
Noname manuscript No.
(will be inserted by the editor)

PrODACT: Prefetch-Obfuscator to Defend Against
Cache Timing Channels

Hongyu Fang · Sai Santosh Dayapule ·
Fan Yao · Miloš Doroslovački ·
Guru Venkataramani

the date of receipt and acceptance should be inserted later

Abstract Cache timing channels operate stealthily through modulating the
cache access latencies, and exfiltrate sensitive information to malicious ad-
versaries. Among several forms of such timing channels, covert channels are
especially dangerous since they involve two colluding processes (namely, the
trojan and spy), and are often difficult to stop or prevent. In this article, we
propose and demonstrate PrODACT, a low-cost mitigation mechanism using
hardware prefetchers to defend against cache-based timing channels. Our de-
tection mechanism first identifies the target cache sets that are being exploited
by the adversaries, and then the counterattack mechanism fetches cache blocks
to obliterate the pattern of cache accesses (misses and hits) created to con-
struct timing channel between the trojan and the spy. We evaluate PrODACT
on different classes of cache timing channel protocols that use different numbers
of cache block groups for covert communication in a round-robin or parallel
fashion. We observe that the cache timing channels suffer an average 50% bit
error rate (with a minimum of at least 30%) which makes it very difficult or
impossible for spy to decipher any useful information.

Hongyu Fang
The George Washington University
E-mail: hongyufang ee@gwu.edu

Sai Santosh Dayapule
The George Washington University
E-mail: saisantoshd@gwu.edu

Fan Yao
The George Washington University
E-mail: albertyao@email.gwu.edu

Milos Doroslovacki
The George Washington University
E-mail: doroslov@email.gwu.edu

Guru Venkataramani
The George Washington University
E-mail: guruv@gwu.edu

2 Hongyu Fang et al.

Keywords Covert timing channel · Hardware Prefetcher · Information
Leakage · Cache attacks · Hardware Security

1 Introduction

Computer users have increasingly turned to shared computing platforms, such
as cloud services, to satisfy their processing needs. Such platforms allow ap-
plication processes from different clients to be co-located on a same physical
machine. Malicious clients could exploit such features for information leak-
age purposes. Hardware vendors have already become aware of the danger,
and have started providing primitives to prevent the information leakage. For
example, Intel’s Software Guard Extensions (SGX) [2] supports enclaves in
memory and prohibits processes from accessing memory belonging to other
enclaves. While such protection schemes exist, a vast majority of hardware
resources (including caches) can still be exposed to untrusted processes since
they are still shared by processes running in the system.

Among various forms of information leakage attacks, timing channels are
especially notorious for their stealthy exfiltration of sensitive information leav-
ing no physical evidence for forensics. These hardware-based timing chan-
nels work by observing the modulation of shared resource access timing such
that sensitive data can be secretly transmitted [57,1,56,19]. Since hardware
resources are inherently shared among processes to maximize utilization of
hardware and improve ease of data sharing between genuine users, it is dif-
ficult to prevent any timing channels simply through isolating the resources.
Such timing channels can manifest hardware either as side channels, where a
benign victim unknowingly leaks sensitive data to a malicious spy, or as covert
channels, where a malicious insider trojan process intentionally colludes with
a spy process to manipulate access timing of a shared resource to exfiltrate
secrets [11]. Note that the system security policy explicitly prohibits any form
of direct communication between trojan-spy pairs, and as such any form of
communication (including indirect means) shall be deemed illegitimate com-
munication between them [17].

Caches are among the most exploited hardware structures for timing chan-
nel attacks as they are frequently shared between multiple CPU cores. Un-
like functional units whose usage can be monitored, caches contain numerous
cache sets that may be accessed by several processes concurrently at any given
times. This makes guarding of caches against timing channels challenging and
important. Cache-based covert timing channel operates using a trojan that
intentionally manipulates the latencies of cache data accesses such that the
spy can decipher the secrets based on the observed latency [50,41,52,53,33,
25]. Most existing solutions aim to redesign caches [51] to prevent timing chan-
nels altogether. These methods incur higher costs caused by huge amount of
hardware modification and disrupt locality.

In this article, we propose PrODACT, an efficient, low-cost approach to
defend against cache timing channels using hardware prefetchers. Our solu-

PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels 3

tion analyzes the cache for suspicious cache access activity by using a low-
cost trigger pattern detector that tracks potential cache timing channels. Our
defense framework targets the suspicious cache sets identified as being ex-
ploited by the timing channel, and then obfuscates any trojan-initiated timing
modulation (corresponding to covert bit transmission). This is accomplished
through prefetching cache blocks that counter any cache replacement (and
non-replacement/hits) as performed by the trojan on suspected cache sets.
We experiment and analyze the efficacy of PrODACT against various timing
channel protocol implementations. By designing a front-end detector, we make
sure that the benign processes do not suffer any performance impact, and that
the cache sets belonging to them aren’t targeted by the hardware prefetcher
unnecessarily. A recent proposal, Disruptive Prefetching [20] has used prefetch-
ers to interrupt side channels. However, it has three major drawbacks:

1. Disruptive prefetcher randomly fetches a number of additional blocks (be-
sides the victim’s memory blocks) to essentially pollute the cache and thereby,
avoid any potential for side channels. We note that such an approach may
lead to unnecessary cache pollution, and negatively impact the performance
of genuine applications. In contrast, our framework mounts a targeted defense
by only disturbing cache sets utilized by the trojan/spy without causing any
additional cache pollution.

2. Disruptive prefetching is designed to only defend L1 caches. We note that
covert timing channels can also be implemented in non-private, shared caches [33].
We aim to prevent timing channels on any shared cache and disrupt covert
communication that exploit them.

3. Disruptive prefetching uses set balancing to create uniform traffic to cache
sets. While this is useful to guard against side channels by masking traffic
flow between caches and memory, we note that covert channels intentionally
construct specific groups of cache sets and repeatedly use them to communicate
bits. Our framework is aimed at targeting the specific cache sets (instead of
masking traffic patterns) that ultimately helps obfuscate the bit regardless of
the number of cache blocks used in communication.

Prefetch-guard [23] introduces the concept of potentially using hardware
prefetchers to defend against cache timing channels, and discusses a prelimi-
nary strategy to prefetch cache blocks that were primed by the spy after the
trojan replaces them. However, Prefetch-guard does not discuss any optimiza-
tions to improve system performance in order to realistically use prefetchers as
a defense against cache timing channels. Also, Prefetch-guard does not study
effectiveness against several variants of cache timing channels.

In this article, we add several major contributions, and demonstrate a
number of practical design considerations, as well as defenses against real-
world timing channel implementations: Specifically, the new key contributions
in this article include:

1. We show how aggressive hardware prefetching can be avoided with a prac-
tical trigger pattern recognizer that implements first level filtering to avoid
analyzing benign processes that do not show timing channel activity,

4 Hongyu Fang et al.

2. In order to evaluate the effectiveness of our solution, we study several vari-
ants of cache timing channel implementations such as round-robin and parallel,
as well as protocols that exploit single and multiple groups of cache sets.
3. We also discuss how our framework can be used to defend against prominent
classes of timing channels, namely Prime+Probe, and Flush+Reload.

PrODACT provides two key advantages over prior solutions:

– Scalability: Our framework targets misbehaving trojan-spy processes. There-
fore, regardless of the total number of processes running in the system, as
long as suspicious pairs are identified (through observing repeated, inten-
tional cache block replacements), the timing channel activity can be an-
nulled between these malicious pairs without adversely affecting benign
applications that utilize the remaining cache sets. We note that cache
partitioning-based defenses [49,38] are hard to scale because the number
of cache partitions are limited. If the cache is partitioned heavily, benign
processes may slow down because of insufficient cache capacity.

