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ABSTRACT
Rapid evolution of security attacks presents a perpetual challenge
to computer system defenders in terms of continuously upgrading
their defense capabilities and being aware of adversarial tactics.
Emerging technologies like cyber-deception offer the unique ad-
vantage of intelligently surveying hostile behavior while actively
safeguarding sensitive assets by manipulating the malware execu-
tion flow to non-useful states or misrepresenting critical data.

This paper explores the untapped potential of a hardware-assisted
cyber-deception framework that augments a contemporary proces-
sor’s abilities to realize a proactive deception platform. We present
MAYAVI, a load/store unit-based hardware deception engine that
dynamically alters the target addresses of memory requests issued
by a malicious process. The redirected requests can lead to honey-
pots that actively engage and deceive the adversary. Our exper-
imental results show MAYAVI’s efficacy against recent malware
families while incurring negligible performance impact.

CCS CONCEPTS
• Security and privacy→Hardware security implementation;
• Computer systems organization→ Architectures.
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1 INTRODUCTION
The current trend in cyber-security threats has shown a rapid rise
in attacks with resiliency against conventional defense implemen-
tations, the majority of which rely on detect-and-defend [6, 21]
or system security-hardening techniques [8]. In most cases, in-
flexible approaches limit the effectiveness of such strategies, espe-
cially against never-before-seen threats [4]. Ultimately, securing
computer systems against attackers becomes a continuous cycle of
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creating defenses that seek to patch emerging vulnerabilities. Break-
ing this pattern calls for investing in proactive defense strategies to
tackle the evolving nature of cyber threats.

To this end, cyber-deception has shown promise as a proactive
defense paradigm that intentionally allows an adversary to interact
with the system and learn about their behavior by luring them
into believing that they are operating successfully [2]. This can
provide rich information for threat intelligence, decrease the at-
tacker footprint by proactively catching them, and create forensics
to formulate better defense procedures during cyber attacks. Cyber-
deception has rapidly grown as a next-generation security solution
even in zero-trust architectures and mission-critical systems [14].

Prior cyber-deception frameworks primarily relied on software-
based approaches and required non-trivial modifications to software
and system implementations. Unfortunately, these can create no-
ticeable perturbations to the malware’s runtime execution profiles,
providing plenty of opportunities for sophisticated attackers to be-
come aware of the defender’s presence, whichmay ultimately defeat
the purpose of a cyber-deception framework. Recent work shows
how attackers can scan a system’s wear-and-tear artifacts [24]
and discover the existence of fake execution platforms like virtual
machine (VM) honeypots in deception-based networks [26].

In pursuit of effective cyber-deception frameworks that can re-
main transparent to attackers, we note that hardware support offers
certain unique advantages. 1. Hardware can deploy deception dy-
namically, reducing the lead time made available to the adversaries
to react and re-calibrate their offenses. 2. Hardware-based decep-
tion results in a near-native execution profile for the executing
malware, thus causing a low-performance impact and avoiding any
noticeable changes to the system environment that may provoke
an attacker.

This paper explores hardware-based cyber-deception architec-
ture that capitalizes on the hardware’s ability to provide an effective
defense. Note that most of the malware, including ransomware [17]
and InfoStealers [30], are reliant upon memory accesses to accom-
plish their attacks, providing a rich opportunity for hardware to
transparently (invisible) modify the memory requests and preserve
the integrity of sensitive system assets. We present MAYAVI, a
load/store unit deception engine that dynamically replaces the tar-
get addresses of specific memory requests issued by the processor
on behalf of the malicious code toward accessing sensitive memory
locations. The redirected memory requests may actively mislead the
adversary with either honey addresses containing plausible-looking,
counterfeit information to engage the attacker continually or ran-
domly selected addresses to confuse the malware with irrelevant
data.

We evaluate MAYAVI’s effectiveness and runtime impact using
five samples from prominent malware families that encrypt sensi-
tive files (ransomware), exfiltrate user information (InfoStealer), or
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manipulate pointers to execute arbitrary code (buffer overflow). Our
case studies show that MAYAVI can successfully deflect attacker-
emitted memory requests away from critical system resources.
Moreover, the low execution time impact of our hardware decep-
tion operations makes it more challenging for the attackers to find
any perceptible differences in the malware’s execution time profile,
thereby increasing the efficacy of cyber-deception.
In summary, the key contributions of this paper are as follows:

• We explore hardware support to efficiently implement cyber-
deception to transparently counter the malware with a near-
native execution profile, thereby making deception-related
operations invisible to the attackers. To the best of our knowl-
edge, this is the first work demonstrating hardware primi-
tives for cyber-deception.

