
J. Parallel Distrib. Comput. 96 (2016) 121–133
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

enDebug: A hardware–software framework for automated energy
debugging
Jie Chen, Guru Venkataramani ∗
The George Washington University, Washington, DC, United States

h i g h l i g h t s

• We explore the design of a hardware–software cooperative energy profiler.
• We design automated recommendation system using the guided genetic algorithm to explore energy optimizations in the program code.
• Our guided genetic algorithm can substantially reduce program energy on top of the highest GNU C compiler settings.

a r t i c l e i n f o

Article history:
Received 13 June 2015
Received in revised form
1 February 2016
Accepted 2 May 2016
Available online 24 May 2016

Keywords:
Energy profiling
Energy optimization
Genetic programming

a b s t r a c t

Energy consumption by software applications is one of the critical issues that determine the future of
multicore software development. Inefficient software has been often cited as a major reason for wasteful
energy consumption in computing systems. Without adequate tools, programmers and compilers are
often left to guess the regions of code to optimize, that results in frustrating and unfruitful attempts at
improving application energy. In this paper, we propose enDebug, an energy debugging framework that
aims to automate the process of energy debugging. It first profiles the application code for high energy
consumption using a hardware–software cooperative approach. Based on the observed application energy
profile, an automated recommendation system that utilizes artificial selection genetic programming is
used to generate the energy optimizing program mutants while preserving functional accuracy. We
demonstrate the usefulness of our framework using several Splash-2, PARSEC-1.0 and SPEC CPU2006
benchmarks, where we were able to achieve up to 7% energy savings beyond the highest compiler
optimization (including profile guided optimization) settings on real-world Intel Core i7 processors.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

Innovations in computer architecture and semiconductor
technologies have increased the computational performance of
systems exponentially. At the same time, energy cost incurred by
software applications on servers and network devices has grown
rapidly resulting in the need to adopt energy-aware software
development methodologies beyond just relying on dynamic,
hardware-level techniques. Addressing energy fundamentally at
the application source code level yields much higher benefits
by tuning the source code for energy, and saves the cost of
dynamically deploying energy saving mechanisms at runtime.

In 2014, energy is projected to be a major expense for
most major data centers, and is estimated to account for up
to 3% of world’s total energy consumption [34]. To highlight

∗ Corresponding author.
E-mail addresses: jiec@gwu.edu (J. Chen), guruv@gwu.edu (G. Venkataramani).

http://dx.doi.org/10.1016/j.jpdc.2016.05.005
0743-7315/© 2016 Elsevier Inc. All rights reserved.
the importance of application energy and its impact on data
service efficiency, companies like eBay have online dashboards for
the users to track energy consumption per transaction in their
servers [11]. Such efforts clearly illustrate the motivation of major
software giants in removing the inefficiencies in their applications,
thatwill eventually only lead to higher energy bills without driving
up the revenue or performance. A plethora of solutions ranging
from virtualization to application aware power management has
been proposed to reduce system energy footprint. While such
techniques are useful, a more effective solution is to incorporate
energy smartness into the software itself such that the application
performance can be aligned more closely with revenue. Being able
to automate the process of energy debugging would be vital to the
future of energy-aware software development.

Conventionally, execution time of applications is a commonly
adopted proxy measure for software developers to identify the
energy bottlenecks in their program code. Recent studies by
Hao et al. [17] have shown that the execution time and energy
consumption do not have a strong correlation because of several

http://dx.doi.org/10.1016/j.jpdc.2016.05.005
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2016.05.005&domain=pdf
mailto:jiec@gwu.edu
mailto:guruv@gwu.edu
http://dx.doi.org/10.1016/j.jpdc.2016.05.005


122 J. Chen, G. Venkataramani / J. Parallel Distrib. Comput. 96 (2016) 121–133
factors such as (1) multiple power states—at two different
frequencies f1 and f2, even if the execution times are the same,
the energy drawn will be different, (2) asynchronous design of
system and API calls—when the application sends data over the
network, the data is handled by the OS which results in the
corresponding data-sending application not being charged for the
data transmission time. These necessitate a dedicated framework
for energy debugging.