– Low cost: We leverage existing hardware prefetchers, and make minimal
hardware modifications to track cache conflict misses unlike prior approaches
that fundamentally alter cache designs by adding secure and non-secure
partitions [51] or obfuscating data placement [32].

The major contributions of our article are as follows:

1. We propose PrODACT, an efficient approach to counter cache-based tim-
ing channels. We demonstrate novel ways to utilize hardware prefetchers
and obfuscate the trojan-spy communication in a targeted manner such
that the spy will not be able to correctly decipher the bits transmitted by
the trojan.

2. We design a two-level, scalable low-cost detector for cache timing chan-
nels and suspicious target cache sets. We show obfuscation methods that
perturb the cache access timing modulation orchestrated by the trojan by
increasing the error rate for the spy.

3. We show the efficacy of our approach through evaluating on various classes
of timing channel protocol implementations, namely round-robin and par-
allel with different numbers of cache set groups used for covert commu-
nication. Our experimental results show that hardware prefetchers can be
highly effective in defending against cache timing channels.

2 Background

2.1 Cache Timing Channels

Cache covert timing channel usually involves two processes: trojan/victim and
spy, where the spy learns of sensitive secrets from trojan/victim through timing
modulation of cache access latencies. Note that any form of direct communi-
cation between them will be prohibited by the underlying system security pol-

PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels 5

Way #0 #1 #2 #3

S_addr0 S_addr1 S_addr2 S_addr3

Spy primes

S_addr0 S_addr1 S_addr2 S_addr3 T_addr0 T_addr1 T_addr2 T_addr3

Trojan transmits ‘0’ Trojan transmits ‘1’

Low Latency

Spy probes

High Latency

Spy probes

Step 1

Step 2

Step 3

Step 4

(a) Prime+Probe

Addr0 Addr1 Addr2 Addr3

Way #0 #1 #2 #3

Spy flushes

Addr0 Addr1 Addr2 Addr3

Trojan transmits ‘0’ Trojan transmits ‘1’

High Latency

Spy reloads

Low Latency

Spy reloads

Step 1

Step 2

Step 3

Step 4

(b) Flush+Reload

Fig. 1: Steps to Implement Cache Timing Channel Attack

icy [17]. Caches present a good choice for trojans to leak information because
of the following two reasons:

1. Caches are shared by different processes (both trojan and spy have access
to same cache).

2. Processes can observe the access latency to infer whether a memory address
is in cache.

When a process requests a memory line in the cache (cache hit), the time
it takes would be much shorter than requesting a memory line which is not in
the cache (cache miss). There are mainly two ways for a process to influence
cache access latency of other processes: cache conflict and clflush command.
Cache conflict miss happens when a memory line is allocated in a cache set
that is already occupied. Then a cache block in that set would be replaced
by the new one. If the owner of the evicted cache block requests that block
later, it would suffer cache miss and observe a longer latency. Clflush command
enables processes to evict its memory line from cache. If other processes which
share the evicted memory line try to access it, they would observe a cache
miss. These features can be exploited to modulate cache timing and covertly
transmit information [46].

Three primary ways are proposed to implement cache timing channel:
prime+probe [52,34,11,24], flush+reload [59,6,61,58], and evict+time [37].
Evict+time can only be implemented in side channel because it requires spy
to send service requests to victim and time the latency of responses. To im-
plement prime+probe timing channels, as shown in Figure 1a, the spy primes
the cache sets with its memory lines, and the trojan replaces them to create
conflict patterns and encode bits. The spy then probes the same cache sets,

6 Hongyu Fang et al.

0 100 200 300 400 500
Time (s)

spy

cache

trojan

(a) Cache Access Diagram for Round-Robin Protocol

0 100 200 300 400 500
Time (s)

spy

cache

trojan

(b) Cache Access Diagram for Parallel Protocol

Fig. 2: Prime+Probe Communication Protocols

and measures the cache access latencies to infer the trojan’s activity. As shown
in Figure 1b, for flush+reload, the spy flushes shared memory lines from cache
set first. Then, the trojan encodes bits by either accessing the memory lines or
by staying idle. The spy reload those shared memory lines and measure access
latency to figure out whether trojan has accessed them. Among above im-
plementations we discussed, prime+probe has least number of prerequisites to
realize the attack, and it is merely based on cache accesses without specifically
depending on any shared address patterns seen in other types of attacks.

There are several communication protocols to implement prime+probe
cache timing channels in real systems. The cache access activity of trojan
and spy can be manifested in a round-robin [11] or in a parallel fashion [55].
For round-robin protocol, the trojan and spy have a schedule and only access
cache when the other one finish its activity. As shown in Figure 2a, the trojan
encodes bits by either accessing cache or staying idle. And the spy access cache
after trojan’s encoding (access or idle). Then, the trojan starts encoding next
bit when spy finish its access. For parallel implementation, trojan and spy
don’t have accurate information about each other’s timing. At the beginning,
the trojan transmits predetermined symbol sequences to inform spy the ap-
proximate bit boundary. Then the trojan encode one single bit with multiple
cache accesses in order to make sure that spy would receive its information.
As shown in Figure 2b, the trojan access cache four times to encode one bit
by using repetition coding and spy keeps accessing cache to make sure it won’t
miss the trojan’s information. Trojan may also implement different encoding
strategy. The trojan could create conflict misses on either a specific group of
cache sets [52,24] or multiple groups of cache sets [41,53]

PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels 7

2.2 Prefetcher Module in Processors

Data prefetching has been utilized to bridge the performance gap created be-
tween processors and DRAM. Prefetching can be implemented based on both
software and hardware. Software prefetching requires support from architec-
ture which enables prefetch instruction to bring memory lines from DRAM. For
instance, Intel®Xeon Phi™ [13] provides vprefetch1 instruction which brings
a 64B memory lines to L2 cache and vprefetch0 to push it further to L1 cache.
When an instruction tries to bring an unavailable memory line, the system
would stay silent and ignore it rather than throw page faults. The prefetch in-
struction could be inserted by expert programmers or automatically generated
by state of art compilers.

The on-chip hardware prefetchers work by monitoring the cache misses,
and predicting the memory addresses that satisfy CPU’s data needs in the
near future. Hardware prefetchers are, by default, enabled in most of mod-
ern processors. The common types of hardware prefetchers based on spatial
locality are Stream: loads next sequential addresses in the page, and Stride:
which brings the addresses at a fixed stride from the requested address. To
satisfy temporal locality, prefetchers use Global history buffer-based policy
that predicts the next cache reference based on previous access pattern [36].

3 Threat Model and Assumptions

Our attack model assumes that a trojan has accesses to sensitive information
that a spy is trying to steal by observing the access to one of the largest shared
hardware structures, namely caches. We evaluate our design using the covert
timing channels where an insider trojan process intentionally manipulates the
hardware resource timing to communicate secrets. We note that our solution
approach can also prevent side channels. This is due to the fact that mali-
cious trojan (covert channels) and benign victim (side channels) have similar
interactions with the spy, and manifest themselves similarly in terms of cache
timing modulation behavior. The only difference between them is that a tro-
jan communicates intentionally, and therefore, is far more difficult to detect
or prevent.

Without loss of generality, the spy and trojan are assigned to different cores
that share hardware caches. (e.g., Last Level Cache or LLC). Note that, under
the system security policy, any form of inter-process communication between
the trojan-spy is prohibited by OS since the trojan has access to sensitive data
that is usually not available to the spy. Besides, the processes from different
security domains have no shared library and flushing cache line contents (e.g.,
via clflush instruction) belonging to the different process shall not be allowed.
Therefore, through isolation mechanisms that prevent accesses to shared li-
braries simultaneously, the OS and VM can prevent certain types of timing
channel implementations such as Flush+Reload [59]. Prime+probe techniques,
which doesn’t require any such sharing prerequisites, will still work under this

8 Hongyu Fang et al.

system security model. Therefore, our threat model includes the most potent
Prime+Probe-based attacks (that does not require any shared memory be-
tween trojan and spy) to create conflict patterns for covert communication.
The spy primes some cache sets with its own data blocks where the cache sets
used in timing channels could be separated into one or more groups.