• We present MAYAVI, a hardware deception engine design
demonstrating how to dynamically modify select memory
requests issued by amalware process and redirect them away
from damaging sensitive system assets.

• We evaluate MAYAVI against five malware families and
show that hardware-supported cyber-deception can effec-
tively deceive sensitive memory requests and do so with
low-performance overheads (< 7%). This can improve the
efficacy of cyber-deception.

2 THREAT MODEL AND ASSUMPTIONS
Our threat model considers attacks that are reliant on memory-
related operations. Microsoft reports that over 70% of security
vulnerabilities are exposed through memory bugs exploited by
malware [23]. Notable examples of these attack classes include ma-
nipulating the file systems through directory mapping APIs [25],
manipulating the memory vulnerabilities in legacy programs to
hijack legit control flows, and exfiltrating sensitive user informa-
tion [11]. Some malware most commonly employed in such attack
types are ransomware, spyware (InfoStealers), and trojans that
sneak through buffer overflow vulnerabilities.

State-of-the-art techniques that use DNN-based malware detec-
tors [27] have reported over 97% accuracy in detecting malicious
binaries at program load time. We assume that a victim system is
equipped with similar malware detectors to classify an unknown
application’s intentions (malicious vs. benign) with reasonably high
accuracy. Once classified as malware, a system administrator can
either naively purge the binary from the system (lost opportunity to
learn about the malware’s dynamic behavior) or allow it to execute
on a cyber-deception framework assisted by our MAYAVI engine.
The latter approach not only protects the system from damage but
also enlightens the defenders about the attacker’s intent using the
profile data collected during its runtime for more robust defense
designs in the future.

3 MAYAVI DESIGN
In this section, we describe the fundamental components of our
hardware design and show how they work together to achieve
runtime deception against malware.

One of the critical requirements for effective deception is to
minimize the possibility of being detected by the adversary for
the longest time. As such, the hardware support for achieving

this goal should be lightweight and integrated into the proces-
sor pipeline to avoid leaving forensics for adversaries to observe
physically (e.g., timing differences) or audit (e.g., increased memory
traffic/bandwidth).

We start by exploring the hardware design possibilities to effi-
ciently (and transparently) edit the memory requests issued to sen-
sitive addresses by the malware. Our proposed hardware Deception
Engine integrates tightly with the operations of an out-of-order pro-
cessor’s load/store (LD/ST) unit such that any processor-outgoing
memory request targeting sensitive address ranges will be deceived
via address replacement or obfuscation before being sent to the
cache hierarchy. Figure 1 shows our MAYAVI hardware design.

3.1 Range Filter
MAYAVI incorporates an address-checking mechanism to precisely
target the deception actions onmemory requests involving sensitive
information (succinctly called sensitive memory requests). Note that
sensitive memory locations can be discovered using pre-runtime
binary analysis tools, such as angr [29].

During malware execution, the target addresses (Mem Req Addr)
of every sensitive memory request waiting to be issued by the
processor inside the load/store queue are intercepted by the range
filter mechanism. Our design leverages efficient address-watch
mechanisms [31], where each target memory location is compared
against multiple address ranges stored within the range filter. The
endpoint addresses are stored in two sets of hardware registers,
i.e., lower bound address (LBA) and upper bound address (UBA). The
LBA and UBA values are initialized by the pre-runtime analysis
tool [29].

Using a simple comparator logic (Cmp), the range filter checks
the target address of an incoming memory request against each
unique address range, (LBA1, UBA1) ... (LBAn, UBAn). The compari-
son results are stored bit-wise in an accumulator register where a
‘1’ indicates a hit for the corresponding address range. For every
sensitive memory request (Mem Req) that is a hit in the range filter,
it enables the Mode Lookup Unit. Subsequently, at the end of the de-
ception operation, the range filter signals a multiplexer to forward
the modified memory request instead of the original Mem Req to
the cache hierarchy.

