard. Trusted Computer
System Evaluation Criteria DoD 5200.28-STD. US
Department of Defense, 1983.

[7] J. Dongarra, K. London, S. Moore, P. Mucci, and
D. Terpstra. Using papi for hardware performance
monitoring on linux systems. In Conference on Linux
Clusters: The HPC Revolution, volume 5, 2001.

[8] P. J. Drongowski. Instruction-based sampling: A new
performance analysis technique for amd family 10h
processors. Advanced Micro Devices, Inc, 2007.

[9] File system and Storage Lab. Filebench.
http://sourceforge.net/apps/mediawiki/filebench, 2011.

[10] J. Gray III. On introducing noise into the
bus-contention channel. In IEEE Computer Society
Symposium on Security and Privacy, 1993.

[11] W.-M. Hu. Reducing timing channels with fuzzy time.
Journal of Computer Security, 1(3):233–254, 1992.

[12] Intel Corporation. Intel 7500 chipset. Datasheet, 2010.
[13] Intel Corporation. Intel core i7-920 processor.

http://ark.intel.com/Product.aspx?id=37147, 2010.
[14] N. P. Jouppi et al. Cacti 5.1.

http://quid.hpl.hp.com:9081/cacti/, 2008.
[15] Y. Kaneoke and J. Vitek. Burst and oscillation as

disparate neuronal properties. Journal of neuroscience
methods, 68(2):211–223, 1996.

[16] R. A. Kemmerer. Shared resource matrix
methodology: An approach to identifying storage and
timing channels. ACM Transactions on Computer
Systems (TOCS), 1(3):256–277, 1983.

[17] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou.
Hardware-software integrated approaches to defend
against software cache-based side channel attacks. In
Proceedings of HPCA, 2009.

[18] B. W. Lampson. A note on the confinement problem.
Commun. ACM, 16(10), Oct. 1973.

[19] R. Martin, J. Demme, and S. Sethumadhavan.
Timewarp: rethinking timekeeping and performance
monitoring mechanisms to mitigate side-channel
attacks. In Proceedings of ISCA, 2012.

[20] J. D. McCalpin. Memory bandwidth and machine
balance in current high performance computers. IEEE
Computer Society Technical Committee on Computer
Architecture (TCCA) Newsletter, 1995.

[21] National Institute of Standards and Technology.

Maximum Likelihood, 2013.
[22] National Institute of Standards and Technology.

National Vulnerability Database, 2013.
[23] K. Okamura and Y. Oyama. Load-based covert

channels between xen virtual machines. In Proceedings
of the 2010 ACM Symposium on Applied Computing,
SAC ’10, 2010.

[24] H. Okhravi, S. Bak, and S. King. Design,
implementation and evaluation of covert channel
attacks. In 2010 IEEE International Conference on
Technologies for Homeland Security (HST), 2010.

[25] A. Patel, F. Afram, S. Chen, and K. Ghose.
MARSSx86: A Full System Simulator for x86 CPUs.
In Design Automation Conference 2011, 2011.

[26] C. Percival. Cache missing for fun and profit, 2005.
[27] N. E. Proctor and P. G. Neumann. Architectural

implications of covert channels. In Proceedings of the
Fifteenth National Computer Security Conference,
volume 13, pages 28–43, 1992.

[28] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage.
Hey, you, get o↵ of my cloud: exploring information
leakage in third-party compute clouds. In Proceedings
of the 16th ACM conference on Computer and
communications security, pages 199–212. ACM, 2009.

[29] B. Saltaformaggio, D. Xu, and X. Zhang. Busmonitor:
A hypervisor-based solution for memory bus covert
channels. EUROSEC, 2013.

[30] B. Sprunt. Pentium 4 performance-monitoring
features. IEEE Micro, 22(4):72–82, 2002.

[31] Standard Performance Evaluation Corporation. Spec
2006 benchmark suite. http://www.spec.org, 2006.

[32] E. Tromer, D. A. Osvik, and A. Shamir. E�cient
cache attacks on aes, and countermeasures. J.
Cryptol., 23(2), Jan. 2010.

[33] Z. Wang and R. Lee. A novel cache architecture with
enhanced performance and security. In 41st
IEEE/ACM International Symposium on
Microarchitecture, 2008.

[34] Z. Wang and R. B. Lee. New constructive approach to
covert channel modeling and channel capacity
estimation. In Proceedings of the 8th International
Conference on Information Security, ISC’05, 2005.

[35] Z. Wang and R. B. Lee. Covert and side channels due
to processor architecture. In Annual Computer
Security Applications Conference, pages 473–482.
IEEE, 2006.

[36] Z. Wang and R. B. Lee. New cache designs for
thwarting software cache-based side channel attacks.
In Proceedings of the 34th annual international
symposium on Computer architecture, 2007.

[37] J. C. Wray. An analysis of covert timing channels.
Journal of Computer Security, 1(3):219–232, 1992.

[38] Z. Wu, Z. Xu, and H. Wang. Whispers in the
hyper-space: high-speed covert channel attacks in the
cloud. In Proceedings of the 21st USENIX conference
on Security symposium, Security’12, 2012.

[39] Y. Xu, M. Bailey, F. Jahanian, K. Joshi, M. Hiltunen,
and R. Schlichting. An exploration of L2 cache covert
channels in virtualized environments. In Proceedings of
the 3rd ACM workshop on Cloud computing security
workshop, CCSW ’11, 2011.