Further, the application energy profile and optimizations
are often specific to the processor architecture and hardware
configurations. That is, a set of code optimizations that improve
energy in one processor configuration does not necessarily
improve the energy in other platforms. Without having a sound
understanding of the underlying hardware details, software-only
energy accounting often ignores the numerous and complex
interactions between shared hardware resources and overlapped
instruction execution that occur during application runtime. To
overcome such problems, it is critical to debug the energy
consumption of applications through profiles generated on the
target architecture.

In this paper, we present enDebug, a hardware software coop-
erative framework that attributes energy consumption by applica-
tions to fine-grained regions of program code (say functions), and
utilizes an automated recommendation system to explore energy
improvements in the program code. In doing so, we enable the par-
ticipation of software developers and toolchains (such as compil-
ers and runtime) in energy-aware software development without
necessarily having them to rely on expensive runtime energy sav-
ing strategies.

We utilize mostly existing hardware support with minimal
modifications to accurately and efficiently gather energy-related
metrics in applications, and then use software support to compute
the energy. This two-step strategy provides better precision in
targeting code regions for energy optimization without having to
guess or resort to proxy measures.

Once the energy-expensive code regions are located, a genetic
programming-based automated recommendation system shall ex-
plore opportunities to improve application energy by performing
a set of mutations on the program code. In contrast to prior ap-
proaches [40], we adopt a guided1 version of genetic programming
that uses heuristics based on profiler feedback. This helps us to ef-
fectively apply processor- and workload-specific energy optimiza-
tions to the program code, and avoids having to deal unnecessarily
with the program versions that may not optimize energy. When
tested using the benchmarks from PARSEC-1.0 [3], Splash-2 [49]
and SPEC CPU2006 [43] suites using Intel Core i7 processors, we
were able to obtain up to 7% better energy savings (in Fluidani-
mate benchmark) over highest optimization settings (-O3 andwith
profile guided optimizations or PGO) in the GNU Compiler Collec-
tion [14].

The contributions of this paper are as follows:
• Wemotivate the need for application energy profiling, and pro-

pose enDebug that incorporates a hardware–software coopera-
tive profiler and an automated recommendation system to ex-
plore energy optimizations in the program code.

• We explore a fine-grained energy estimationmethodology that
is largely based on existing hardware support with minimal
additions to the hardware.

• We design an Artificial Selection Genetic Programming (ASGP)
algorithm that performs genetic mutation operations guided
through heuristics generated by the hardware profile. Our ASGP
algorithm explores several code mutation operations to reduce
energy on the program code regions identified by the energy
profiler.

1 We call this process as Artificial selection instead of natural (random) selection
used in most genetic programming algorithms.
Table 1
Energy and performance profile of functions in Splash-2 and PARSEC-1.0
benchmarks with 8 threads.

Benchmark Function % of Energy % of Time

Ocean relax 30.31% 15.02%
slave2 18.98% 30.30%
jacobcal2 14.47% 12.22%
laplacalc 12.68% 9.85%

Radiosity v_intersect 11.06% 6.60%
compute_diff_disc_formfactor 7.39% 14.07%
traverse_bsp 4.83% 5.53%
four_center_points 3.03% 5.06%

Bodytrack InsideError 25.38% 9.12%
Exec 19.20% 4.34%
EdgeError 18.53% 6.77%
ImageProjection 10.66% 3.67%

• We evaluate our framework using several code samples from
Splash-2, PARSEC-1.0 and SPEC CPU2006 benchmark suites.
Our results indicate that we are able to achieve up to 7%
additional energy savings beyond the highest optimization
settings enabled in GNU Compiler Collection [14].