In this article, we demonstrate timing channels that assume a trojan covertly
encoding bit ‘1’ through evicting cache blocks owned by the spy, and transmit-
ting bit ‘0’ simply by staying idle. Without the loss of generality, we note that
such a transmission scheme may be extended to other encoding schemes where
multi-bit encoding is performed with multiple latency bands [56], and the tim-
ing of trojan and spy’s activity could be round-robin and parallel. We observe
that a covert channel, where trojan and spy operates in parallel, is similar to
side channel since there is no synchronization between two processes. There-
fore, our evaluation results on covert channels with parallel protocols capture
side channel behavior.

Finally, we note that certain system administrators could simply terminate
the program instead of deploying mitigation strategies such as PrODACT.
This may be undesirable on two counts: 1. In case of side-channels, where a
spy intentionally create conflict misses with innocent victim, terminating both
involved processes may impact benign applications unnecessarily. 2. When two
benign applications compete for cache resources temporarily during short time
periods, both benign applications will be terminated. In contrast PrODACT
would improve the access latency through prefetching their cache blocks.

4 Motivation

4.1 Uncovering Timing Channels

The requirements of cache-based timing channels include: 1. the spy’s ability to
distinguish between cache hit and miss latencies, and 2. the trojan’s capability
to orchestrate a series of cache hits and misses for the spy’s observation. As
stated in Section 3, the spy cannot directly communicate with the trojan to
obtain information. Therefore, the spy has to infer trojan’s communicated bits
covertly through measuring cache latencies for accesses.

Initally, the spy primes all of the cache sets through filling them with
its own cache blocks. The trojan transmits bit ‘1’ by evicting all of the cache
blocks owned by the spy, and transmits bit ‘0’ by staying idle (i.e., does not re-
place spy’s blocks). After trojan’s activity, spy probes and measures the access
latency for those cache blocks it had primed previously. Let us demonstrate a
timing channel attack (implemented on Gem5 simulator [7]), and record the
spy’s access latencies when it performs the probe phase. Figure 3, the red
dashed line shows the spy’s observations. The latencies are either above 2000
cycles or below 700 cycles when trojan transmit bits ‘1’ and ‘0’ respectively.
To decipher the bits, the spy can simply pick a threshold equal to the mean of
all latencies, and decipher the communicated bit as ‘1’ if latency is larger than

PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels 9

the threshold, and ‘0’ if the latency is less than the threshold. In this case,
the spy would get 0% error rate. The above example shows that it is essential
for the spy to have a clear decision boundary (threshold) to decipher the bit
transmitted by the trojan.

As one straightforward observation, we can infer that by making this de-
cision boundary non-perfectly separating, the spy will no longer be able to
reliably decipher the covertly communicated bits. We can achieve this by in-
creasing the spy’s observed latency when trojan transmits bit ‘0’, and through
decreasing the spy’s access latency when trojan transmits bit ‘1’.

4.2 Defense using Hardware Prefetcher

Hardware prefetcher has the ability to bring data blocks into the cache even
before those blocks are actually being consumed by the processor. We note
that such prefetchers can be leveraged to artificially increase or decrease cache
access latencies in a controlled manner.

The prefetcher has the ability to obfuscate cache timing channels in the
following two ways:

– Convert certain Cache Misses to Hits: If the prefetcher brings the spy’s
blocks back into the cache right after trojan evicts them, the spy would
suffer from less number of cache misses during its probe phase. In other
words, the access latency observed by spy would be lower than expected
and this lowers the decision boundary.

– Convert certain Cache Hits to Misses: If the prefetcher replaces some of the
spy’s cache blocks that the trojan did not evict, the spy would experience
greater number of cache misses during its probe phase. In other words, the
access latency observed by spy would be higher than expected and pushes
the decision boundary.

In the case of timing attack that we discussed in Section 4.1, in order to
introduce frequent errors in timing channels, we should make the spy’s cache
latencies during ‘0’ and ‘1’ bit transmissions to be indistinguishable. That is,
we should flip half of cache hits that occur during ‘0’ bit transmission to cache
misses; similarly, we ought to flip half of cache misses to hits when bit ‘1’ is
being transmitted.

In an 8-way set associative cache, after the trojan encodes bit ‘0’ by staying
idle, the spy should normally observe 8 hits during its probe phase. However,
right before spy’s probe, if we replace some of spy’s blocks that were left intact
from its last prime phase, the spy would suffer from cache misses that should
have not happened. Therefore, spy experiences more misses than expected
which would confuse the spy from correctly inferring the transmitted ‘0’.

Similarly, after trojan encodes bit ‘1’ by evicting spy’s cache blocks, the
spy would normally suffer 8 misses because all of its data blocks are evicted
from cache set. If we can prefetch some of data blocks owned by the spy before
it probes, the spy would suffer lesser number of cache misses, and the latency

10 Hongyu Fang et al.

0 20 40 60 80
Spy Probes

0
500

1000
1500
2000
2500
3000

M
ea

su
re

d
La

te
nc

y
(c

yc
le

)

original obfuscated

Fig. 3: Spy’s observation of access latencies before and after prefetcher obfus-
cates the hit-miss pattern in cache accesses.

L1 Cache L1 Cache L1 CacheL1 Cache

Last Level Cache Conflict Miss
Tracker

Prefetcher Prefetcher Prefetcher Prefetcher

Conflict
Information

Prefetch Requests to Obfuscate Trojan/Spy

Prefetch
Controller

Suspicious Set IDs
& Cache Addrs

 Trigger
 Recognizer
Intensity

Filter

Fig. 4: PrODACT Design Overview. The white blocks stands for existing hard-
ware. The gray blocks stands for the components belonging to PrODACT.
Among them, the gray blocks with solid frame (Conflict Miss Tracker) denote
hardware add-ons, while those with dotted frame are implemented in software.

that it measures would be lower than expected. This can confuse the spy from
correctly inferring the transmitted ‘1’.

To make the spy’s observed latencies for bit ‘1’ and bit ‘0’ to overlap
in value as much as possible, we make the spy to observe about 4 misses
during its probe phase regardless of what the trojan transmits. This is done
by flipping cache misses and hits as described above, effectively obfuscating
the timing channel. The observed latencies on the spy side during transmission
of alternating 1’s and 0’s after obfuscation is shown in Figure 3. For any
given bit, we observe that the obfuscated latency is significantly different from
the obfuscation-free cases, and the latency difference between bits 1 and 0 is
practically non-exsistant. If spy uses the mean latency as its decision boundary,
the error rate would be 53% which is just as good as a random guess. If a
sophisticated spy hopes to separate the latencies into multiple decision regions
to improve communication quality, it requires knowledge about distribution of
access latency values which needs thousands of measurement and would result
in overfitting of samples. In general, with the noise shown in this example, it
is impractical for the trojan and spy to build a robust cache timing channel.

PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels 11

A

Cache
Conflict	Miss	

Tracker
B	replaces	A

B

Cache

A

Conflict	Miss	
Tracker A is	accessed

The	incoming	A	matches	the	A	in	conflict	
miss	tracker.	Conflict	detected.

Fig. 5: The changes in cache and conflict miss tracker when a replaced memory
line A is accessed again.

5 PrODACT Design

The design of our PrODACT framework involves three important modules:
Conflict Miss Tracker, a two-level, low-cost Trigger Pattern Recognizer, and
a Prefetch Controller shown in Figure 4. The Conflict Miss Tracker, that is
built into shared Last Level Cache (LLC), collects information on cache misses
and identifies the conflict misses among them. The two-level Trigger Pattern
Recognizer analyzes the conflict miss patterns, and identifies the cache sets
that are likely exploited by the malicious processes. Once suspicious sets and
the corresponding memory addresses are sent to the prefetch controller, it
sends prefetch requests to obfuscate the trojan-spy covert communication.

