
TS-Bat: Leveraging Temporal-Spatial Batching for
Data Center Energy Optimization

Fan Yao, Jingxin Wu, Guru Venkataramani, Suresh Subramaniam
Department of Electrical and Computer Engineering

The George Washington University
Email: {albertyao, jingxinwu, guruv, suresh}@gwu.edu

Abstract—Data centers that run latency-critical workloads are
typically provisioned for peak load even when they are operating
at low levels of system utilization. Optimizing energy in data
centers with Quality of Service (QoS) constraints is challenging
since variabilities exist in job sizes, system utilization, and server
configurations. Therefore, it is impractical to have a single
configuration for energy management that works well across
various scenarios.

In this paper, we propose TS-Bat, a new data center energy
optimization framework that judiciously integrates spatial and
temporal job batching while meeting QoS constraints. TS-
Bat works on commodity server platforms and comprises two
major components: a temporal batching engine that batches the
incoming jobs and creates opportunities for the processor to enter
low power modes, and a spatial batching engine that schedules
the batched jobs on to a server that is estimated to be idle. We
implement a prototype of TS-Bat on a testbed with a cluster
of servers, and evaluate TS-Bat on a variety of workloads. Our
results show that pure temporal batching achieves 49% savings
in CPU energy compared to a baseline configuration without
batching. Through combining temporal and spatial batching, TS-
Bat increases the energy savings by up to 68%.

I. INTRODUCTION

Today’s computing systems are increasingly power-hungry.
Data centers now account for about 2% of the US domestic
energy consumption [1]. Most server farms are provisioned
for peak demand, and configured to operate at capacities much
higher than necessary. Studies by Barroso et al. [2] have shown
that the servers in data center environments are typically
utilized at only 30% of their potential while drawing almost
60% of the peak power. Lack of server energy proportionality
has significantly undermined data center energy efficiency,
resulting in wasteful energy spent every year.

Prior works on data center energy optimization can be
broadly classified into three categories: (i) cluster-level power
management techniques that dynamically re-size data centers
by dispatching workloads to a subset of servers and turning off
the rest of the servers or putting them into system (package)
low-power states [3], [4], [5]; (ii) server-level dynamic power
management that leverage Dynamic Voltage and Frequency
Scaling (DVFS) to minimize energy while not adversely affect-
ing application performance [6]; (iii) server-level idle power
management that take advantage of CPU low-power modes
(i.e., C states) to power-gate specific hardware structures and
conserve energy [7], [8].

While cluster-level energy optimization strategies can poten-
tially offer big energy savings through cutting down platform

power [3], they tend to be less effective for latency-critical
workloads due to the longer power-on (wakeup) latencies.
DVFS is shown to be effective in saving energy for short
latency jobs with sub-millisecond service times [6], but we
note that DVFS is limited to active power only and is not
effective for idle power. Finally, though a considerable amount
of power could be saved through smart control of CPU idle
states, merely optimizing core idle power can be sub-optimal
during system runtime. This is because, for a multi-core
processor, a significant amount of base power is drawn by the
processor package to support shared hardware structures (e.g.,
L3 caches). We observe that more than 90% of power could
be saved if the entire processor package is put into idle state
instead of just individual CPU cores. Unfortunately, package
level low-power mode requires all of the cores to be idle,
which is difficult to achieve for multi-core processors since
idle periods of individual cores rarely align [9].

In this paper, we present TS-Bat, an energy optimization
framework that judiciously integrates a temporal batching
engine and a spatial batching engine to save data center
energy. To create opportunities for processor-level low-power
states, the temporal batching engine accumulates just the right
amount of jobs before dispatching them to an individual server.
To effectively bound the response latencies, the temporal
batching engine builds a job performance model based on
the wakeup latency values from individual processor low-
power states and the available amount of parallelism in the
platform (i.e., number of cores per processor). The spatial
batching engine then dispatches the ready-to-execute job batch
to a server that is estimated to be currently idle. This further
saves energy by packing the workloads on to just a subset of
processors.

In summary, the contributions of our work are:
1) We motivate the need to develop data center energy

saving mechanisms that are aware of multi-core processor
performance and power characteristics in order to judiciously
leverage their power-saving features (e.g., low-power states).