3.2 Mode Lookup Unit
When deception is enabled for a memory (load/store) instruction by
the range filter upon amatch, themode lookup unit receives the type
of memory request (load or store) and the corresponding address
range indicated by the position of ‘1’ within the accumulator. Using
this information, the mode lookup unit consults the lookup table to
find the relevant mode of deception for the type of memory request
accessing the matching address range.

We design and incorporate two deception modes and the hard-
ware structures that implement them:

• Honey Mode: Replace the target addresses with honey ad-
dresses, which lures the attacker away from the sensitive
data to a honey (fake) location in the relevant honeypot (e.g.,
filepath strings, dummy buffers).

• Random Mode: Replace the target address with a randomly
selected address within a pre-specified window. The address
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Figure 1: MAYAVI Deception Engine incorporating hardware support in LD/ST unit for memory address redirection and
obfuscation functions. Deception-related hardware is highlighted using gray color.

window may contain random data that the attacker may
deem useless.

The mode may be randomly chosen to prevent the adversaries
from predicting MAYAVI’s actions, thereby adding to the adver-
sary’s confusion. In our current design, for all of the watched sensi-
tive address ranges discovered via binary analysis before program
execution, the system administrator initializes the deception modes
using privileged APIs. We note that the lookup table initializing pro-
cess can be automated using deception strategy generators against
specific malware types explored by software-based automation
frameworks like SODA [28].

3.3 Honey Address Generation Unit
For each memory request to be deceived in honey mode, the honey
address generation unit is enabled by themode lookup unit to replace
the original target addresses with a honey address containing pre-
populated honeypot values. These honeypot values are populated
by system administrators using address/data scrambling utility
tools for susceptible data structures generally stored in the memory
during program execution. For example, honeypots can contain
honey files, pointers to honey code, and plausible-looking network
parameters. These honeypots are loaded into the process memory
alongside the malware, and their (honey) addresses are available
to the hardware at runtime. To redirect sensitive memory requests,
MAYAVI picks a honey address as follows:

ℎ𝑜𝑛𝑒𝑦_𝑎𝑑𝑑𝑟 = 𝑏𝑎𝑠𝑒 + 𝑠𝑡𝑟𝑖𝑑𝑒 ∗ (𝑅𝐴𝑁𝐷 mod (𝑠𝑖𝑧𝑒/𝑠𝑡𝑟𝑖𝑑𝑒))

The base, stride, and size of a honeypot in memory denote the hon-
eypot’s base address, the length of each honeypot entry, and the
total honeypot size (in bytes), respectively, and are stored in three
reserved registers as shown in Figure 1. Modern processors (e.g., In-
tel Ivy Bridge) support random number generators in hardware [9],
which may be used to calculate the RAND register’s value. Using
this deception mode, load requests can be redirected to specific
honey resources, preventing attackers from hitting their target. For
store operations, the attacker’s data may be tracked by redirecting
their requests to honey addresses that are activelymonitored/logged

by system defenders. For example, suppose an attacker wants to
read a (sensitive) filepath string from a watched address region. In
that case, the target address of all memory requests that load the rel-
evant bytes will be replaced by a randomly chosen dummy filepath’s
address (honey_addr) within the honeypot memory location.

3.4 Address Randomizer Unit
For each memory request to be deceived in random mode, the ad-
dress randomizer unit generates a random address value within a
pre-specified address window whose start and end address values
are stored in two reserved registers. The random fill cache archi-
tecture [20] shows how a missing cache line can be filled with a
randomly selected neighboring address of the target. Our deception
engine builds on this obfuscation support to pick a random address
within a memory range initialized with arbitrarily generated data
values at malware load-time. The randomizer unit replaces the tar-
get addresses of memory requests with the randomly generated
memory address calculated as:

𝑟𝑎𝑛𝑑_𝑎𝑑𝑑𝑟 = 𝑠𝑡𝑎𝑟𝑡_𝑎𝑑𝑑𝑟+𝑅𝐴𝑁𝐷 mod (𝑒𝑛𝑑_𝑎𝑑𝑑𝑟−𝑠𝑡𝑎𝑟𝑡_𝑎𝑑𝑑𝑟+1)

start_addr and end_addr are reserved registers indicating the ad-
dress range in memory containing the arbitrary data values. The
RAND register acts as a seed to compute a random address be-
tween the start and end addresses. For all load requests, the address
window specifies a memory region that may contain garbage data
values and does not reveal any useful information to the attacker.
For example, suppose that InfoStealer malware tries to read sensi-
tive information like passwords. Using our deception engine, we
may supply random garbage data values to the malware by ran-
domizing the target addresses of all load requests accessing the
data structure that holds the passwords in memory. In the case of
store requests, the randomizer unit may be set up to calculate a
rand_addr value inside a sink address range that is flushed periodi-
cally to prevent an attacker from making any changes to sensitive
memory locations. For example, attempts made by ransomware to
write encrypted contents to a user file may be diverted to random



