
Clone-Slicer: Detecting Domain Specific Binary Code Clones
through Program Slicing

Hongfa Xue
The George Washington University

Washington, DC, USA
hongfaxue@gwu.edu

Guru Venkataramani
The George Washington University

Washington, DC, USA
guru@gwu.edu

Tian Lan
The George Washington University

Washington, DC, USA
tlan@gwu.edu

ABSTRACT
Detecting code clones is important for various software engineer-
ing development and debugging tasks. In particular, binary code
clone detection can have significant uses in the context of legacy
applications that are already deployed in several critical domains.

In this paper, we present an novel framework, Clone-Slicer, for
identifying domain-specific binary code clones (e.g., pointer-related
code) through program slicing. Our approach first eliminates non-
domain-related instructions through program slicing, and then
applies deep learning-based algorithm to model code samples as
numerical vectors for the remaining binary instructions. We then
use clustering algorithms to aggregate code clones, and use formal
analysis to verify validity of code clones. Our experimental results
show the Clone-Slicer can swiftly identify up tp 43.64% code clones
and cut the time-to-solution by 32.96% compared to previously
proposed code clone detectors.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Security and privacy → Software security engi-
neering;

KEYWORDS
Program slicing; Code Clones; Machine learning; Binary analysis
ACM Reference Format:
Hongfa Xue, Guru Venkataramani, and Tian Lan. 2018. Clone-Slicer: Detect-
ing Domain Specific Binary Code Clones through Program Slicing. In The
2018 Workshop on Forming an Ecosystem Around Software Transformation
(FEAST ’18), October 19, 2018, Toronto, ON, Canada. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3273045.3273047

1 INTRODUCTION
Understanding software and detecting duplicate code fragments is
an important task, especially in large code bases [15, 24, 29]. De-
tecting similar code fragments, usually referred to as code clones,
can be helpful in discovering vulnerability, refactoring code and
removing unnecessary code segments. Prior approaches have been
proposed for code clone detection that take advantage of token
subsequence matching, text/tree comparison or control flow graph
analysis [6, 21, 23]. While a number of existing clone detection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
FEAST ’18, October 19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5997-9/18/10. . . $15.00
https://doi.org/10.1145/3273045.3273047

algorithms target source code [7, 25, 41], we note that legacy ap-
plications exist in several real-world domains and have been in
deployment for a number of years in production systems including
airspace, military and banking (where only binary executables are
available). Also, binary code clone detection is more difficult com-
pared to source code-level detectors that leverage rich structural
information such as syntax trees and variable names made available
through the source lines of program code.

Prior work on binary code clones have adapted source code-
based techniques and are usually oblivious to the specific domain
of applications on which clone detection is useful. For instance, Sæb-
jørnsen et al [33] have proposed a code clone detection algorithm
based on characteristic vectors and normalize the assembly-level
instructions to detect more clones. Xu et al. [43] propose a graph
embedding approach using deep neural network to detect vulnera-
ble binaries that are compiled for different computer architectures
or platforms. While these prior work outline methods to detect code
clones, it is more important to tailor code clone detection based on
specific application areas to increase usefulness of detecting them.

To improve the application of detecting code clones, we introduce
domain-specific code clone detection, which can be used to detect
code clones for certain types of applications. This approach takes
advantage of the knowledge within a specific domain and tailors
code clone detection approach based on that domain. For instance,
since pointers and pointer-related operations widely exist in real-
world applications and are often behind security bugs [9, 11, 34],
detecting code clones related to pointers are of great significance for
application security. Thus, detecting pointer-related code clones is
one such domain-specific application that can significantly improve
the scalability for pointer-specific application analysis. Similarly,
tracking code that depends on external inputs is another example
of domain-specific code.

In this paper, we propose Clone-Slicer, a novel framework for
domain specific code clone detection in binaries. In particular, we
select pointer analysis (that determines pointer safety) to present
our methodology and demonstrate the soundness of our approach
in this work. We first deploy a lightweight pointer tainting method
in binary to find pointer-related instructions that can potentially
change the array boundary conditions. Then we leverage forward
program slicing and binary rewriting to remove pointer-irrelevant
instructions in order to detect pointer-related code clones. By doing
so, we are able to improve the number of code clones detected and
their time-to-solution in determining applicability on a specific
domain (removing unnecessary checking code surrounding point-
ers that are already deemed safe). We note that this enables rapid
security analysis by ignoring binary instructions that are irrelevant
to pointer-related code.

https://doi.org/10.1145/3273045.3273047
https://doi.org/10.1145/3273045.3273047

The contributions of our paper are summarized as follows:
(1) We propose Clone-Slicer, a domain-specific binary code clone

detection framework. Given a domain of interest, Clone-Slicer au-
tomatically identifies domain-related binary instructions through
tainting frameworks, and then performs code clone detection to
enable rapid security analysis.

(2) Clone-Slicer leverages program slicing to remove domain-
irrelevant instructions to find code clones of interest within the
application domain. Clone-Slicer deploys formal analysis to per-
form a closed-loop operation and introduces a clone verification
mechanism to formally verify if identified clone samples are indeed
clones within the domain context.