5.1 Conflict Miss Tracker

Conflict misses occur exclusively in set-associative caches when blocks are
pre-emptively replaced from the cache even before the full cache capacity is
reached. That is, when a core A’s cache block is replaced by a core B’s cache
block prematurely, and the core A accesses the same block again (that had
been recently replaced), a conflict miss occurs. Such conflict misses occur when
many blocks that map to the same cache set are accessed successively, and
the cache does not support enough associativity to accommodate all of the
blocks. Note that such conflict misses would have never happened in a fully
associative cache.

In order to track such conflict misses, a simple hardware buffer (Conflict
Miss Tracker) maintains a list of addresses that are replaced during cache
misses in LLC, along with the corresponding owner core ID for that block.
If a currently replaced address to the cache is not in this hardware tracking
buffer, it would be added. Upon every cache miss, the incoming cache address
is checked against the buffer entries to verify if a conflict miss had occurred. If
the incoming address to the cache is found in the buffer, we can infer that this
address was recently replaced by another cache block, and hence is recorded
as a conflict miss. An example of conflict miss identification is shown in Figure
5 where the memory line A suffers cache miss because it’s replaced by mem-
ory line B. We note that such cache conflict miss identification techniques in
hardware have been proposed for performance analysis reasons [48]. We note
that the conflict miss tracker could achieve a high accuracy with less than 3%
area overhead in L2 cache and 1.5% access time overhead.

12 Hongyu Fang et al.

0 50 100 150 200 250 300 350
0

2

4

6

8

W
ay

 O
cc

up
an

cy

trojan spy

0 50 100 150 200 250 300 350
Time (s)

0

50

100

150

200

Cu
m

ul
at

iv
e

Ev
ict

io
n

trojan -> spy spy -> trojan

Fig. 6: Cache occupancy of trojan/spy and their cumulative number of evic-
tions

Note that mutual cache block eviction activity is very common in cache
timing channels. During such mutual evictions, both the incoming and outgo-
ing addresses will be found in the conflict miss tracker. Since the trojan and
spy pairs will do the evictions repeatedly using multiple addresses to covertly
communicate with each other, the identities of the trojan and victim can be
easily found. The output of Conflict Miss Tracker is the list of evicted ad-
dresses, the owners of evicting and evicted memory addresses (likely trojan
and spy processes).

5.2 Trigger Pattern Recognizer

Once a Conflict Miss Tracker identifies a series of cache misses, the next step is
to figure out whether there is a potential cache timing channel. We propose a
two-level mechanism, where the first-level filters conflict misses that are likely
benign, and the second-level uses pattern recognition to identify likely timing
channels.

As mentioned in Section 1, the Prime+Probe typically involves three phases:
1) spy’s prime, 2) trojan/victim’s activity, and 3) spy’s probe. In the Prime
phase, in order to observe the trojan’s activity, spy primes all of the cache sets
by bringing its own blocks into those sets. Then the trojan transmits encoded
bits by evicting spy’s cache blocks or by staying idle. After trojan’s activity,
spy probes its primed cache blocks, and measures the access latency to infer
the bit that was transmitted by the trojan. The entire prime+probe proce-
dure has two features which are usually not found in benign processes: 1. The
number of conflict misses is usually much higher because each prime+probe
operation contains multiple conflict misses. To transmit with a reasonable

PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels 13

bandwidth, the spy and trojan would suffer more conflict misses than normal
applications. 2. The conflict miss pattern between the spy and trojan happen
in an alternating fashion.

Before doing the pattern analysis of conflict misses, we first filter the pro-
cesses which have few conflict misses because they are either benign processes
or an extremely low-bandwidth channel (as per DoD Standard [17], timing
channel bandwidths below 0.1 bps are considered unavoidable in any real sys-
tem). For the conflict-intensive processes, we send the conflict information to
second level analyzer to do the further analysis.

Let us denote process A evicting process B’s cache line as A→B. In
prime+probe attack, during probe phase there would be multiple spy→ trojan
conflicts. When trojan encodes information, we can observe trojan→ spy. The
goal of trigger pattern recognizer (in its second step after filtering benign pro-
cesses) is to extract the alternating patterns of trojan→ spy and spy→ trojan.

To illustrate our trigger detection algorithm, we run a timing channel at-
tack on an 8-way associative cache. Trojan transmits ‘1’ by evicting eight ways
primed by spy, and transmits ‘0’ by staying idle. We record the way occupancy
and the cumulative count of the eviction pairs. As shown in Figure 6, the spy
primes 8 cache ways, and then, trojan evicts the spy’s blocks. The spy’s cache
set occupancy decreases first and then increases back to 8, while the trojan’s
way occupancy shows the opposite behavior. These changes in cache way oc-
cupancy is caused by trojan→ spy and spy→ trojan eviction patterns. For
different protocols, the order of these two kinds of eviction could be different,
but the pattern of loss and gain in way occupancy resulting from cache conflict
misses is the same. To extract the pattern we maintain a counter for each pair
of processes in every cache set. For a pair of processes (a, b) and a cache set
i, we record the vector (a, b, i). When a a → b eviction occurs on the cache
set i, the counter corresponding to vector, Ca,b,i increases by one. Similarly, if
a b → a eviction happens, the counter decreases by one. The value of Ca,b,i

equals to the difference of cumulative number of a → b evictions and b → a
evictions. As shown in Figure 6, the difference of two cumulative numbers first
increases and then decreases in one prime+probe operation. During covert
timing channel activity, we could observe the value switch back and forth for
multiple times.

If the number of cumulative switches of the value (difference of the two
counters) on a cache set becomes higher than a threshold, we infer repeated,
intentional cache block replacements by trojan/spy pair to manipulate cache
timing. Consequently, the trigger identifies such cache sets as suspicious for
communication between the corresponding pair of owners a, b.

We note that our two-level trigger pattern detector improves scalability by
filtering benign processes and their related conflict misses. This vastly reduces
the number of pairs running in the system that need to be analyzed further
for potential timing channels.

14 Hongyu Fang et al.

s_addr0
s_addr1
s_addr2
s_addr3

s_addr0
s_addr1
s_addr2
s_addr3

t_addr0
t_addr1
t_addr2
t_addr3

Trojan tx '0'

Trojan tx '1'

s_addr2
s_addr3
t_addr2
t_addr3

t_addr2
t_addr3
s_addr2
s_addr3

Obfuscated by Prefetch-guard

2 misses & 2 hits
observed by spy
(Undefined bit)

Fig. 7: Bit Boundary obfuscation by PrODACT

5.3 Prefetch Controller

The prefetch controller receives the information about suspicious processes
and the cache addresses that are involved in timing channel-related activity.
Based on this information, the prefetch controller analyzes the timing of the
prime+probe and delivers prefetch requests to the L1 cache prefetchers to
obfuscate cache timing channel.

In order to thwart the trojan-spy communication, the prefetch controller
needs information about the addresses of memory lines that the trojan and spy
exploit to create conflict misses. During their communication, these memory
addresses are frequently involved in conflict misses, and therefore, would be
recorded by Conflict Miss Tracker. After the suspicious cache sets are labeled,
these exploited addresses are also sent to the prefetch controller. Then the
prefetch controller issues requests to the L1 prefetcher to bring back memory
lines for a specific times to obfuscate trojan-spy communication.