2) We propose TS-Bat, a novel QoS-aware data center
energy optimization framework that combines temporal and
spatial batching, and creates opportunities for CPU processors
to enter highest energy-saving (package-level low-power) CPU
modes both temporally and spatially.

3) We implement a proof-of-concept system of TS-Bat in a
testbed with a cluster of servers, and evaluate the effectiveness

 0

 10

 20

 30

 40

 50

 60

 70

 80

0 1 2 3 4 5 6 7 8 9 10

P
o
w
e
r
(W
a
tt
s)

Number of Active Cores

C0 C1 C3 C6

Fig. 1: Power range of a 10-core Xeon processor with different
number of active cores and various C states configurations.1

of our proposed framework on different types of workloads
and various system utilization levels. Our experimental results
show that TS-Bat is able to save significant amount of energy
while maintaining the QoS constraints.

II. BACKGROUND AND MOTIVATION

A. Processor Low Power States

The Advanced Configuration and Power Interface [10] pro-
vides a standardized specification for platform-independent
power management. Based on the specification, a processor
core can enter a series of sleep states (i.e., C states) such as C0,
C1, C3 and C6. In a C state, some architectural components are
power-gated or put into low-power operating mode to conserve
power. A higher-numbered C state indicates more aggressive
energy savings at the expense of longer wake-up latency. Low-
power C states are supported at both core level and package
level. Core C state choices are generally determined by the
operating system (e.g., the menu governor in Linux) when
individual cores go idle. To enter a package C state where
all the cores and the shared resources are set to low-power
mode, all cores have to be idle first. The package C states are
automatically resolved to the shallowest C state among the
cores.

B. Processor Power with Low-power States

In order to effectively leverage processor low-power states,
it is important to understand the power characteristics of
multi-core processors under various C state configurations.
Figure 1 shows the power profile for a 10-core Xeon E5-
2680 processor when varying the number of active cores
(idle cores are put to certain C state). The processor power
is read using Intel’s Running Average Power Limit (RAPL)
interface [11]. We observe that the power proportionality
increases as deeper level C states are chosen for idle cores.

For deep sleep states, such as C3 and C6, we observe a
significant power drop for the processor from having one core
active to all cores idle (the first two groups of bars). This is
due to the fact that the processor package has to be in C0

1We build a microbenchmark that occupies a fixed number of cores using
taskset. The idle cores are set to enter a controlled C state. Intel’s Turbo Boost
is disabled and the performance frequency governor is used to eliminate noise
effect due to processor frequency fluctuations.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

P
ro
ce
ss
o
r
P
o
w
e
r
E
ff
ic
ie
n
cy

Number of Active Cores

C0 C1 C3 C6

Fig. 2: Power efficiency of a 10-core Xeon processor with different
level of C states configurations.

(active) state whenever any of the cores is active. When all
the cores are in low-power state Cx, the entire package can
enter Cx state, which further saves power through power-gating
the shared resources such as the last level cache. Figure 2
shows the power efficiency for the processor with different
numbers of active cores. The power efficiency is defined as:
(Pall−cores−active/N)/(Pn−cores−active/n), where n is the number
of active cores and N is the total number of cores. We can see
that the power efficiency increases as the processor is more
utilized. This shows that two aspects need to be considered
together: (i) increasing the utilization of cores in the multi-core
processor so that it is operating in the most energy-efficient
mode; (ii) keeping all the cores idle so that a considerable
amount of power could be saved from the package-level, deep
C state.

C. Need for Efficient Batching Techniques

As discussed earlier, to enter package low-power state, all
of the cores within the same processor need to be idle and
enter the core C state first. However, due to the increasing
core count in modern multi-core processors, the busy and
idle activities for individual cores rarely synchronize without
additional control. As a result, the processor package can
rarely go to sleep state naturally.

To study the package C state residencies, we set up Apache
web server on a Xeon-based server (that we studied in Sec-
tion II-B). The web application has an average request service
time of 5ms. Throughout this paper, we use 95th percentile
latency for QoS constraint. We assume that the QoS constraint
for the web application is 50ms. Also, we consider a baseline
algorithm that performs load-balancing evenly across different
cores. Figure 3a illustrates the fractions of time spent in
various package C states over time for the baseline algorithm
with under 10% system utilization. The plot shows that even
at the low utilization level when the cores are supposed to be
mostly idle, the processor spends a very small proportion of
time in the C6 state.