(3)We implement a prototype of Clone-Slicer and evaluate pointer
analysis domain using real-world applications from SPEC2006 bench-
marks suite [1]. Our results show Clone-Slicer can swiftly identify
up tp 43.64% code clones and cut the time-to-solution for (the time
spent to formally verify the redundancy of array bound checks) by
32.96% compared to prior work [45].

The rest of this paper is structured as follows: In Section 2, we
survey related work. We illustrate the overview of Clone-Slicer
and how we design and implement our system, respectively. We
evaluate Clone-Slicer and show our experimental results in Section
4. Section 5 discusses our conclusions and future work.

2 RELATEDWORK
Code clone detection. Code clone detection techniques can gen-
erally be classified into several categories. String matching-based
techniques [5, 6, 13] apply lightweight program transformations
and utilize code similarity measurement through comparing text
sequences of text. Such text-based techniques are limited in scal-
ability for large code bases and only find exact match code clone
pairs. Second, tree- or token-based clone detection [7, 26, 41] are
performed by parsing program into tokens or generate abstract syn-
tax tree (AST) representation of the source program. Consequently,
tree- or token-based approaches usually more robust against code-
specific changes. Some well-known tools in this category include
CC-Finder [23], DECKARD [21] and CP-Miner [29]. Learning based
approaches have also been developed for code similarity detection.
White et al. [42] proposed a deep neural network (DNN) based
code clone detection in source code. Komondoor et al. [25] also
make the use of program slicing and dependence analysis to find
non-contiguous code clones. But such approaches typically find
isomorphic subgraphs from program dependency graph in order to
identify code clones, for which computing such graphs is typically
more expensive. Also, the approaches mentioned above are still
demonstrated on the source code-level and not on binaries. Gem-
ini [43] use DNN to detect cross-platform code clones in binaries.
But it is limited in scope to detect clones within a single function
complied in different platforms.

Statistical method and Formal analysis. In this paper, we
make use of both machine learning and formal analysis for code
clone detection and verification. Prior work have studied bug/vul-
nerabilities using learning based approaches [20, 32]. StatSym [46]
and SARRE [28] propose frameworks combining statistical and for-
mal analysis for vulnerable path discovery. SIMBER [44] proposes
a statistical inference framework to eliminate redundant bound
checks and improve the performance of applications without sacri-
ficing security. However, SIMBER is limited in scalability and does
not use machine learning algorithms. Similarly, Clone-Hunter [45]

also takes advantage of binary code clone detection for accelerated
bound check removal. However, Clone-Hunter uses normalization
on instruction operand for vector embedding, which may omit rele-
vant information and does not use domain-specific knowledge (e.g.,
pointers) for improved clone detection. In this paper, we use deep
learning based language models for vector embedding instead.

Deep Learning and LanguageModeling. The state-of-the-art
Deep Learning algorithms have been used as new approaches for
language modeling [3, 22]. Traditionally, natural language process-
ing (NLP) in particular has utilized deep learning to do software
engineering tasks such as text/code suggestions, text classifica-
tion and so on [3, 14, 19]. For instance, recurrent neural network
(RNN) is known as a capable approach for modeling sequential
information [17, 36]. Recently, such techniques has been applied on
modeling program source code fragments. White et al. [42] propose
a deep learning-based detection approach for source code clone
detection using RNN. It develops an automated framework to ex-
tract source code features at both lexical and syntax levels. To the
best of our knowledge, we are the first to demonstrate improved
code clone detection in a scalable way using deep learning and
clustering algorithms, while making sure that clones are verified
through formal analysis in the back end.

3 SYSTEM DESIGN AND IMPLEMENTATION
In this section, we present the overview and details of our sys-
tem design along with its modules, and show how our system is
implemented. The kernel of Clone-Slicer is shown in Figure 1.

For a given application binary, Clone-Slicer first employs static
binary program slicing and binary rewriting to remove pointer ir-
relevant instructions. We disassemble binary executables and work
with the resulting assembly code (Section 3.1). To detect code clones
in binaries, we leverage deep learning-based approach to gener-
ate feature vectors for each instruction sequence and embed them
into vector space (Section 3.2). After we obtain feature vectors, we
deploy clustering algorithm to form clusters and find code clone
pairs. Note that we also use different code similarity thresholds to
further increase the number of detected code clones (more details in
Section 3.3). Since we adopt sliding window-based method to gener-
ate code regions, we perform quick post-processing to consolidate
overlapping code clones.

We use binary symbolic execution to verify whether the code
clone samples are safe in terms of array bound checks. We deploy
a selective sampling method to further verify the validity of clone
detection by selecting a random subset of samples within the cluster
center and boundary regions, and perform binary symbolic execu-
tion on these samples. Section 3.4 describes our implementation in
more detail.