GLSVLSI ’23, June 5–7, 2023, Knoxville, TN, USA Preet Derasari, Kailash Gogineni, and Guru Venkataramani

addresses and flushed after a certain number of write attempts, thus
preserving file integrity.

4 EXPERIMENTAL EVALUATION
We use the x86 build of Gem5 version 22.0.0.2 [5] as our evaluation
platform. The MAYAVI LD/ST Unit Deception Engine is built on
top of the existing Gem5 DerivO3 CPU model. All simulations are
single process context threads execution of Gem5 configured with
a 2GHz core frequency and 8GB of DDR4 memory.

4.1 Effectiveness of MAYAVI
To evaluate the effectiveness of the MAYAVI deception engine in
assisting a cyber-deception framework, it is first important to un-
derstand the intrinsic behavior of various malware samples. With
speed and stealth being the malware’s goals to evade being caught
by security defenders, malware typically iterates over a little code
snippet to accomplish their attacks. Consequently, a finite number
of (static) address ranges were sufficient to be monitored during
malware runtime. We selected five malware samples representing
some of the most potent attack vectors: three from the ransomware
family, one buffer overflow benchmark, and one spyware sam-
ple. We discuss each malware and its attack chain, the maximum
number of sensitive address ranges (in the static code) to be moni-
tored obtained using code analyzers (e.g., angr [29]), the deception
operations executed on watched memory addresses, and the post-
deception outcome. For our evaluation, all malware binaries were
statically compiled from their source codes, and any address space
randomization tactics employed by the OS were turned off to keep
the address ranges consistent over multiple runs. We note that
in real scenarios, a binary analyzer [29] can discover the address
ranges of interest regardless of the binary’s nature. Table 1 presents
a summary of our experimental results.

WannaCrypt0r [25] is a part of the WannaCry ransomware
family that invades legacy computers and encrypts specific files. Its
evaluation sample targeted a pre-defined list of directories and then
opened, read, and overwrote all containing files using ciphertext.
From our analysis, we discovered five sensitive address ranges
(in the static code) that included the memory addresses of data
structures for storing the directory path string, file path string,
renamed file path string, the read buffer, and write buffer that store
the file contents. MAYAVI enabled in Honey Mode, targeted the
memory addresses of the directory path buffer storing discrete paths
from a list of directories. Each memory request emitted by the
malware accessing the buffer was deceived by replacing the target
addresses with the honey directory path addresses supplied by
the honey address generator unit. We observed that deception was
triggered ≈ 567 times by MAYAVI to redirect all memory requests
attempting to access 20 user directories. As a result of our deception,
sensitive directories were protected from this malware.

The Bad Rabbit [22] ransomware family targets sensitive data
inside vulnerable corporate networks. It starts traversal from a
target directory and creates a list of all successive file paths. Then,
for all file paths, it opens, reads, and overwrites themwith encrypted
contents and finally renames the files with a custom extension.
According to our analysis of this sample, we discovered six sensitive
address ranges, including the directory, file, and renamed file path

strings, along with the stat structure, and the read and write buffers.
MAYAVI targeted all memory requests trying to access the file path
buffer in Honey Mode and replaced their target addresses with the
honey files’ locations. Our observations indicated that deception
was triggered ≈ 1300 times to deceive all such memory requests.
The security outcome for this sample was complete protection of
all target files from the attacker’s purview.