As mentioned in Section 4, the goal of mitigating a cache timing channel
is to make spy receive bits incorrectly. Figure 7 shows our prefetch controller
making the number of cache misses and hits observed by the spy to be the
same irrespective of trojan’s activity. In our illustration, for a 4-way associative
cache, the spy observes zero misses when trojan transmits bit ‘0’ and four
misses when trojan transmits bit ‘1’. In the absence of any defense, the spy
could easily discern the bit because the difference of latency of cache accesses
is high. To obfuscate the spy’s probe phase, the prefetch controller makes spy
suffer from two misses all the time. When trojan encodes bit ‘1’, the prefetcher
brings back half of the spy’s memory lines after the trojan’s activity (Note that
trojan-spy pair could be inferred by our Trigger pattern recognizer module 5.2).
The spy would observe 2 conflict misses rather than 4 misses. And when trojan
encodes bit ‘0’, trojan’s two memory lines are brought to the cache before
spy’s probe phase. Since the number of observed misses becomes independent
on trojan’s activity, it is impossible for the spy to infer trojan’s activity by
measuring cache access latencies.

PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels 15

6 Experiment Setup

We evaluate PrODACT using Gem5 [7], a cycle-accurate, full-system simu-
lator. We configure Gem5 with four x86 cores, 32 KB private L1 and 4 MB,
16-way shared L2 caches. All the experiments are run on full system mode
under Linux kernel version 2.6.32.

6.1 Cache Timing Channel Attacks

Encoding Timing Attack Implementations

Single-group Parallel [52,34]
Single-group Round-robin [11,24]
Multiple-group Parallel [40,33]
Multiple-group Round-robin [41,53]

Table 1: Cache timing attack classes studied in our paper.

We launch prime+probe attack on L2 shared cache and run the trojan and
spy on different cores. As shown in Table 1, we study four variants of cache
timing protocols used by adversaries. In single-group attack, the spy primes
a single cache set through generating addresses that map to the same cache
set. The trojan transmits ‘1’ by replacing all of spy’s cache blocks from the set
with its own addresses, and transmits ‘0’ by staying idle. The spy decodes bits
by measuring the access latency of cache blocks through re-issuing the set of
addresses used during its prime phase. A higher latency represents bit ‘1’, and
the lower latency represents bit ‘0’. In multiple-group attack, the spy primes
two sets of cache blocks. The trojan transmits ‘1’ by evicting the spy’s cache
blocks in the first set, and transmits ‘0’ by evicting the blocks in second set.
The spy probes both sets and deciphers the bit. Without loss of generality,
each group in single/multiple-group attacks can include multiple cache sets.

For round-robin channel attacks, the spy and trojan take turns in accessing
the cache. For parallel protocols, the spy and trojan operate simultaneously,
where the spy probes at a high frequency and the trojan evicts multiple times
for a bit to make sure that spy infers the information covertly.

6.2 Stress Test

To test the performance of PrODACT when run alongside cache-intensive
application, we run stress tests with single-group round-robin cache timing
channel and PrODACT using a micro-benchmark with high memory access
intensity. The micro-benchmark repeatedly keeps allocating different sizes of
memory blocks and frees them in order to create high memory access intensity.

16 Hongyu Fang et al.

The size of memory lines allocated by micro-benchmark ranges from 1MB to 4
MB which is significantly larger than L1 and L2 caches themselves. We measure
the effectiveness of PrODACT by observing the bit error rate of cache timing
channels caused by our prefetch-based defense mechanism.

6.3 Benign Workloads

To evaluate the influence PrODACT has to benign workloads, we test PrO-
DACT on both cache-intensive[26] and non-cache-intensive workloads from
SPEC2006[22] benchmarks. We mix the cache-intensive and non-cache-intensive
workloads, with each workload running on individual cores. Each pair of be-
nign workloads are analyzed by trigger pattern recognizer and the number
of counter switches are computed in sliding windows with duration of 1 sec-
ond. We record the maximum number of switches that happen during this one
second interval.

7 Evaluation

7.1 Analysis on Cache Timing Channel

(a) Single-Group, Round-robin Attack. We record the spy’s observed cache
latencies with and without obfuscation by PrODACT. The estimated con-
ditional probability densities of spy’s cache latencies are shown in Figure 8.
When there is no obfuscation (as shown in Figure 8a), the measured latencies
for bit ‘0’ and ‘1’ transmissions are significantly distinguishable. Therefore,
the spy can easily pick a threshold equal to the mean of all observations to
decipher bits.

With PrODACT enabled, Figure 8b shows that the estimated conditional
probability densities change significantly. Specifically, the latency distributions
of bit ‘0’ and bit ‘1’ overlap significantly, so that there is no clear boundary
to separate them. With the thresholding-based detection mechanism, the bit
error rate for the spy is as high as 53%, which practically disables any com-
munication. We note that spy and trojan can transmit predetermined symbol
sequences to reveal these distributions, and find an optimum threshold. Even
if this is the case, our experiments show that the lowest achievable error rate
is 37%, which is still too high for any practical communication.

(b) Multiple-Group Round-robin Attack. We implement a two-group round-
robin attack where we assume that trojan evicts the first group when tran-
simitting bit ‘1’ and the second group when transmitting bit ‘0’. In the spy’s
probe phase, it observes two different latencies from the two cache set groups.
We visualize spy’s observations in a 2-D plots shown in Figure 9. The hori-
zontal axis is the observed latency for the first group and the vertical axis is
the observed latency for the second group. Figure 9a shows the spy’s cache
latencies during the attack. When bit ‘0’ is transmitted, the trojan evicts spy’s

PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels 17

0 500 1000 1500 2000
Measured Latency (cycle)

0.00

0.02

0.04

0.06

0.08

Pr
ob

ab
ilit

y
De

ns
ity bit '0' bit '1'

(a) Attack

0 500 1000 1500 2000
Measured Latency (cycle)

0.000

0.002

0.004

0.006

0.008

0.010

Pr
ob

ab
ilit

y
De

ns
ity bit '0' bit '1'

(b) With PrODACT

Fig. 8: Conditional probability densities of spy’s cache latency in single-group,
round-robin attack

0 500 1000 1500 2000 2500
First Group Latency (cycle)

0

500

1000

1500

2000

2500

Se
co

nd
 G

ro
up

 L
at

en
cy

 (c
yc

le
)

bit '0' bit '1'

(a) Attack

0 500 1000 1500 2000 2500
First Group Latency (cycle)

0

500

1000

1500

2000

2500

Se
co

nd
 G

ro
up

 L
at

en
cy

 (c
yc

le
)

bit '0' bit '1'

(b) With PrODACT

Fig. 9: Spy’s cache latencies in two-group, round-robin attack

memory lines in the second group and let those in the first group to remain in
the cache. So the spy observes a higher latency for the second group of cache
blocks, and a low latency for the first group. The converse effect is observed
when bit ‘1’ is transmitted. Due to the difference in latency bands between
these two cache set groups under different bit transmissions, the spy could
easily find a decision boundary to separate the latency bands and decode the
secret bits.

With PrODACT, the spy observes about four cache misses on each cache
set regardless of the bit transmitted. There does not exist a clear decision
boundary for bit ‘0’ and ‘1’ as seen in figure 9b. If the spy forcibly applies the
decision boundary approach, the bit error rate would be as high as 35%.

(c) Single-group, Parallel Attack We note that the decoding of parallel proto-
cols is slightly more difficult than round-robin protocols since the boundaries

18 Hongyu Fang et al.

0 500 1000 1500 2000 2500
Measured Latency (cycle)

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y
De

ns
ity bit '0' bit '1'

(a) Attack

0 500 1000 1500 2000 2500
Measured Latency (cycle)

0.000

0.002

0.004

0.006

0.008

0.010

Pr
ob

ab
ilit

y
De

ns
ity bit '0' bit '1'

(b) With PrODACT

Fig. 10: Conditional Probability densities of spy’s cache latencies in single-
group, parallel attack

0 500 1000 1500 2000 2500
First Group Latency (cycle)

0

500

1000

1500

2000

2500

Se
co

nd
 G

ro
up

 L
at

en
cy

 (c
yc

le
)

bit '0' bit '1'

(a) Attack

0 500 1000 1500 2000 2500
First Group Latency (cycle)

0

500

1000

1500

2000

2500

Se
co

nd
 G

ro
up

 L
at

en
cy

 (c
yc

le
)

bit '0' bit '1'

(b) With PrODACT

Fig. 11: Spy’s cache latencies in two-group, parallel attack

between contiguous bits may overlap. A practical way is to have the spy record
the latencies, and only keep the values corresponding to the majority of rela-
tive latency observations. In Figure 10a, we plot the spy’s measured latencies
for bit ‘0’ and ‘1’ respectively. It is straightforward for the spy to find the
threshold that equals to the mean of all observations for decoding bits. Fig-
ure 10b shows that PrODACT disrupts this cache timing channel by making
the conditional probability densities of bit ‘0’ and ‘1’ to be heavily overlapping.
The spy’s corresponding bit error rate for bit reception would be 56% if the
mean of all observations is chosen as the threshold.