3.1 Domain Specific Program Slicing
In pointer analysis domain, we aim to analyze each pointer in the
program to ensure there is no issue like memory violation. Thus,
only some certain types of instructions are related to the target
pointer for further consideration, which can affect the base, off-
set or bound information of this pointer. In this paper, we use
pointer tainting analysis to find such pointer-related instructions
at a function-level granularity. Then, we deploy forward program
slicing and binary rewriting to remove pointer irrelevant instruc-
tions.

To address this problem, Clone-Slicer first performs tainting
analysis of the binary code and deploy program slicing in two
steps:

(1) Lightweight Pointer Tainting. To select pointer related
instructions, we utilize a lightweight pointer tainting mech-
anism. Typically, there are two types of instructions need to
be tainted: Memory load operations moving data from mem-
ory to register; Store operations moving data from register
to memory.We implemented the pointer tainting based on
previous work [10, 39, 40]. Whenever a program performs
memory operations using its data from registers andmemory,
such instructions need to be tainted through propagation.
In particular, for each load instruction, the tainting is propa-
gated from memory to register along the load path. Similarly,
for each store instruction, the tainting is propagated from
writing to the memory along the store path. Whenever two
pointers are subtracted (e.g., offset computation), the result-
ing location is un-tainted. However, addition of two pointers
still results in a pointer.

(2) Program Slicing. After we obtain all the target pointers
and their corresponding pointer-related instructions, we use
forward program slicing and binary rewriting to remove
pointer-irrelevant instructions. To build a forward slice, we
utilize control flow graph (CFG) and data dependency graph
(DDG) to understand the dependency among all the tainted
instructions. Forward slicing is then constructed starting
with tainted targets in the program, and all of the data flows
in this slice end at the target after traversing the entire CFG.
We then are able to select all pointer-related instructions. For
those instructions are pointer irrelevant, we simply rewrite
them as nop using binary rewriting tools.

To remove pointer irrelevant instructions in binary executables,
we deployed a Static Binary Rewriting tool Dyninst [37]. We in-
strumented a binary analysis framework angr [35] and develop a
python script to construct CFG and DDG in binaries.

3.2 Vector Embedding using Deep Neural
Networks

mov %eax 0x40203f push %rbp… …

𝑜"#$ 𝑜" 𝑜"%$ 𝑜"%& 𝑜"%'

𝑈
𝑊

𝑉𝑆"#$

Figure 2: An illustration of RNN. The input of each node is
a one-hot vector representing the current term in the disas-
sembly code corpus, and output is a probability distribution
predicting the next term. U , V ,W are the parameters in the
network, and st is the hidden layer state vector.

We adopt a sliding window method to select different code re-
gions for code clone analysis. The approach is implemented with
two parameters: window size and stride. Window size defines the
maximum length of code regions for consideration, while stride
denotes the smallest increment of starting instruction address for

subsequent sliding windows. Since we rewrite non-pointer related
instructions as nop. We skip such nop instructions while we gener-
ate code regions and only count pointer related sliced instructions
in the code regions.

Next, we leverage Deep Neural Network (DNN) to propose a so-
lution to enable automated vector embedding. First, to obtain vector
embedding for a given code region (that consists of an instruction
sequence), we use Recursive Neural Network (RNN) to map each
term in the binary instructions (e.g., opcodes and operands) to a
vector embedding at lexical level, resulting in a signature vector
for the code region.

Embedding binary code at lexical level. Consider a disas-
sembly code corpus from a target program, withm distinct terms
(e.g., different opcodes and operands) across the whole corpus. We
use a RNN with n hidden nodes to convert each term in the code
corpus into an embedding vector U ∈ Rn×m . RNN is known as an
effective approach for modeling sequential information, such as
sentences in texts or program code. Figure 2 presents the training
process of our RNN model for binary code. The input xt ∈ Rm+n at
time step t is a one-hot vector representation [38] corresponding to
the current term, e.g., ’exa’. The hidden layer state vector, st ∈ Rn ,
stores the current state of the network at step t and captures the
information that has already been calculated. Specifically, it can be
obtained using the previous hidden state st−1 at time step t − 1 and
the current input xt at time step t :

st = f (Uxt +Wst−1) (1)

Function f is a nonlinear function, e.g., tanh.U ∈ Rn×m andW ∈
Rn×n are the shared parameters in all time steps.

The output, Ot ∈ R
m , is a vector of probabilities predicting the

distribution of the next term in the code corpus [18]. It is calculated
based on current state vector along with another shared parameter
V ∈ Rm×n , i.e., :

Ot = so f tmax (Vst) (2)
The parameters {U ,V ,W } are trained using back propagation

through time (BPTT) method in our RNN network [8]. Once RNN
training is complete, each term in the code corpus will have an
unique embedding U from Equation (1), which comprises its se-
mantic representation cross the corpus [4]. We compute such em-
beddingsU to represent the terms of binary instructions at lexical
level.

