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ABSTRACT
Graphics Processing Units (GPU) play a major role in speeding up
computational tasks of the users, especially in applications such as
high volume text and image processing. Recent works have demon-
strated the security problems associated with GPU that do not erase
the remnant data left behind by previous applications prior to OS
context switching. In these attacks, adversaries are able to allocate
their memory region on the same memory region used by previous
applications and are able to steal their secrets. To overcome this
problem, one needs to erase every modified memory page, and this
process incurs very high latencies (order of several seconds to even
minutes). In this work, we propose EraseMe, a lightweight, content-
aware memory-cleansing framework that identifies and erases the
sensitive memory pages left behind by victim applications. Our
preliminary evaluation shows that EraseMe is able to increase the
difficulty of image reconstruction by over 10× for the attacker.
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1 INTRODUCTION
Graphics Processing Units (GPU) are widely used in computer
systems for acceleration of text processing and image rendering,
machine learning and other computationally intensive applications.
Recent work [2, 10, 13, 26] demonstrate that the GPU does not zero
out physical memory pages in GPU global memory during page
allocation owing to high performance overheads. Such remnant
data contain rich information about the last application context
such as websites browsed [10], or rendered images [26].

A straightforward solution to avoiding theft of remnant data
in GPU memory is to blindly erase every memory page before
it is allocated to the next context. However, as demonstrated by
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Pietro et al. [13], zeroing-out of 512MB GPU memory takes around
20 seconds which may negate the usefulness of GPUs meant to
accelerate workload performance.

Prior work, such as Silent Shredder [1], was proposed to shred
remnant data efficiently) without actually writing out zeroes in non-
volatile memories and address their inherent write endurance issue.
However, this mechanism requires use of specialized hardware
for counter mode encryption that encrypt/decrypt memory pages,
along with tracking page-level (major) counters and resetting of
corresponding minor counters within the page to zero.

We note that, not all remnant data in GPU memory is vulnera-
ble to giving away sensitive information about the users. Hence,
one could potentially modify just secret-crunching regions of GPU-
based applications and add extra functions to erase secrets at the
end of executing the GPU kernel. However, this solution requires
reprogramming several existing applications and relying on third
party software developers to provide higher security to user data.
Also, in many scenarios, the secrets of victim applications are not
uniformly located in all memory pages. For instance, the infor-
mation content in a PDF document is primarily concentrated in
the text portion, and the white background region has no content.
Through cleverly leveraging such information, we could aim for
more targeted erasure of contents from GPU memory.

In this paper, we propose EraseMe, that uses simple histogram
counter based information to target memory pages. The Operating
System would erase these targeted memory pages with secrets
before allocating them to a new context. With this design, the
information leakage through GPU memory could be avoided for
user-desired content while having low-cost implementation.

The main contributions of our work are:

• We propose EraseMe, a new security framework that guards
against information leakage attacks by identifying GPU
pages with high information content, and selectively erasing
such pages before allocating them to the next context.

• We demonstrate the efficacy of our design in avoiding in-
formation leakage through data remanence using Tesseract
report rendering benchmarks [16]. Our experimental results
demonstrate that the difficulty of attackers to reconstruct
information is increased by over 10×.

2 BACKGROUND
In this section, we study background on GPU and memory security.

2.1 GPU Execution Model
Execution of OpenCL-based GPU programs typically involve two
part: kernels and host. The host executes on the host device. The
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Figure 1: GPU memory hierarchy (Note that the gray mem-
ory blocks are not cleaned at the end of kernel execution.)
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Figure 2: The organization of DRAM

kernels are configured by the host and execute on one or multiple
OpenCL machine. In this work, the kernel is executed on GPU. The
structure of GPU is shown in Figure 1. The instances of kernel
are executed on processing elements, also known as GPU cores.
Multiple processing elements form one compute unit. The GPU
runs multiple kernels at the same time to accelerate the workloads.