We develop a simple batching algorithm that batches a fixed
number of web requests in the front-end before dispatching
them to the server. Figure 3b shows the normalized energy
consumption for the baseline and two batching configurations
that batches 5 and 20 jobs, respectively. The 95th percentile

0%

20%

40%

60%

80%

100%

 0 50 100 150 200 250 300

C
 S
ta
te
s
R
e
si
d
e
n
c
y
B
re
a
kd
o
w
n

Time (s)

Package C0 Package C2 Package C3 Package C6

(a) C state residency breakdown-baseline.2

0%

10%

20%

30%

40%

50%

Baseline Batching-5 Batching-20

N
or

m
al

iz
ed

 E
ne

rg
y 8.1 ms

26.0 ms

99.5 ms

(b) Normalized energy for baseline and simple batching mechanism.

Fig. 3: (a) Package C state residency breakdown for the processor
running a web server with an average 10% utilization; (b) energy
consumption for baseline (no batching), Batching-5, and Batching-
20 that accumulate 5 and 20 jobs, respectively (normalized to energy
consumption with C state disabled).

latency is shown on top of each bar. Our results show that
even naive batching can save considerable energy. Batching-
5 achieves around 16% energy reduction compared to the
baseline and Batching-20 yields almost 43% energy savings.
Clearly, we observe that batching should be judiciously used:
conservative batching policies leave considerable latency slack
from the target (seen in Batching-5); aggressive batching poli-
cies, though capable of saving substantial amount of energy,
may significantly violate QoS constraints due to job queuing
(seen in Batching-20).

III. SYSTEM DESIGN

In this section, we present the system design of TS-Bat.
TS-Bat first performs temporal batching in the front end.
Essentially, the temporal batching engine models the response
time based on low-power state wakeup latencies, as well as
server-side request parallelism. To maximize energy savings,
TS-Bat incorporates a spatial batching engine that maintains
estimated idle periods for each of the application servers. TS-
Bat then schedules the job batch (from the temporal batching
engine) to the first available server of an ordered list. Through
spatial batching, jobs are scheduled onto a small subset of
servers such that the remaining servers can continue to stay
in deep package sleep mode.

2The C state residency is reported using turbostat. Due to limitation of the
RAPL implementation on our platform, Package C0 represents the combined
residence for package C0 and C1.

A. Design of Temporal Batching

Data center service providers for latency-critical applica-
tions generally specify a target tail latency (e.g., 95th percentile
response time) for QoS guarantee. Typically, there is a latency
slack between an application’s actual job service time and the
target tail latency. We can take advantage of this latency slack
by accumulating jobs (temporal batching) before they are sent
to the back-end servers.

The challenging task of temporal batching is to determine
the right number of jobs (denoted as K) to batch so that the
QoS will not be violated. In order to derive this parameter,
we need to understand various delays in the critical path of
job batching and processing. Figure 4 illustrates an example
scenario. Specifically, Figure 4a shows the job batching at the
front-end. In this example, 6 jobs are batched before they
are scheduled to a server. Each job experiences a batching
delay which starts from the time it arrives Tarrival to the time
when the entire batch gets scheduled on a server. Figure 4b
illustrates the procedure for job processing at the local server.
Since we have a 4-core processor, the first 4 jobs will be
serviced simultaneously while the remaining two jobs will
experience a queuing delay. To formalize the problem, let K be
the maximum number of jobs that can be batched temporally,
and ji (1 ≤ i ≤ K) is the ith arrived job in the system. The
total delay Di for job ji can be represented as:

Di = Bi +Ui (1)

where Bi and Ui are the expected batching delay and queuing
delay for ji, respectively. Assuming that S is the job service
time distribution and λ is the job arrival rate for the system,
we have the following:

Bi = (K− i)/λ +σ (2)

Ui = S95 ∗ (i−1)/C+W (3)

where σ is a constant that represents the overhead of batching,
C is the number of cores per server, S95 is the 95th percentile
service time based on distribution S, and W is the wakeup
latency for the processor in package sleep state. Based on
these equations, K can be derived as the maximum value that
satisfies the following inequality for all i:

Di +S95 ≤ Q (4)

where Q is the target tail latency. The distribution S can be
generated by monitoring the service times at runtime. We
assume that the service time distribution does not change
much over time, which is reasonable as data center operators
typically do not mix latency-critical workloads with others [6].
As a result, S only needs to be profiled once (e.g., in the
warm-up period of every workload). The value K can then
be derived by repetitively incrementing K until inequality (4)
is no longer satisfied. Since K is dependent on job arrival
rate λ , the temporal batching engine periodically samples the
job arrivals and updates the value of K. We note that once
the distribution S is determined, the value K under different

Tarrival
batching delay

… TdispatchTarrival
batching delay

j1

j2

j6

σ
TdispatchTarrival

j1

j6 j5 j4 j3 j2 j1

batching bufferTdispatch

(a) Temporal Batching in the Front-End

Package Sleep

scheduled processor

Package active

j6 j5 j4 j3 j2 j1 local queue

j1
j2
j3
j4

simultaneous multi-requests processing

(b) Batched Jobs Processing on Application Server

Fig. 4: An illustration of temporal job batching procedure assuming that the server is equipped with a 4-core processor. (a) shows how the
jobs are batched together before they are dispatched; (b) illustrates how the batched jobs are serviced at the local server. Note that the first
4 jobs are processed simultaneously while the other jobs are queued.3

Temp. Bat. Spatial Bat.

Front-end /Load
Balancer

…

t1t2t3

t4t5t6

requests

Server Pool

Fig. 5: Overview of overall TS-Bat scheme. ti is the estimated
processor idle time for server i. t1, t2 and t3 ≥ tcur, which means
these servers are currently busy processing the batched jobs; t4, t5
and t6 ≤ tcur indicating these three servers are idle.

arrival rates can be pre-computed. To avoid unnecessary delays
due to having to batch K jobs (e.g., a sudden drop in arrival
rate), an optional timer can be set to trigger dispatching of the
currently accumulated jobs such that the earliest job will meet
its deadline.

B. Spatial Batching

When a batch of jobs is accumulated by the temporal
batching engine, the front-end needs to find a server to process
it. One possible way is to evenly distribute the loads to all of
the application servers. However, this approach is not energy-
efficient because randomly dispatching job batches can create
frequent active periods for all servers. Since the operating
system makes sleep-state decisions based on server activities,
evenly distributing workload may leverage only shallow sleep
states in the absence of sufficiently long idle periods. To avoid
this, we propose a spatial batching engine that determines the
server to schedule the job batch. To do this, the spatial batching
engine maintains a list that provides estimated times when
the servers would become idle: tcurrent ≥ ti where ti is the
estimated time when server i resumes idle and tcurrent is the
current dispatching time. It then updates the server’s estimated
idle time as tcurrent +Tb, where Tb is the estimated job batching

3Data center latency-critical workloads (e.g., web server) utilize multi-
threading mechanism in multi-core processors to improve overall throughput.
Typically a local load balancer designates queued requests to multiple threads
running in parallel.

time, which can be estimated as
⌈K

C

⌉
∗S95. Figure 5 shows the

overview of our TS-Bat approach.

IV. IMPLEMENTATION

We implement a proof-of-concept prototype system includ-
ing a load generator using httperf [12], a TS-Bat module, and
apache HTTP servers in the back-end. httperf is modified so
that it is able to generate loads to multiple apache servers.
In the back-end, the apache server is configured in such a
way that it always maintains exactly the same number of
httpd processes as the number of cores. This makes sure that
incoming batched jobs are processed based on the queuing
model described in Section III.

TS-Bat is implemented as a separate module integrated into
httperf. Once initialized, the temporal batching engine samples
the service times and job arrivals to determine S95 and λ . After
the two parameters are determined, it derives K according
to the methodology discussed in Section III-A. The temporal
batching engine then starts to perform job batching. It sets up
a timer upon receiving the first job in each batch. The batching
is complete either when K jobs are accumulated or when the
timer expires, whichever is first. The batching buffer is set to
200 empirically, which is sufficient to hold requests for our
workload with the smallest service time. The job arrival rate
λ is sampled periodically every t seconds, where t is a tunable
parameter that controls TS-Bat’s reactivity to load burstiness.
By default, t is set to 5 seconds. The spatial batching engine
chooses back-end servers based on its estimated idle period,
and this information is stored in a linked-list.