Generating signature at syntax level. We use Autoencoder
to combine embeddings U ∈ Rnm of the terms from multiple in-
structions and to obtain a signature vector for a given code region.
Autoencoder is widely used to generate vector space representa-
tions for a pairwise composed terms with two phases: encode phase
and decode phase. It is a simple neural network with one input
layer, one hidden layer and one output layer. As shown in Figure 3,
we apply Autoencoder recursively to a sequence of terms, which is
known as the Recursive Autoencoder (RAE). Let x1,x2 ∈ Rnm be
the vector embeddings of two different terms, computed using RNN.
During encode phase, the composed vector embeddings Z (x1,x2)
is calculated by:

Z (x1,x2) = f (W1[x1;x2] + b1), (3)

where [x1;x2] ∈ R2nm is the concatenation of x1 and x2,W1 ∈
Rnm×2nm is the parameter matrix in encode phase, and b ∈ Rnm is
the offset. Similar to RNN, f again is a nonlinear function, e.g., tanh.
In decode phase, we need to assess if Z (x1,x2) is well learned by

1 push %rbp

2 mov %rsp,%rbp

3 sub $0x10,%rsp

4 lea -0x4(%rbp),%rax

5 mov %rax,%rsi

6 mov $0x601060,%edi

7 callq 400710

8 mov -0x4(%rbp),%eax

push

%rbp

mov

%rbp

%rsp

Basic Block Example

…
…

…
…

Figure 3: RAE combines embeddings from different terms
and instructions through a Greedy method.

the network to represent the composed terms. Thus, we reconstruct
the the term embeddings by:

O[x1;x2] = д(W2[x1;x2] + b2), (4)
where O[x1;x2] is the reconstructed term embeddings , W2 ∈
Rnm×2nm is the parameter matrix for decode phase, and b2 ∈
Rnm×1 is the offset for decode phase and the function д is another
nonlinear function. For training purpose, the reconstruction error
is used to measure how well we learned term vector embeddings.
Let θ = {W1;W2;b1;b2}. We use the Euclidean distance between the
inputs and reconstructed inputs to measure reconstruction error,
i.e.,

E ([x1;x2];θ) = | |[x1;x2] −O[x1;x2]| |22 (5)
For a given code region with multiple terms and instructions,

we adopt a greedy method [42] to train our RAE and recursively
combine pairwise vector embeddings. The greedy method uses
a hierarchical approach – it first combines vector embeddings of
adjacent terms in each instructions, and then combines the results
from a sequence of instructions in an execution path. Figure 3
shows an example of how to combine the vector embeddings to
generate a signature vector. It shows a (binary) execution path
with a sequence of 8 instructions. The greedy method is illustrated
as a binary tree. Node 1 gives the vector embedding for the first
instruction Inst1 = (push %rbp) encoded from terms [push; %rbp].
Then, we continue to process the remaining instructions, e.g., Nodes
2 and 3, until we derive the final vector embedding (i.e., the signature
vector) for the instruction sequences of the given execution path.

We used IDA Pro [2] for disassembly and implemented RNN and
RAE in python based on the framework proposed in [27]. For RNN,
we develop a python script to tokenize the disassembly code and
use the RNNLM Toolkit [30] to train RNN for each program, with
the hidden layer size equal to 500.

3.3 Clustering for Code Clone Detection
3.3.1 Definitions. We first formally give the definition of code
similarity used in our code clone detection module.

Definition 3.1. Code Similarity. Given two Abstract Syntax
Trees (AST) T1 and T2, which are representing two code fragments,
the code similarity S between them is defined as following:

S (T1,T2) =
2S

2S + L + R (6)

where S is the number of shared nodes in T1 and T2, L and R are
the different nodes in terms of the node types and number of nodes
in T1 and T2 respectively.

3.3.2 Clone Detection. Given a group of feature vectors, we utilize
Locality Sensitive Hashing (LSH) [12] and near-neighbor querying
algorithm based on the euclidean distance between two vectors to
cluster a vector group, where LSH can hash two similar vectors to
the same hash value and helps near-neighbor querying algorithm
to form clusters [16, 21]. Suppose two feature vectors Vi and Vj
representing two code fragments Ci and Cj respectively. The code
size (the total number of AST nodes) are denoted as S (Ci) and
S (Cj). The euclidean distance E ([Vi ;Vj]) and hamming distance
H ([Vi ;Vj]) between Vi and Vj are calculated as following:

E ([Vi ;Vj]) = | |Vi −Vj | |22 (7)

H ([Vi ;Vj]) = | |Vi −Vj | |1 (8)
The threshold used for clustering can be approximated using

the euclidean distance and hamming distance between two feature
vectors for two ASTs T1 and T2 as following:

E ([Vi ;Vj]) ≥
√
H ([Vi ;Vj]) ≈

√
L + R (9)

Based on the definition from Equation 3.1, we can derive that
√
L + R =

√
2(1 − S) × (|T1 | + |T2 |), where (|T1 | + |T2 |) ≥ 2 ×

min(S (Ci),S (Cj)). Then, the threshold for the clustering procedure
is defined as:

T =
√
2(1 − S) ×min(S (Ci),S (Cj)) (10)

Then, given a feature vector group V , the threshold can be sim-
plified as 2(1 − S) ×minv ∈V ∈ S (v), where we use vector sizes
to approximate tree sizes. The S is the code similarity metric de-
fined from Equation 3.1. Thus, code fragments Ci and Cj will be
clustered together as code clones under a given code similarity S if
E ([Vi ;Vj]) ≤ T .