2.2 GPU Memory Hierarchy
The memory hierarchy of GPU is shown in Figure 1. There are four
types of memory in GPU: private memory, local memory, global
memory and constant memory. Each private memory is attached
to one processing element. Private memory is invisible to other
processing elements in the same compute unit. Local memory is
shared among all processing elements within one compute unit.
We note that, in some GPUs, the L1 cache and local memory share
the physical hardware and their sizes are configurable by users.
The local memory and L1 cache implement coherence protocols
among processing elements within one compute unit. The global
memory is accessible to every compute unit. The constant memory
is a read-only memory region within global memory. The size of
constant memory is configured and initialized by the host. The
coherence of memory blocks in global memory is not guaranteed.

Memory Type Vulnerability Window Size Reset Latency
Shared Memory Before End of Context 6MB 0.22ms
Global Memory After End of Context 2GB 20s

Table 1: GPU memory properties in Nvidia GeForce GT640.
Vulnerability window shows when the attacker kernel can
directly read the victim kernel’s remnant data.

2.3 DRAM Organization
The global memory of GPU is Dynamic Random Access Memory
(DRAM) with 2GB to 8GB capacity. The organization of modern
DRAM is shown in Figure 2. The stored bits can be located by its
row address and column address. The row address firstly arrives to
the DRAM. All bits within the row are read to row buffer. Then the
column address arrives to row buffer and the content of accessed
memory address is sent to memory bus (memory read) or written
with the incoming data from memory bus (memory write). After
the memory access, there are two policies to handle the data in
row buffer: open page policy and close page policy. The open page
policy does not precharge the row buffer until a different row in
the same memory bank is accessed. The open page policy reduces
the access latency for the same row (memory page) but increase
the access latency of the row buffer miss. The close page policy
recharge the row buffer right after the memory access. The close
page policy makes the access latency of row buffer hit and row
buffer miss equal which is slower than row buffer hit in open page
policy and faster than row buffer miss in open page policy. The
commercial DRAM may use both policies.

2.4 Remnant Data in GPU Memory
Prior work have demonstrated the security vulnerabilities arising
from non-initilization in modern GPU memory during page allo-
cation [10]. The local memory and private memory would not be
erased at the end of context execution. The data in local and private
memory are accessible for the host of next executing kernels before
the host of last kernel ends its context. The remnant data in global
memory are not erased during the page deallocation which makes
the next context capable to access data from last context directly.

The attack on GPU memory can be categorized into two classes
based on the different attack targets: local/private memory attack
and global memory attack. The properties of these two level of GPU
memories are shown in Table 1. To launch local/private memory
attack, the attacker kernel keeps dumping memory from local/pri-
vate memory after the end of victim kernel and before the end of
victim context. To launch global memory attack, the attacker keeps
requesting a memory chunk equal to the size of free global memory.
Once some parts of global memory are released by victim, the data
contents are visible to the attacker.

A straightforward solution to solve the remnant memory prob-
lem in GPU is to erase memory pages after the end of kernels or
context. As shown in Table 1, for private/local memory, the solution
incurs lower overhead because the size of private and local memory
is usually 16KB or 64KB per core. It takes less than 20ms to erase
entire private/local memory after the end of kernel. However, the
global memory of modern GPU is usually at gigabyte level. The
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Figure 3: EraseMe design overview (The shaded components
are implemented through hardware while the white compo-
nents are implemented in software.)

zero-out of entire global memory takes from 20 seconds to 80 sec-
onds for different machines [13]. Considering the fact that GPU is
a performance-oriented machine, the high latency during context
switch is undesirable.

2.5 Prior Studies in Memory Security
Security problem in CPUmemory hierarchy is widely studied. Prior
works demonstrated the information leakage problem through side
and covert channels in memory and CPU caches [22, 25]. Previ-
ous studies have proposed hardware designs to defend main mem-
ory [14] and caches [3, 7–9, 18, 23] against information leakage
attacks. Other works that profile software, detect memory bugs
and increase software robustness [4, 6, 11, 12, 15, 19–21, 24] can be
used in tandem to improve overall system security.

3 THREAT MODEL
After getting the remnant data of victim kernel, the attacker needs
to reconstruct user-intelligible, useful information. Usually this step
would happen through computer recognition algorithms because
the remnant data is large and is in byte format, which leaves no
pattern for human eyes to recognize. In this paper, the attacker first
locates the position of the secret from all remnant data using Fast
Fourier Transform. Then the attacker recognizes the text in the
image using Optical Character Recognition (OCR) or identify the
images using pre-trained machine learning models.