(d) Multiple-group, Parallel Attack The decoding strategy for multiple-group
parallel attack is similar to single-group, parallel attack. Once the bit bound-
ary is found, the spy can decode every bit based on the majority of relative

PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels 19

observations. We plot the spy’s latency in Figure 11a. The error rate is 0%
without obfuscation.Figure 11b shows that some of the triangle-marked points
(bit ‘0’) shift to the right half of the plane while many circle-marked points (bit
‘1’) move to the left half when PrODACT is activated. The decision boundary
works with 70% error rate (or 30% error rate if inverse logic is applied), which
prevents any feasible cache timing channel.

7.2 Analysis on Benign Applications

As discussed in Section 5, PrODACT only obfuscates the access latencies when
suspicious behaviors are detected by our trigger pattern recognizer. When
there is a A→B and B→A evict pattern, the counter in trigger pattern rec-
ognizer would switch. If the number of counter switches for a pair of processes
is larger than a threshold, PrODACT would issue prefetch requests to L1 cache
and disrupt any potential timing channels. As shown in Table 2, the largest
number of counter switches per second for benign workload pairs is less than
40, while we observe at least 1,000 switches per second for all of the realis-
tic timing channels studied in our work. Because of this huge gap between
benign workloads and attacks, we note that the threshold separating the mali-
cious timing channels and benign applications can be set easily. A 100 counter
switches/second can be a conservative threshold to make sure that no benign
application would be disrupted by PrODACT, while all of the realistic cache
timing channels are correctly captured.

Table 2: Maximum number of switches/second observed in highly cache-
intensive benchmarks.

Benchmark Max. number of switches / second
GemsFDTD, hmmer, xalancbmk, namd 6
bzip2, gobmk, h264ref, namd 25
bzip2, gobmk, sjeng, mcf 34
bzip2, gobmk, sjeng, specrand 26

7.3 Evaluation of Stress Test

The performance of PrODACT running alongside cache-intensive applications
is shown in Figure 12. The x -axis is the size of memory blocks being accessed by
micro-benchmark. The y-axis shows bit error rate (measured as the percentage
of bits received incorrectly or not received at all). The mean and standard
deviation of bit error rates are observed for round-robin single-group cache
timing channels. The average bit error rates are all above 40%. The standard
deviation slightly increase when the number of memory blocks accessed by
micro-benchmark increases. The lowest bit error rate that we have observed is

20 Hongyu Fang et al.

1M 2M 4M 8M 16M
Access Memory Size

0%

25%

50%

75%

100%

Bi
t E

rro
r R

at
e

Fig. 12: Bit Error Rates of Cache Timing Channels when run alongside back-
ground noise (using a micro-benchmark) with different memory access levels.

0.0 0.2 0.4 0.6 0.8 1.0
Ratio of Obfuscated Bit

0.0

0.1

0.2

0.3

0.4

0.5

Er
ro

r R
at

e

KNN (k=4) KNN (k=6) KNN (k=8) Naive Classification

Fig. 13: Error rates of different classification techniques with varying fractions
of obfuscated bits

37%, which is still sufficient to obfuscate any communication. In general, the
cache timing channel could still be successfully mitigated by PrODACT when
memory bandwidth is severely occupied.

7.4 Case Study: Defense against Smarter Spy

As sophisticated adversaries, the spy and trojan may try to learn the latency
distribution under obfuscation and manage to recover their communication.
In this subsection, we are going to demonstrate that even an advanced clas-
sification algorithm cannot recover the cache timing channel with PrODACT
deployed effectively.

For illustration, we will show adversaries that launch a sophisticated attack
using multi-group, round-robin protocol. In this attack scenario, the trojan
transmits predetermined symbol sequences so that the spy is able to collect
data sets of latency observations labeled with bit ‘0’ or ‘1’. Now the spy can
leverage the latency data sets to decode bits even if the latency observations
are obfuscated. Specifically, the spy can formulate the decoding process as a
classical classification problem using machine learning approaches. K-nearest
neighbors (KNN) [18] is an efficient algorithm for this type of scenario, and we
assume that the spy leverage this algorithm to classify bits. For a new observa-
tion, the KNN algorithm computes its distance to all labeled observations and
picks the K closest observations among them. It classifies the new observation
using the majority of these K closest neighbors.

PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels 21

In this experiment, we activate PrODACT in a probabliistic way such that
only a fraction of the bits (a tunable parameter) would be obfuscated. We
perform 1000 experiments to test the bit error rate using KNN (K = 4, 6, 9),
as well as the naive decision boundary-based classification we discussed in Sec-
tion 7.1. The sample mean of bit error rates is recorded for every fraction. In
Figure 13, with all of the bits obfuscated, the naive decision boundary leads
to 35% bit error. The KNN algorithm with relatively low K value (K=4) im-
proves the communication quality slightly compared to the naive classification,
but the error rate is still as high as 25%, which is still sufficiently noisy to cor-
rectly decipher bits. The KNN algorithms with higher K value is worse than
the naive classification because the two sets of samples are mixed significantly.
In general, the error rate is still high enough to stop the information leakage
even with smarter spy.

Figure 13 also shows that it is not necessary to obfuscate every bit. In fact,
to make the cache timing channel suffer from 20% bit error rate, enabling
PrODACT for 60% of the bits is sufficient. We note that the system admin-
istrators could tune the corresponding obfuscation rate to effectively trade-off
system security and memory bandwidth overheads.

8 Discussion

In this section, we will discuss the extension of PrODACT for flush+reload
attacks with a relatively small change in our design. Later, we will discuss how
to defeat adversaries who try to evade detection by lowering their bandwidths.

8.1 Flush+Reload Attack

In contrast to prime+probe attack that rely on conflict misses, flush+reload
attack exploit clflush command to evict memory lines of victim/trojan. During
the flush phase, the spy flushes the memory lines using clflush command and
waits. Then, the trojan encodes bit ‘1’ by accessing the flushed memory lines,
and encodes bit ‘0’ by stay idle. During the reload phase, the spy reloads all
of the flushed memory lines and measures the cache access latency. To detect
flush+reload attack, we record the addresses of flushed memory lines (similar
to recording the replaced conflict memory addresses in prime+probe). The
clflush commands and the conflict memory address loads by the spy or trojan
would be seen alternatively if there is a flush+reload-based timing channel.
To extract this pattern, we modify the counter in trigger pattern recognizer to
make it increase if we observe a clflush command and decrease when a flushed
memory line suffers from cache miss. After detecting a flush+reload attack, the
prefetcher brings back memory lines to make spy suffer from the same number
of cache misses regardless of trojan’s activity in the cache. With this rela-
tively small modification to PrODACT, our design could successfully obfus-
cate flush+reload timing channels. We note that the trigger pattern recognizer

22 Hongyu Fang et al.

for flush+reload attack and prime+probe attack can be run simultaneously as
well.