3.3.3 Post-Processing. As described in previous section, we deploy
a sliding window approach to generate code fragments for code
clone detection. We note that this method can potentially create
duplicated or overlapping code clones. To address this problem, we
further eliminate such code clones and only preserve the largest
code clones by computing the union of overlapping code clones.
Assuming a code clone sample is denoted as (c1,c2) , where c1 is
the starting instruction address of the code and c2 is the ending
instruction address in the code fragment. Give two code clone
samples (c1,c2) and (c ′1,c

′
2), we only keep clone sample (c1,c2) iff

c ′1 ≥ c1 and c ′2 ≤ c2. On the other hand, we do not consolidate
two code clone samples if (c1,c2) ∩ (c ′1,c

′
2) , (c1,c2)or (c ′1,c

′
2). This

post-processing procedure is performed until all consolidated code
clones are non-overlapping.

We implemented our clustering system with python and provide
as a user-friendly interface in Linux command line, which can
provide the options of code similarity S for users.

3.4 Binary Symbolic Execution for Verification
Clone-Slicer makes use of clustering algorithms to identify binary
code clones. In prior work Clone-Hunter [45] , it uses binary code
clone detection to assist removal of redundant array bound checks.
Clone-Slicer can be further applied to the same task to remove

redundant bound checks. Similarly, we utilize binary symbolic ex-
ecution to formally verify if the code clone samples are memory
safe in the same cluster.

There are two major steps for this verification process in Clone-
Slicer:

(1) Selection of samples for analysis: First, we pick a ran-
dom code clone sample from each cluster center as seed code
sample. We determine the pointer dereference is safe, and
that no memory violation can exist. We deploy partial bi-
nary symbolic execution to execute the seed code sample,
which we perform symbolic execution starting from begin-
ning to end of the seed code sample based on its instruction
addresses. We check whether the code samples contain mem-
ory violation (e.g. buffer overflow) based on the output from
symbolic execution.
Note that this identification process can be further applied to
the task like redundant bound checks removal. If the point-
ers in seed code sample turn out to be safe, then array bound
checks may be safely removed. To the contrary, the bound
checks cannot be removed if the output from symbolic execu-
tion says that there are memory violation in the correspond-
ing code snippet. We further conduct a case study applying
the kernel of Clone-Slicer to redundant bound check removal
to show the applications of Clone-Slicer(Section 4.4)

(2) Verification of memory safety: Since machine learning
based clustering algorithm cannot offer any guarantees in
terms of ensuring memory safety from all detected code
clones. It is possible the code clone samples have different
memory safety conditions in the same cluster. To address
such issue, Clone-Slicer further executes a verification pro-
cess. We select a random set of code clone samples from the
cluster boundary within the same cluster and perform the
same partial binary symbolic execution to check whether the
memory safety conditions on these code clones are indeed
similar. If the random code clones samples also turn out to
be safe just as the seed code sample does, then we assume all
the code clone samples are safe in the corresponding cluster.

We instrumented a binary analysis framework angr [35] for our
verification module. We take advantage of the binary symbolic
executor in angr to perform partial symbolic execution, which is
beginning with the starting address and execute instructions within
the specific code region to the end.

4 EVALUATION
In this section, we provide an overview of our experimental setup.
We later present our evaluation results in terms of the effective-
ness of code clone detection using our approach and the over-
head of binary symbolic execution comparing to prior work, Clone-
Hunter [45].

4.1 Experiment Setup
We performed empirical experiments on Clone-Slicer. All experi-
ments are performed on a 2.54 GHz Intel Xeon(R) CPU E5540 8-core
server with 12 GByte of main memory. The operating system is
Ubuntu 14.04 LTS. We selected 4 different real-world applications:
hmmer, sphinx3, bzip2 and lbm from SPEC2006 benchmark suite [1].

Table 2: Comparison of number of code clones detected by
Clone-Slicer and Clone-Hunter

Benchmark
#Code Clones

%Improvement
Clone-Hunter Clone-Slicer

bzip2 27 37 37.04%
lbm 10 14 40.00%

hmmer 261 352 34.44%
sphinx3 1,488 1,815 21.98%

Code Similarity Threshold, S = 1.00

Benchmark
#Code Clones

%Improvement
Clone-Hunter Clone-Slicer

bzip2 55 79 43.64%
lbm 32 40 25.00%

hmmer 587 769 31.10%
sphinx3 1,988 2,417 21.58%

Code Similarity Threshold, S = 0.90

4.2 Code Clone Detection
We measured the number of code clones that are detected from
Clone-Slicer using domain-specific knowledge (pointer safety, in
our case). We conduct experiments in terms of the following: code
clones quantity and the effect of relaxing the code similarity metric.
We use the binary code clone detection algorithm proposed in
Clone-Hunter as our baseline. For a fair comparison, we choose
the same configuration to generate code regions with maximum
sliding window size equals to 100 instructions (minimum window
size = 2 instructions) and stride value of 4.