V. EVALUATION

A. Experimental Setup

Server platform. We deployed a testbed with a cluster of
17 servers, including 2 standalone Xeon E5603-based servers
and 15 Xeon E5650-based servers from the Dell Poweredge
M1000e Blade system. The two Xeon E5603 servers are used
as load generators and the blade servers are configured to run
apache web service. All apache servers are interconnected with
a Netgear 24-port Gigabit switch (star topology). Since our
blade servers do not support RAPL interface, we utilize the
IPMI interface for system-level power reading. Each Xeon

0%

20%

40%

60%

80%

100%

 0 300 600 900 1200 1500 1800

C
 S

ta
te

s
R

e
s
id

e
n
cy

 B
re

a
k
d
o
w

n

Time (s)

Pkg. C0 Pkg. C2 Pkg. C3 Pkg. C6

(a) Bodytrack without T.B.(Util. 10%)

0%

20%

40%

60%

80%

100%

 0 300 600 900 1200 1500 1800

C
 S

ta
te

s
R

e
s
id

e
n
cy

 B
re

a
k
d
o
w

n

Time (s)

Pkg. C0 Pkg. C2 Pkg. C3 Pkg. C6

(b) Bodytrack without T.B.(Util. 30%)

0%

20%

40%

60%

80%

100%

 0 300 600 900 1200 1500 1800

C
 S

ta
te

s
R

e
si

d
e
n
cy

 B
re

a
k
d
o
w

n

Time (s)

Pkg. C0 Pkg. C2 Pkg. C3 Pkg. C6

(c) Bodytrack with T.B.(Util. 10%)

0%

20%

40%

60%

80%

100%

 0 300 600 900 1200 1500 1800

C
 S

ta
te

s
R

e
si

d
e
n
cy

 B
re

a
k
d
o
w

n

Time (s)

Pkg. C0 Pkg. C2 Pkg. C3 Pkg. C6

(d) Bodytrack with T.B.(Util. 30%)

Fig. 6: Package C states residency breakdown for Bodytrack bench-
mark. (a) and (b) correspond to the residency breakdown with
baseline configuration (no batching) under 10% and 30% utilizations
respectively. (c) and (d) are for the same plots with Temporal
Batching.

��

���

���

���

���

����

�� ���� ���� ���� ���� �����

�
�
�
�
��
���
�

�
�
��
��
��
�
���
�

�
�
�
�
�
���
�

������������������

(528ms)

(a) Bodytrack (QoS 540ms).

��

���

���

���

���

����

�� ���� ���� ���� ���� �����

�
�
�
�
��
���
�

�
�
��
��
��
�
���
�

�
�
�
�
�
���
�

������������������

(925ms)

(b) Bodytrack (QoS 1080ms).

Fig. 7: Latency CDF for Bodytrack under 30% utilization using
Temporal Batching.

E5650-based server is configured with the Apache HTTP
server. The server power is queried and saved every 1 second.
We conservatively set the wakeup latency from package sleep
state to 1 ms (the actual transition time is usually shorter than
1 ms)

Benchmarks selection and load generation. To run var-
ioius workloads, we developed CGI scripts for the Apache
servers. We select a subset of the PARSEC [13] benchmarks
to be executed by the CGI scripts. These PARSEC benchmarks
represent emerging class of workloads from recognition, min-
ing and synthesis domains of applications that can frequently
benefit from running on the cloud. We generate workloads
from five selected applications (with their average execution
times shown in brackets next to them): Bodytrack (108ms),
Raytrace (79ms), Vips (42ms), Fluidanimate (33ms) and Ferret
(21ms). Each workload is configured to run for 30 minutes.
httperf is set to generate job arrivals based on exponential
distribution. We configure httperf to generate three different
levels of utilizations: 10%, 20%, and 30%. Note that the
target tail latency (QoS) should be provided to the temporal
batching engine. We choose three levels of target tail latencies

0%

10%

20%

30%

40%

50%

60%

10% 20% 30%

En
er

gy
 S

av
in

gs

Average Utilization

QoS-2 QoS-5 QoS-10

Fig. 8: Energy savings for Bodytrack using Temporal Batching
compared to Baseline (no batching).