8.2 Low Bandwidth Timing Channels

Fortunately, our PrODACT design offers flexible granularity of monitoring by
providing the capability to adjust the thresholds for timing channel detec-
tion. For a low bandwidth timing channel, the trojan→ spy and spy→ trojan
eviction would still appear in an alternating pattern. To detect such low band-
width timing channels, we could lower or remove the threshold in our filter
during trigger pattern recognition. While this may produce more processes for
further analysis, low bandwidth channels could be effectively detected from
further analysis by the trigger recognizer module.

9 Related Work

Side and covert channels have been implemented on various types of hardware
in a number of ways. To name a few, storage [15,16], power analysis [30,
30,14,9,44], program execution [35,60] or access latency [57,1,56,19,10,27]
are among the prominently studied information leakage channels. In many
such channels, the adversary can reveal secrets about sensitive processes or
endanger system security without leaving any trace. Prior works have proposed
counter strategies for power and storage channels through memory safety and
inspection [21,8,45,42,47,43]. For timing channels, the access time directly
influences the performance of processes. Techniques such as injecting noise
may lead to severe performance degradation of all running processes. Among
all of the timing channels, cache timing channels are notorious because they
can exploit numerous cache sets with relative ease.

Cache side- and covert timing channels have been demonstrated on real
hardware in several prior studies [33,28,3,4]. To detect and prevent these cache
timing channels, solutions have been proposed in [10,11,39,55]. CC-hunter [11]
proposes a generic framework for cache covert timing channel detection us-
ing autocorrelation between cache conflict misses. Chiapetta et al. [12] and
HexPads [39] leverage performance counters to correlate trojan and spy’s ac-
tivities for detection. ReplayConfusion [55] records and replays cache access
traces from the trojan and spy and detects cache timing attacks based on
differences of cache misses. Most of these works are aimed at detecting cache
timing channels.

A number of hardware mitigation schemes have been proposed to defend
against the cache timing channel attacks. For L1 cache timing attack, Bao et
al. [5] explore the implication of faster 3D integrated caches to perform low
cost obfuscation. CATalyst [31] propose a secure cache partition for security-
sensitive application to access secretive data. This mechanism is limited to pro-
tect voluntary victim processes that utilize the secure partition. SecDCP [49]

PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels 23

performs dynamic cache partition on different security domains. However, it
suffers from scalability issues due to limited number of cache partitions. Mit-
igation mechanisms that modify cache line replacement algorithms such as
SHARP [54] and RIC [29] influence all applications and may cause consider-
able cache performance degradations.

Fuchs et al. [20] propose a disruptive prefetching scheme that utilizes ex-
isting prefetch policies to pollute caches. They also propose the set balancing
mechanism to bring random addresses on every other cache set for each cache
replacement to confuse the spy. This approach only works for L1 caches, and
may largely reduce the inherent cache performance for benign applications.
Differently, PrODACT can handle multiple timing channel variants effectively
regardless of the number of cache blocks used in communication. Our proposed
mechanism also has less performance impact due to the prefetching on targeted
cache sets.

10 Conclusion

In this article, we propose PrODACT, an efficient, scalable and low-cost solu-
tion to prevent information leakage through cache timing channels. PrODACT
analyzes the conflict misses in shared caches, and targets the cache sets that are
likely to be exploited by malicious processes. Hardware prefetchers are lever-
aged to obfuscate cache accesses on suspicious cache sets. PrODACT retrieves
back the cache blocks owned by trojan and spy to obfuscate spy’s observation
using cache latencies. We evaluate using several cache timing channel proto-
cols. With PrODACT, we observe that the cache timing channels suffer an
average 50% bit error rate (with minimum 30%) which makes it very hard or
impossible for spy to decipher any useful information.

11 Acknowledgement

This material is based on work supported by the US National Science Founda-
tion under CAREER Award CCF- 1149557 and CNS-1618786, and Semicon-
ductor Research Corp. (SRC) contract 2016-TS-2684. Any opinions, findings,
conclusions, or recommendations expressed in this article are those of the au-
thors, and do not necessarily reflect those of the NSF or SRC.

References

1. Murugappan Alagappan, Jeyavijayan JV Rajendran, Miloš Doroslovački, and Guru
Venkataramani. Dfs covert channels on multi-core platforms. In 25th IFIP/IEEE In-
ternational Conference on Very Large Scale Integration (VLSI-SoC), 2017.

2. Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technology
for cpu based attestation and sealing. In Proceedings of the 2nd international workshop
on hardware and architectural support for security and privacy, volume 13, 2013.

24 Hongyu Fang et al.

3. A. Andreou, A. Bogdanov, and E. Tischhauser. Cache timing attacks on recent mi-
croarchitectures. In IEEE International Symposium on Hardware Oriented Security
and Trust, 2017.

4. Alexandres Andreou, Andrey Bogdanov, and Elmar Tischhauser. Cache timing attacks
on recent microarchitectures. In Hardware Oriented Security and Trust (HOST), 2017
IEEE International Symposium on. IEEE, 2017.

5. C. Bao and A. Srivastava. 3D integration: New opportunities in defense against cache-
timing side-channel attacks. In IEEE International Conference on Computer Design,
2015.

6. Naomi Benger, Joop Van de Pol, Nigel P Smart, and Yuval Yarom. ooh aah... just a
little bit: A small amount of side channel can go a long way. In International Workshop
on Cryptographic Hardware and Embedded Systems. Springer, 2014.

7. Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R Hower, Tushar Krishna, Somayeh Sardashti,
et al. The gem5 simulator. ACM SIGARCH Computer Architecture News, 2011.

8. Marco Bucci, Luca Giancane, Raimondo Luzzi, and Alessandro Trifiletti. Three-phase
dual-rail pre-charge logic. In International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2006.

9. Abhishek Chakraborty, Ankit Mondal, and Ankur Srivastava. Correlation power anal-
ysis attack against stt-mram based cyptosystems. IACR Cryptology ePrint Archive,
2017:413, 2017.

10. Jie Chen and Guru Venkataramani. An algorithm for detecting contention-based covert
timing channels on shared hardware. In Proceedings of the Third Workshop on Hardware
and Architectural Support for Security and Privacy, page 1. ACM, 2014.

11. Jie Chen and Guru Venkataramani. Cc-hunter: Uncovering covert timing channels on
shared processor hardware. In IEEE/ACM International Symposium on Microarchi-
tecture, 2014.

12. Marco Chiappetta, Erkay Savas, and Cemal Yilmaz. Real time detection of cache-based
side-channel attacks using hardware performance counters. Applied Soft Computing,
pages 1162 – 1174, 2016.

13. George Chrysos. Intel® xeon phi coprocessor-the architecture. Intel Whitepaper, 176,
2014.

14. Christophe Clavier, Damien Marion, and Antoine Wurcker. Simple power analysis on
aes key expansion revisited. In International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2014.

15. Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Pointguard tm: protect-
ing pointers from buffer overflow vulnerabilities. In Proceedings of the 12th conference
on USENIX Security Symposium, volume 12, pages 91–104, 2003.

16. Crispin Cowan, F Wagle, Calton Pu, Steve Beattie, and Jonathan Walpole. Buffer over-
flows: Attacks and defenses for the vulnerability of the decade. In DARPA Information
Survivability Conference and Exposition, 2000. DISCEX’00. Proceedings, volume 2,
pages 119–129. IEEE, 2000.

17. Department of Defense Standard. Trusted Computer System Evaluation Criteria. US
Department of Defense, 1983.

18. Richard O Duda, Peter E Hart, and David G Stork. Pattern classification. Wiley, New
York, 1973.

19. Dmitry Evtyushkin and Dmitry Ponomarev. Covert channels through random number
generator: Mechanisms, capacity estimation and mitigations. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016.

20. Adi Fuchs and Ruby B. Lee. Disruptive prefetching: Impact on side-channel attacks
and cache designs. In ACM International Systems and Storage Conference, 2015.

21. Tim Güneysu and Amir Moradi. Generic side-channel countermeasures for reconfig-
urable devices. In International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2011.