Table 2 shows the experiment results for each benchmark, the
number of code clone detected using Clone-Hunter and Clone-
Slicer, with code similarity thresholds equal to 1.00 and 0.90. First,
we are able to increase the number of code clone detection while
we relax the code similarity. Second, as we can say, Clone-Slicer
is able to detect more code clones than Clone-Hunter among all
the benchmarks, with the highest up to 43.64% improvement than
Clone-Hunter.

4.3 Overhead of Binary Symbolic Execution
We evaluated the overhead of binary symbolic executors to check
for pointer memory safety using Clone-Slicer, and compared the
execution timewith Pure Symbolic Execution on function-level (per-
forming partial symbolic execution on each function as function-
level overhead) and Clone-Hunter. Similarly, our baseline is the
binary analysis framework angr [35].

For a fair comparison, we set up the same threshold for number
of code samples used for verification as mentioned in Clone-Hunter,
with a lower bound as 2 code clone samples (since the smallest clus-
ter only contains two code clone samples) and 30% sampling rate for
larger cluster as upper bound to randomly select code clone samples
described in Section 3.4. Table 1 presents the runtime overhead due
to pure symbolic execution on function-level, Clone-Hunter and
Clone-Slicer. We observe that Clone-Slicer is able to improve the
time-to-solution (the time spent to verify pointer memory safety)

comparing to Clone-Hunter among all the testing benchmarks, with
the highest up to 32.96% improvement of time-to-solution in bzip2.

4.4 Case Study: Removing Redundant Array
Bound Checks

Binaries
Instrumented with

Bound Checks
Clone-Slicer Code Clones Bound Check Removal Optimized Binaries

Figure 4: Application of Clone-Slicer kernel to remove re-
dundant bound checks

As mentioned in previous sections, Clone-Slicer proposes a mem-
ory safety verificationmechanism after detecting code clones which
can be further used in different engineering tasks. Here, we applied
the kernel of Clone-Slicer for redundant bound checks removal task.
We selected two representative benchmarks: bzip2 and sphinx3 to
present the results. Figure 4 shows the process of redundant bound
checks removal. We use Clone-Slicer on the top of binaries instru-
mented with bound checks and identify code clones with code
similarity equaling to 0.90. Clone-Slicer is able to automatically
verify whether bound checks are redundant in the code clones (if
binary symbolic execution raises no memory violation). Afterwards,
we deploy a static binary rewriter Dyninst [37] to remove bound
checks in binaries.

To evaluate the performance of Clone-Slicer, we employ a run-
time bound checker tool: Softbound [31] to insert bound checks
in the benchmarks. Figure 5 shows the comparison of Softbound’s
runtime execution overhead before and after using Clone-Slicer.
Our results show that Clone-Sliceris able to significantly reduce
the runtime overheads caused by redundant array bound checks in
both bzip2 and sphinx3. Clone-Slicer achieves the highest overhead
reduction up to 42.25% in sphinx3.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented a novel framework, Clone-Slicer, a
domain-specific code clone detector for binary executables, that
integrates program slicing and a deep learning based binary code
clone modeling framework to improve the number of code clone
detected. In particular, we chose pointer analysis for memory safety

59.36% 57.72%

38.20%

15.27%

0%

20%

40%

60%

80%

bzip2 sphinx3

%
 o

f R
un

tim
e

O
ve

rh
ea

d

Softbound Clone-Slicer

Figure 5: Runtime overhead of softbound-instrumented
applications and Clone-Slicer. The baseline is non-
instrumented applications.

as our example domain to demonstrate the usefulness of our ap-
proach. We evaluated our approach using real-world applications
from SPEC 2006 benchmark suite. Our results show Clone-Slicer is
able to detect up to 43.64% code clones compared to prior work and
further cut the time-to-solution (the time spent to verify memory
bound safety) for Clone-Slicer by 32.96% compared to Clone-Hunter.

As future work, we plan to apply Clone-Slicer to different do-
mains and tasks, such as vulnerable program path discovery, and
further improve the capability for code clone detection through
advanced clustering algorithms. We will also study the cost-benefit
tradeoffs of using such advanced algorithms.

ACKNOWLEDGMENTS
This work was supported by the US Office of Naval Research (ONR)
under Awards N00014-15-1-2210 and N00014-17-1-2786. Any opin-
ions, findings, conclusions, or recommendations expressed in this
article are those of the authors, and do not necessarily reflect those
of ONR.

REFERENCES
[1] 2006. SPEC CPU 2006. https://www.spec.org/cpu2006/.
[2] 2016. IDA Pro disassembler. https://www.hex-rays.com/products/ida/.
[3] Sheeva Afshan, Phil McMinn, and Mark Stevenson. 2013. Evolving readable

string test inputs using a natural language model to reduce human oracle cost. In
Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth International
Conference on. IEEE, 352–361.