The Petya [1] ransomware family targets a victim’s Master Boot
Record (MBR) and encrypts all files. It generates a 256-bit key and
sends it to a Command and Control (C&C) server using the IPv4
protocol. Each unencrypted file in the target directory is dupli-
cated with a custom extension. The original files are deleted after
their contents are encrypted (symmetric encryption) and stored in
the ransomware-created duplicate files. This sample revealed six
sensitive memory address ranges as suitable targets for deception,
including the directory and file path strings, the stat structure used
to determine the validity of each file, the read and write buffers
storing the file’s contents, and the encryption key buffer that even-
tually transmits to the remote attacker. MAYAVI’s deception targets
were the file and directory path string buffers. We observed that
the deception engine was triggered ≈ 2520 times in Honey Mode
to deceive all memory requests accessing the directory and file
path buffers by replacing the target addresses with the honey file
and directory path locations in memory. Eventually, the deception
operations redirected the ransomware sample away from the user
files and directories, thus preserving their integrity.

The RIPE [32] buffer overflow benchmark provides various at-
tack configurations that present a standard platform to test the
capabilities of a buffer overflow protection mechanism. In this
benchmark, they provide five dimensions as tunable parameters to
create the attacks, namely, 1. Location of the buffer being overflown
2. Using either a direct or indirect overflow technique. 3. Target
code pointer to be overwritten with the 4. Address of the attack
code to be executed, and 5. Vulnerable function abused to overflow
the buffer. As a deception tactic, MAYAVI was invoked in Honey
Mode to protect the 16 target code pointer addresses that would be
overwritten with the attack code’s addresses. Specifically, on an
overflow attempt, MAYAVI replaced the target address with the
starting address of a honey code snippet (from a honeypot of benign
code) such that the program control flow never reached the attack
code. Ultimately, MAYAVI was triggered 850 times, corresponding
to all possible attack configurations specified by RIPE. According
to the benchmark’s output, each attack failed when the MAYAVI
LD/ST deception engine protected the code pointers.

The InfoStealer [30] malware sample chosen for our evalua-
tion exfiltrated necessary user credentials like browser passwords,
cookies, history, and encryption keys. For this case study, the In-
foStealer sample opened an encrypted browser password file, read
its contents, and then transmitted them to a C&C server until all
passwords were eventually stolen. We discovered 2 sensitive ad-
dress ranges indicating a read buffer that collected the individual
password bytes read from the system and a transmission buffer
that subsequently sent the passwords to the external server. In a
Random Mode of deception, MAYAVI aimed at deceiving memory
requests that attempted to access the read buffer and redirected
the requests to random address ranges via the address randomizer
unit. As a result, even if the attacker could decrypt the extracted
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Table 1: Security Analysis of MAYAVI Framework. For each malware sample evaluated, we show the number of watched (static)
address ranges, the deception mode used to redirect memory requests, and the security outcomes.

Malware sample Malware type No. of sensitive addr.
ranges (static)

Deception mode deployed Security outcomes

WannaCrypt0r Ransomware 5 Honey Mode Directories protected
RIPE Buffer Overflow 16 Honey Mode Pointers secured
Petya Ransomware 6 Honey Mode Files & Directories hidden
InfoStealer Spyware 2 Random Mode Passwords guarded
Bad Rabbit Ransomware 6 Honey Mode Files protected
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Figure 2: Execution time overheads due to MAYAVI (%) over
native execution of each malware.

information, the obtained data would be useless. Consequently,
MAYAVI’s deception actions protected the user’s passwords.

From the above case studies, it is worth noting that the number of
deception triggers is proportional to the memory requests issued by the
malware accessing sensitive memory locations. Realistically, a mal-
ware targets multitudes of vulnerable memory locations on a victim
system and issues a proportionate amount of memory requests to
access the sensitive data. A software-based cyber-deception strat-
egy using techniques like API hooking [28] may impose prohibitive
overheads due to heavy code instrumentation needed for deception-
related operations via software. On the contrary, the proposed
hardware-assisted cyber-deception framework can actively deceive
all sensitive memory requests directly and transparently using hard-
ware.

4.2 Efficiency of MAYAVI
Most cyber attackers prioritize the quick exploitation of a victim
and uninterrupted execution of their malware payload without any
visible discrepancies in its execution profile. Hence, for an active
cyber-deception framework to be efficient, it is paramount to avoid
detection by an adversary that analyzes its execution environment.
A widely practiced approach among adversarial actors is to time
their execution and spot anomalies [24]. Any deviation in the execu-
tion time from its acceptable range can potentially alert the attacker
and, in the best case, discourage them from executing the malware

and, in the worst case, lead to an enhanced payload capable of
subverting the defenses.