22. John L Henning. Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, 34(4):1–17, 2006.

23. Fan Yao Miloš Doroslovački Hongyu Fang, Sai Santosh Dayapule and Guru Venkatara-
mani. Prefetch-guard: Leveraging hardware prefetchers to defend against cache timing

PrODACT: Prefetch-Obfuscator to Defend Against Cache Timing Channels 25

channels. In Hardware-Oriented Security and Trust, 2009. HOST’09. IEEE Interna-
tional Workshop on. IEEE, 2018.

24. Casen Hunger, Mikhail Kazdagli, Ankit Rawat, Alex Dimakis, Sriram Vishwanath, and
Mohit Tiwari. Understanding contention-based channels and using them for defense. In
IEEE International Symposium on High Performance Computer Architecture, 2015.

25. Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Cross processor cache attacks.
In ACM on Asia Conference on Computer and Communications Security, 2016.

26. Aamer Jaleel. Memory characterization of workloads using instrumentation-driven sim-
ulation. Web Copy: http://www. glue. umd. edu/ajaleel/workload, 2010.

27. Zhen Hang Jiang, Yunsi Fei, and David Kaeli. A novel side-channel timing attack on
gpus. In Proceedings of the on Great Lakes Symposium on VLSI 2017, pages 167–172.
ACM, 2017.

28. M. Kayaalp, D. Ponomarev, N. Abu-Ghazaleh, and A. Jaleel. A high-resolution side-
channel attack on last-level cache. In ACM/EDAC/IEEE Design Automation Confer-
ence, 2016.

29. Mehmet Kayaalp, Khaled N. Khasawneh, Hodjat Asghari Esfeden, Jesse Elwell, Nael
Abu-Ghazaleh, Dmitry Ponomarev, and Aamer Jaleel. RIC: Relaxed inclusion caches
for mitigating llc side-channel attacks. In ACM Design Automation Conference, 2017.

30. Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Annual
International Cryptology Conference. Springer, 1999.

31. Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Carlos Rozas, Gernot Heiser, and
Ruby B Lee. Catalyst: Defeating last-level cache side channel attacks in cloud comput-
ing. In IEEE International Symposium on High Performance Computer Architecture,
2016.

32. Fangfei Liu and Ruby B Lee. Random fill cache architecture. In IEEE/ACM Interna-
tional Symposium on Microarchitecture. IEEE, 2014.

33. Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. Last-level cache
side-channel attacks are practical. In Symposium on Security and Privacy, 2015.

34. Clémentine Maurice, Manuel Weber, Michael Schwarz, Lukas Giner, Daniel Gruss,
Carlo Alberto Boano, Stefan Mangard, and Kay Römer. Hello from the other side:
Ssh over robust cache covert channels in the cloud. In Network and Distributed System
Security Symposium, 2017.

35. Alireza Nazari, Nader Sehatbakhsh, Monjur Alam, Alenka Zajic, and Milos Prvulovic.
Eddie: Em-based detection of deviations in program execution. In Proceedings of the
44th Annual International Symposium on Computer Architecture. ACM, 2017.

36. K. J. Nesbit and J. E. Smith. Data cache prefetching using a global history buffer.
IEEE Micro, 2005.

37. Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures:
the case of aes. In Cryptographers Track at the RSA Conference. Springer, 2006.

38. Dan Page. Partitioned cache architecture as a side-channel defence mechanism. IACR
Cryptology ePrint archive, 2005.

39. Mathias Payer. Hexpads: A platform to detect ”stealth” attacks. In International
Symposium on Engineering Secure Software and Systems, 2016.

40. Colin Percival. Cache missing for fun and profit, 2005.
41. Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off

of my cloud: exploring information leakage in third-party compute clouds. In Conference
on Computer and communications security, 2009.

42. Adi Shamir. Protecting smart cards from passive power analysis with detached power
supplies. In International Workshop on Cryptographic Hardware and Embedded Sys-
tems. Springer, 2000.

43. Jianli Shen, Guru Venkataramani, and Milos Prvulovic. Tradeoffs in fine-grained heap
memory protection. In Proceedings of the 1st workshop on Architectural and system
support for improving software dependability. ACM, 2006.

44. Arvind Singh, Monodeep Kar, Anand Rajan, Vivek De, and Saibal Mukhopadhyay.
Integrated all-digital low-dropout regulator as a countermeasure to power attack in
encryption engines. In Hardware Oriented Security and Trust (HOST), 2016 IEEE
International Symposium on. IEEE, 2016.

26 Hongyu Fang et al.

45. Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. A dynamic and differential
cmos logic with signal independent power consumption to withstand differential power
analysis on smart cards. In Solid-State Circuits Conference, 2002. ESSCIRC 2002.
Proceedings of the 28th European. IEEE, 2002.

46. US Department of Defense. Trusted computer system evaluation criteria. Department
of Defense Standards, 1983.

47. Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos Prvulovic. Memtracker:
An accelerator for memory debugging and monitoring. ACM Transactions on Archi-
tecture and Code Optimization (TACO), 6(2):5, 2009.

48. Guru Prasadh V Venkataramani. Low-cost and efficient architectural support for cor-
rectness and performance debugging. Georgia Institute of Technology, 2009.

49. Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C Myers, and G Edward Suh.
Secdcp: secure dynamic cache partitioning for efficient timing channel protection. In
IEEE Design Automation Conference, 2016.

50. Zhenghong Wang and Ruby B Lee. Covert and side channels due to processor architec-
ture. In Annual Computer Security Applications Conference, 2006.

51. Zhenghong Wang and Ruby B Lee. New cache designs for thwarting software cache-
based side channel attacks. In ACM SIGARCH Computer Architecture News. ACM,
2007.

52. Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-space: high-speed
covert channel attacks in the cloud. In USENIX Security Symposium, 2012.

53. Yunjing Xu, Michael Bailey, Farnam Jahanian, Kaustubh Joshi, Matti Hiltunen, and
Richard Schlichting. An exploration of l2 cache covert channels in virtualized environ-
ments. In ACM workshop on Cloud computing security workshop, 2011.

54. Mengjia Yan, Bhargava Gopireddy, Thomas Shull, and Josep Torrellas. Secure
hierarchy-aware cache replacement policy (sharp): Defending against cache-based side
channel atacks. In IEEE International Symposium on Computer Architecture, 2017.

55. Mengjia Yan, Yasser Shalabi, and Josep Torrellas. ReplayConfusion: Detecting cache-
based covert channel attacks using record and replay. In IEEE International Symposium
on Microarchitecture, 2016.

56. Fan Yao, Miloš Doroslovački, and Guru Venkataramani. Are coherence protocol states
vulnerable to information leakage? In 24th IEEE International Symposium on High-
Performance Computer Architecture, 2018.

57. Fan Yao, Guru Venkataramani, and Miloš Doroslovački. Covert timing channels ex-
ploiting non-uniform memory access based architectures. In Proceedings of the on Great
Lakes Symposium on VLSI 2017. ACM, 2017.

58. Yuval Yarom and Naomi Benger. Recovering openssl ecdsa nonces using the flush+
reload cache side-channel attack. IACR Cryptology ePrint Archive, 2014, 2014.

59. Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution, low noise, l3 cache
side-channel attack. In USENIX Security Symposium, 2014.

60. Baki Yilmaz, Robert Callan, Milos Prvulovic, and A Zajic. Quantifying information
leakage in a processor caused by the execution of instructions. In MILCOM 2017 -
2017 IEEE Military Communications Conference, pages 255–260, 10 2017.

61. Xiaokuan Zhang, Yuan Xiao, and Yinqian Zhang. Return-oriented flush-reload side
channels on arm and their implications for android devices. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. ACM, 2016.

	Introduction
	Background
	Threat Model and Assumptions
	Motivation
	PrODACT Design
	Experiment Setup
	Evaluation
	Discussion
	Related Work
	Conclusion
	Acknowledgement