[4] Miltiadis Allamanis, Earl T Barr, Christian Bird, and Charles Sutton. 2015. Sug-
gesting accurate method and class names. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ACM, 38–49.

[5] Brenda S Baker. 1995. On finding duplication and near-duplication in large soft-
ware systems. In Reverse Engineering, 1995., Proceedings of 2ndWorking Conference
on. IEEE, 86–95.

[6] Brenda S Baker. 1997. Parameterized duplication in strings: Algorithms and an
application to software maintenance. SIAM J. Comput. 26, 5 (1997), 1343–1362.

[7] Ira D Baxter, Christopher Pidgeon, and Michael Mehlich. 2004. DMS/spl reg:
program transformations for practical scalable software evolution. In Software
Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on. IEEE,
625–634.

[8] Christopher M Bishop. 2006. Machine learning and pattern recognition. Infor-
mation Science and Statistics. Springer, Heidelberg (2006).

[9] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio Nappa. 2012. Un-
dangle: early detection of dangling pointers in use-after-free and double-free
vulnerabilities. In Proceedings of the 2012 International Symposium on Software
Testing and Analysis. ACM, 133–143.

[10] Shuo Chen, Jun Xu, Nithin Nakka, Zbigniew Kalbarczyk, and Ravishankar K Iyer.
2005. Defeating memory corruption attacks via pointer taintedness detection.
In Dependable Systems and Networks, 2005. DSN 2005. Proceedings. International
Conference on. IEEE, 378–387.

[11] Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco
Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
2015. Losing control: On the effectiveness of control-flow integrity under stack
attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 952–963.

[12] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab SMirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry. ACM, 253–262.

[13] Stéphane Ducasse, Matthias Rieger, and Serge Demeyer. 1999. A language in-
dependent approach for detecting duplicated code. In Software Maintenance,
1999.(ICSM’99) Proceedings. IEEE International Conference on. IEEE, 109–118.

[14] Christine Franks, Zhaopeng Tu, Premkumar Devanbu, and Vincent Hellendoorn.
2015. Cacheca: A cache languagemodel based code suggestion tool. In Proceedings
of the 37th International Conference on Software Engineering-Volume 2. IEEE Press,
705–708.

[15] Mark Gabel and Zhendong Su. 2010. A study of the uniqueness of source code.
In Proceedings of the eighteenth ACM SIGSOFT international symposium on Foun-
dations of software engineering. ACM, 147–156.

[16] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. 1999. Similarity search in
high dimensions via hashing. In Vldb, Vol. 99. 518–529.

[17] Christoph Goller and Andreas Kuchler. 1996. Learning task-dependent distributed
representations by backpropagation through structure. In Neural Networks, 1996.,
IEEE International Conference on, Vol. 1. IEEE, 347–352.

[18] Vincent J Hellendoorn and Premkumar Devanbu. 2017. Are deep neural networks
the best choice for modeling source code?. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering. ACM, 763–773.

https://www.spec.org/cpu2006/
https://www.hex-rays.com/products/ida/

[19] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In Software Engineering (ICSE), 2012 34th
International Conference on. IEEE, 837–847.

[20] Yikun Hu, Yuanyuan Zhang, Juanru Li, and Dawu Gu. 2017. Binary code clone
detection across architectures and compiling configurations. In Proceedings of
the 25th International Conference on Program Comprehension. IEEE Press, 88–98.

[21] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings
of the 29th international conference on Software Engineering. IEEE Computer
Society, 96–105.

[22] Dan Jurafsky and James H Martin. 2009. Speech and language processing: An in-
troduction to natural language processing, computational linguistics, and speech
recognition. , 1024 pages.

[23] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. 2002. CCFinder: a
multilinguistic token-based code clone detection system for large scale source
code. IEEE Transactions on Software Engineering 28, 7 (2002), 654–670.

[24] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An empirical
study of code clone genealogies. In ACM SIGSOFT Software Engineering Notes,
Vol. 30. ACM, 187–196.

[25] Raghavan Komondoor and Susan Horwitz. 2001. Using slicing to identify du-
plication in source code. In International Static Analysis Symposium. Springer,
40–56.

[26] Kostas A Kontogiannis, Renator DeMori, Ettore Merlo, Michael Galler, andMorris
Bernstein. 1996. Pattern matching for clone and concept detection. Automated
Software Engineering 3, 1-2 (1996), 77–108.

[27] Peng Li, Yang Liu, and Maosong Sun. 2013. Recursive autoencoders for ITG-based
translation. In Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing. 567–577.

[28] Yongbo Li, Fan Yao, Tian Lan, and Guru Venkataramani. 2016. Sarre: semantics-
aware rule recommendation and enforcement for event paths on android. IEEE
Transactions on Information Forensics and Security 11, 12 (2016), 2748–2762.