(normalized to average job service times), 2×, 5× and 10×.

B. Evaluation of TS-Bat

We evaluate TS-Bat in two steps. Specifically, we first show
the energy savings and job performance using just temporal
batching. Then we enable both temporal and spatial batching
engines, and illustrate the overall energy savings that can be
obtained from their combined deployment.

1) Temporal Batching Effectiveness: To evaluate the effect
of temporal batching, we use a single Apache HTTP server.
For this experiment, we use a single benchmark, Bodytrack.
We observe that other benchmarks also exhibit similar result
trends based on our experiments. For Bodytrack, the three tar-
get latencies are 215ms (QoS-2), 540ms (QoS-5) and 1080ms
(QoS-10). Figure 6 shows the package C state residency for
Bodytrack with and without Temporal Batching. We can see
that the Package C6 residency is significantly higher com-
pared to the baseline (41% improvement under 10% system
utilization levels, and 29% gain at 30% system utilization).
This shows that TS-Bat can successfully create processor-level
idleness that will translate to considerable amount of energy
savings in the system. Figure 7 demonstrates the response time
CDF when Bodytrack is set with QoS targets of 540ms and
1080ms. We see that temporal batching is able to meet the QoS
target. Also, we observe that the achieved tail latencies are
very close to the target latency, which indicates the accuracy
of our performance modeling. Finally, Figure 8 summarizes
the energy savings of temporal batching (normalized to the
baseline without batching). As shown by our results, temporal
batching can save upto 49% processor energy compared to
the baseline without any job batching. As the levels of system
utilization increase, the energy savings diminish for QoS-5
and QoS-10 settings. This is due to the fact that opportunities
for processor idling tend to be smaller with higher levels of
system utilization. Interestingly, QoS-2 saves more energy with
increasing system utilization. This is because latency slack is
very small for this setting, and at low utilization levels, only
a limited number of jobs can be batched.

2) Combined Temporal and Spatial Batching: We perform
both temporal and spatial batching on all the benchmarks as
mentioned in Section V-A at the utilization level of 30%. The
experiment is conducted using 15 Apache servers. The target
tail latency is set to 5× for all the benchmarks. Figure 9

0%

20%

40%

60%

80%

100%

Bodytrack Raytrace Vips Fluidanimate Ferret

En
er

gy
 S

av
in

g
Temporal Batching TS-Bat

Fig. 9: Energy savings for various benchmarks with Temporal Batch-
ing and TS-Bat at 30% utilization. Baseline has no batching.

shows the overall energy savings for the entire cluster. Across
all the benchmarks, temporal batching is able to achieve
energy improvement between 48%-51%. TS-Bat, that com-
bines temporal and spatial approaches, can provide up to 16%
additional energy savings, and achieves up to 68% energy
improvement compared to the baseline while meeting the
target QoS constraints. We note that, with spatial batching, TS-
Bat is able to pack the loads onto a small subset of processors.
Differently, in the baseline approach, short latency jobs will
incur more frequent arrivals, which prevents the processors
from entering deep package sleep, thus significantly increasing
the system power consumption.

VI. RELATED WORK

Prior works have utilized DVFS-based mechanisms to im-
prove data center energy efficiency by reducing the processor’s
active power. For example, Lo et al. [6] leverage Running
Average Power Limit (RAPL) to dynamically adapt the oper-
ating frequency of data center servers based on feedback from
actual job latencies. However, for systems with lower levels
of utilization, static power dominates and DVFS alone is not
effective.

Additionally, cluster-level power management mechanisms
have been studied by several prior works [3], [4]. Autoscale [3]
proposes a delayed-off mechanism that dynamically turns off
servers after being idle for a preset period of time while
satisfying the response time SLA. Due to the long wake-
up latencies associated with the powered-off servers, these
methods can incur unacceptable performance degradation for
latency-critical workloads. WASP [8] takes advantage of both
processor and system low-power states to optimize energy
efficiency; however it does not consider batching to create op-
portunities for package-level idleness. With explicit package-
level sleep control, TS-Bat can achieve significant amount of
processor energy savings.