To evaluate the efficiency of MAYAVI, we executed each of our
malware samples on Gem5 and measured their execution times
as our baseline. For the range filter, when LBA and UBA address
comparisons are performed in the rising and falling edge of a clock
cycle, the average latency is 0.5𝑛𝑠 [31]. Upon a range filter hit, the
deception mode lookup latency is 0.5𝑛𝑠 for a 16-entry on-chip range
filter used in our design. The honey address generation and address
randomizer units add latencies of 34𝑛𝑠 and 30𝑛𝑠 , respectively, to
a memory request while accessing sensitive data locations. These
latencies were modeled based on the average latencies of floating
point unit operations in a modern processor (add - 2𝑛𝑠 , multiply -
4𝑛𝑠 , divide - 18𝑛𝑠) [10]. The 10𝑛𝑠 latency for RAND value computa-
tion is also added as specified by Intel DRNG [9]. In summary, the
average latency of a memory request being deceived in honey mode
is ≈ 35.5𝑛𝑠 , and in random mode is ≈ 31.5𝑛𝑠 which are significantly
lower compared to some API hooking techniques (≈ 16.08𝜇𝑠) [18].

Figure 2 shows the execution runtime overheads of the MAYAVI
deception engine over the native execution time for each malware.
The average runtime overhead across the five malware samples
due to our deception engine is ≈ 4.69%. Our experiments show
that the number of watched memory ranges and the total number
of memory requests increased the overall execution time of each
malware. Conclusively, the low-performance overheads with hard-
ware support enables efficient and effective deception against each
malware.

5 RELATEDWORK
Prior research studies have explored active cyber-deception tech-
niques to thwart memory corruption and information-stealing at-
tacks. Honey patches [3] were proposed to tackle attackers by
redirection to un-patched decoys of the known vulnerable software,
which notes ineffectiveness against unknown attack vectors and
backdoor threats. PhantomFS [7] proposed a decoy-file and kernel-
based interface, which is futile if the attacker compromises the
kernel altogether. API hooking-based software level deception [28]
against ransomware and InfoStealers have reported relatively high
execution time overheads to achieve deception (17 seconds [28]).
These overheads are significant for a production system and could
alert evasive adversaries. In contrast to these approaches, MAYAVI
incurs negligible overheads, as shown in our evaluation, and pro-
vides a targeted deception on sensitive memory requests allowing
it to remain concealed from the attackers.
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We note that system security may often be fortified using multi-
ple defense layers. In addition to cyber-deception, other defender
mechanismsmay also be utilized. Landsborough et al. [19] proposed
combining autonomic computing, game theory, and cognitive and
behavioral psychology to deploy decoys effectively. Foreseer [16]
proposed an LSTM-based framework that reduces the detection
time of the front-end malware detectors by up to 40% to support a
proactive defensive framework. Prior research in hardware-based
defense has studied asset obfuscation strategies like Moving Target
Defense in continuous churn periods [15]. However, such mecha-
nisms would need to be used judiciously, as they may incur high
overheads due to repeated program runtime alteration (code point-
ers, address space, instruction layout). With frequent churns, it can
become infeasible in a production environment. Other obfuscation
techniques propose memory request/response rate modulation [33]
and prefetching cache blocks to obliterate access patterns [12, 13].
While these are effective against memory snooping attacks, these
may be detected by a sophisticated adversary with auditing ca-
pability on the memory traffic/bandwidth due to its continuous
injunction of fake memory request traffic to alter memory access
patterns.

6 CONCLUSION
We presented MAYAVI, a hardware-based cyber-deception design
integrated with a processor pipeline’s Load/Store unit. Our de-
ception engine replaces the target addresses of suspect memory
requests with honey addresses. We evaluated the effectiveness of
our design using knownmalware samples and demonstrated how to
counter them using our deception-based defense. We also show that
MAYAVI can efficiently defend against malware with minimal over-
heads, allowing the deception framework to remain transparent
to the attacker. We note that MAYAVI has paved the way towards
the design of more hardware deception primitives, which may
include hardware performance analyzers to falsify architectural
information to an adversary, dynamic instruction editing capabil-
ities to mislead adversaries, and instrumenting page translation
mechanisms (page table, TLBs) to alter malicious memory requests
transparently.
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