4 DESIGN
In this section, we propose the design of EraseMe, a low-overhead
and user-configurable solution to information leakage exploiting
GPU memory. EraseMe adds a hardware-performance-counter-like
component to GPU memory, and collects statistics about informa-
tion inside every memory page. The user can configure the system
to identify valuable information inside pages, and can request the
OS to erase some targeted memory pages with valuable content.

The structure of EraseMe is shown in Figure 3. A shadow row
buffer is attached to each row buffer of memory bank in GPU global
memory. The shadow row buffer samples and copies the bits stored
in row buffer for histogramming. The memory cleansing manager
implements user-configurable rules to analyze histogram data, and
decide whether the memory page needs to be cleaned after deallo-
cation. The memory cleansing manager updates the decision in the
page-clean table which contains the memory page addresses and a

flag indicating whether the page was deemed sensitive (using user-
configured rules). Among all components in EraseMe, the shadow
row buffer and histogrammer are implemented in hardware and
added to every row buffer in GPU global memory. The memory
cleansing manager is an application which reads histograms peri-
odically and decides whether to clean the page after deallocation.
The page-clean table is implemented in software as a protected data
structure by the Operating System, which will access it upon page
deallocation. The memory page with sensitive information would
be cleaned before being allocated to the next process.

5 EXPERIMENTAL SETUP
We run experiments on AMD Radeon RX 470 GPU and analyze the
remnant data in GPU global memory. We run Document Viewer as
the victim. It renders reports from Tesseract Benchmarks [16] in
gray scale.

5.1 Attacker and Information Extraction
The goal of attacker is to reconstruct the texts in rendered reports
from remnant data in GPU as shown in prior work [26]. The at-
tacker converts reconstructed images to texts using Tesseract OCR
Engine [16]. The result of attack is evaluated by the accuracy of
reconstruction. The reconstruction score is computed using Fuzzy-
Wuzzy [5], a robust string matching algorithm by comparing the
reconstructed text and the original text. The goal of EraseMe is
to stop the attacker from reconstructing the texts in reports by
removing the memory pages containing the texts. To identify texts
among all remnant data, we note that the entropy of memory pages
should be high because memory pages with just plain white or
black pixels do not contain any reconstructable information.

6 EVALUATION
Figure 4 shows the text image before and after the initialization by
EraseMe. The EraseMe removes 20% of memory pages with high-
est entropy where each memory page contains 4096 pixels. Before
being erased, the text in image is clear and could be accurately iden-
tified by Optical Character Recognition (OCR). After the cleansing
of EraseMe, the text in image is not recognizable for human eye.
Besides, an automated OCR cannot reconstruct the original text
either. The output of OCR engine is full of meaningless characters.

Figure 5 shows the relationship between percentage of high en-
tropy pages removed by EraseMe and scores obtained from recon-
struction results. The score evaluates the information reconstructed
by the attacker by comparing the output of OCR engine and the
original texts using FuzzyWuzzy [5] algorithm. The highest output
of the algorithm is 100, which indicates that the two compared
strings are identical. Our results show that, by removing only 20%
memory pages with highest entropy, EraseMe can reduce the recon-
struction score of attacker from 80 to less than 10 where the attacker
can barely get any useful information. In other words, EraseMe
increases the difficulty of page reconstruction by over 10× for the
attacker. With 40% memory pages being removed, the EraseMe can
make 99% of information not recognizable to the attacker.
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To reach these objectives, Dow has developed a new process to identify the most promising 
new concepts and bring them to market more effectively. This development and 
commercialization process begins with a raw idea and takes it all the way through its market 
introduction, ensuring that the concept meets various decision criteria as it progresses 
toward commercialization. A project director, who stays with the project through its 
commercial launch, provides a single point of accountability.
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Figure 4: Erasure efficacy of EraseMe. The upper left is the original image containing 3300 x 500 pixels. The upper right is the
image cleaned by EraseMe. The bottom parts show the result of Optical Character Recognition Engine.
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Figure 5: The fraction of initialized memory page and the
attacker’s reconstruction score.

7 CONCLUSION
In this paper, we proposed EraseMe, a light-weight framework to
identify and remove the sensitive data in GPU global memory to
prevent potential attacker to reconstruct the remnant data from
previous applications.
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