Prior works have adopted temporal batching to optimize
system power. Dreamweaver [9] proposes architectural support
to facilitate sleep state by delaying and preempting requests
that create common idle and busy periods across cores of a
server. The proposed mechanism requires additional hardware
to coordinate the sleep periods across the cores. Differently,
TS-Bat only uses off-the-shelf hardware and its effectiveness
is evaluated on physical systems with real power measurement.
Finally, we note that server energy optimization as proposed

in TS-Bat can be integrated with more energy-efficient data
center network topologies [14] to boost system energy savings.

VII. CONCLUSION

In this paper, we proposed TS-Bat, a new data center energy
optimization framework that judiciously integrates spatial and
temporal job batching to save energy for multi-core data
center servers while meeting QoS constraints. TS-Bat performs
global job batching and effective scheduling onto a minimal
subset of servers such that opportunities for servers to take
advantage of processor package-level low-power modes can
be maximized. We implemented a prototype of TS-Bat on a
physical testbed with a cluster of servers and evaluated TS-Bat
using a variety of workloads. Our results show that temporal
batching alone achieves 49% CPU energy savings compared
to the baseline configuration without batching. Through com-
bining temporal and spatial batching, TS-Bat achieves up to
68% processor energy savings under various QoS constraints.

VIII. ACKNOWLEDGMENTS

This material is based upon work supported by the US
National Science Foundation under grants CNS-1718133 and
CAREER-1149557.

REFERENCES

[1] J. Koomey, “Growth in data center electricity use 2005 to 2010,” A
report by Analytical Press, 2011.

[2] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for
a warehouse-sized computer,” in ACM International Symposium on
Computer Architecture, 2007.

[3] A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch,
“Autoscale: Dynamic, robust capacity management for multi-tier data
centers,” ACM Transactions on Computer Systems, 2012.

[4] C. Isci, S. McIntosh, J. Kephart, R. Das, J. Hanson, S. Piper, R. Wolford,
T. Brey, R. Kantner, A. Ng, J. Norris, A. Traore, and M. Frissora, “Agile,
efficient virtualization power management with low-latency server power
states,” in ACM International Symposium on Computer Architecture,
2013.

[5] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam, “A dual delay
timer strategy for optimizing server farm energy,” in IEEE International
Conference on Cloud Computing Technology and Science, 2015.

[6] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “To-
wards energy proportionality for large-scale latency-critical workloads,”
in ACM International Symposium on Computer Architecture, 2014.

[7] X. Zhan, R. Azimi, S. Kanev, D. Brooks, and S. Reda, “CARB: A c-
state power management arbiter for latency-critical workloads,” IEEE
Computer Architecture Letters, 2016.

[8] F. Yao, J. Wu, S. Subramaniam, and G. Venkataramani, “WASP:
Workload adaptive energy-latency optimization in server farms using
server low-power states,” in IEEE International Conference on Cloud
Computing, 2017.

[9] D. Meisner and T. F. Wenisch, “DreamWeaver: architectural support for
deep sleep,” in ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, 2012.

[10] HP, Intel, Microsoft, Phoenix, Toshiba, “Advanced configuration and
power interface specification.” http://www.acpi.info/.

[11] Intel, “Intel R 64 and IA-32 Architectures Software Developer Manual,”
Volume 3b: System Programming Guide (Part 2), pp. 14–19, 2013.

[12] D. Mosberger and T. Jin, “httperf: a tool for measuring web server
performance,” ACM SIGMETRICS Performance Evaluation Review,
1998.

[13] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec benchmark suite:
Characterization and architectural implications,” in ACM International
Conference on Parallel Architecture and Compilation Techniques, 2008.

[14] F. Yao, J. Wu, G. Venkataramani, and S. Subramaniam, “A comparative
analysis of data center network architectures,” in IEEE International
Conference on Communications, 2014.

http://www.acpi.info/

	Introduction
	Background and Motivation
	Processor Low Power States
	Processor Power with Low-power States
	Need for Efficient Batching Techniques

	System Design
	Design of Temporal Batching
	Spatial Batching

	Implementation
	Evaluation
	Experimental Setup
	Evaluation of TS-Bat
	Temporal Batching Effectiveness
	Combined Temporal and Spatial Batching

	Related Work
	Conclusion
	Acknowledgments
	References