[29] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2006. CP-Miner:
Finding copy-paste and related bugs in large-scale software code. IEEE Transac-
tions on software Engineering 32, 3 (2006), 176–192.

[30] TomasMikolov, Stefan Kombrink, AnoopDeoras, Lukar Burget, and Jan Cernocky.
2011. Rnnlm-recurrent neural network language modeling toolkit. In Proc. of the
2011 ASRU Workshop. 196–201.

[31] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
2009. SoftBound: Highly compatible and complete spatial memory safety for C.
ACM Sigplan Notices 44, 6 (2009), 245–258.

[32] Jannik Pewny, Behrad Garmany, Robert Gawlik, Christian Rossow, and Thorsten
Holz. 2015. Cross-architecture bug search in binary executables. In Security and
Privacy (SP), 2015 IEEE Symposium on. IEEE, 709–724.

[33] Andreas Sæbjørnsen, Jeremiah Willcock, Thomas Panas, Daniel Quinlan, and
Zhendong Su. 2009. Detecting code clones in binary executables. In Proceedings
of the eighteenth international symposium on Software testing and analysis. ACM,
117–128.

[34] Fermin J Serna. 2012. The info leak era on software exploitation. Black Hat USA
(2012).

[35] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis.
In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 138–157.

[36] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,
Andrew Ng, and Christopher Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of the 2013 conference
on empirical methods in natural language processing. 1631–1642.

[37] Open Source. 2016. Dyninst: An application program interface (api) for runtime
code generation. Online, http://www. dyninst. org (2016).

[38] Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010. Word representations: a
simple and general method for semi-supervised learning. In Proceedings of the
48th annual meeting of the association for computational linguistics. Association
for Computational Linguistics, 384–394.

[39] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos Prvulovic. 2008.
Flexitaint: A programmable accelerator for dynamic taint propagation. In High
Performance Computer Architecture, 2008. HPCA 2008. IEEE 14th International
Symposium on. IEEE, 173–184.

[40] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos Prvulovic. 2009.
MemTracker: An accelerator for memory debugging and monitoring. ACM
Transactions on Architecture and Code Optimization (TACO) 6, 2 (2009), 5.

[41] Vera Wahler, Dietmar Seipel, J Wolff, and Gregor Fischer. 2004. Clone detection
in source code by frequent itemset techniques. In Source Code Analysis and
Manipulation, 2004. Fourth IEEE International Workshop on. IEEE, 128–135.

[42] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering.
ACM, 87–98.

[43] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.
Neural Network-based Graph Embedding for Cross-Platform Binary Code Simi-
larity Detection. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security. ACM, 363–376.

[44] Hongfa Xue, Yurong Chen, Fan Yao, Yongbo Li, Tian Lan, and Guru Venkatara-
mani. 2017. Simber: Eliminating redundant memory bound checks via statistical
inference. In IFIP International Conference on ICT Systems Security and Privacy
Protection. Springer, 413–426.

[45] Hongfa Xue, Guru Venkataramani, and Tian Lan. 2018. Clone-hunter: accelerated
bound checks elimination via binary code clone detection. In Proceedings of the
2nd ACM SIGPLAN InternationalWorkshop onMachine Learning and Programming
Languages. ACM, 11–19.

[46] Fan Yao, Yongbo Li, Yurong Chen, Hongfa Xue, Tian Lan, and Guru Venkatara-
mani. 2017. Statsym: vulnerable path discovery through statistics-guided sym-
bolic execution. In Dependable Systems and Networks (DSN), 2017 47th Annual
IEEE/IFIP International Conference on. IEEE, 109–120.

Binaries Code
Regions

Vector Embedding
using Deep Neural Networks

Clustering for
Code Clone Detection

Domain Specific
Program Slicing

Binary Symbolic Execution
for Verification

Domain Specific Binary Code Clone Detector

Figure 1: The Kernel of Clone-Slicer

Table 1: Comparison of execution time spent in Pure Symbolic Execution, Clone-Hunter and Clone-Slicer

Benchmark
Program Size

(Byte)
Pure Symbolic Execution Time

Function-Level (sec)
Clone-Hunter assisted

Symbolic Execution time (sec)
Clone-Slicer assisted

Symbolic Execution time (sec)
%Improvement of time-to-solution

bzip2 305K 383.4 154.0 103.2 32.96%
lbm 55K 1584.4 387.9 308.5 20.45%

hmmer 974K 6733.3 957.4 710.7 25.76%
sphinx3 1.3M 14010.0 6144.3 5202.2 15.33%

	Abstract
	1 Introduction
	2 Related Work
	3 System Design and Implementation
	3.1 Domain Specific Program Slicing
	3.2 Vector Embedding using Deep Neural Networks
	3.3 Clustering for Code Clone Detection
	3.4 Binary Symbolic Execution for Verification

	4 Evaluation
	4.1 Experiment Setup
	4.2 Code Clone Detection
	4.3 Overhead of Binary Symbolic Execution
	4.4 Case Study: Removing Redundant Array Bound Checks

	5 Conclusion and Future Work
	References