2. The need for energy debugger

With increasingly complex interactions between instruction
execution and the associated timing in the processor pipeline (due
to parallelism), execution time can no longer be considered a good
proxy for accurate energy measurement. To illustrate this effect,
we conduct experiments on several real-world applications from
Splash-2 [49] and PARSEC-1.0 [3] benchmark suites, where the
energy consumption characteristics of individual functions dras-
tically differ from their corresponding execution time profiles.

Table 1 shows the energy and execution time profiles on
several applications with 8 threads running on 8 cores. All of our
experiments were done using SESC [36], a cycle-accurate, multi-
core architecture simulator that is integrated with McPAT power
model [29]. Table 2 shows the processor configuration details as
input to the McPAT power model.

1. Ocean: relax() consumes 30.31% of the total energy but only
accounts for 15.02% of the total execution time. On the other
hand, slave2() accounts for 30.30% of execution time, but
only consumes 18.98% energy. Upon further examination, we
observed highly overlapped execution of double-word arithmetic
instructions in relax() led to higher energywith lower execution
time. However, slave2() had higher numbers of branch and
load/store instructions leading to longer execution time despite
consuming lower energy than relax().

2. Radiosity: v_intersect() consumes 11.06% of total energy
with only 6.60% of the total execution time, while com-
pute_diff_disc_formfactor() has 14.07% of the total execution
time with only 7.39% of the total energy. On a closer review,
we found that v_intersect() heavily used complex instructions
likemadd.d (that performmultiply–add of double word values)
leading to higher energy, while compute_diff_disc_formfactor()
had a lot of load operations leading to higher execution time de-
spite consuming lower energy than v_intersect().

3. Bodytrack: The top four energy consuming functions account
for 74% of the total energy, but only account for about 24% of
the total execution time. About 64% execution time is actually
spent on lock and barrier synchronizations implemented by
pthread_cond_wait() that actually puts threads into sleep
without consuming much energy.

The examples above clearly show that a debugging framework
is necessary to better understand the energy profile of applications
beyond just performance, and use this profile information for
energy optimization.



J. Chen, G. Venkataramani / J. Parallel Distrib. Comput. 96 (2016) 121–133 123
Table 2
Processor configuration and power model.

Processor 3 GHz, 8-core CMP; 4-wide issue/retire, out-of-order execution;
8-entry instruction queue; 4096-entry BTB, hybrid branch predictor;
176-entry ROB; 64-entry LD/ST queues; 48-entry scheduler;
90 floating point registers; 96 integer registers;

Memory 32 kB, 4-way, I-cache; 32 kB, 4-way, D-cache; 256 kB, 8-way, private
Sub-system L2 cache; 16 MB, 16-way, shared L3 cache; 64-entry ITLB/DTLB;

Interconnect Shared bus below private L2 caches

Power model McPAT, 32 nm, Vdd = 1.25 V
Are current hardware energymeters sufficient?Modern high per-
formance processor architectures [24,37] have begun integrating
hardware energy meters that can be read through software driver
interfaces. For example, starting from Sandy Bridge, Intel provides
a driver interface called RAPL (Running Average Power Limit) that
can let programmers periodically sample processor energy usually
at the granularity of a fewmilliseconds of program execution time.
While this is going to be a useful first step toward helping program-
mers to understand the processor energy consumption, it is still
far from providing them with a more practical feedback at a gran-
ularity that relates the processor energy consumption back to the
program source code.

3. Fine-grained energy profiling

To help compilers, runtime optimizers or even programmers
effectively apply the energy optimizations to the right code
regions, energy profile information is needed at the level of fine-
grained code, say functions or certain critical loop structures. We
note that the current hardware energy profiling infrastructure
such as RAPL interface [37] can provide energy information at
a granularity of several microseconds to a few milliseconds. To
bridge the gap between the current hardware support and the
fine-grained energy profile (needed to attribute energy back to
application source code), we undertake a two step strategy—
First, we build an energy model (regression) using certain well-
known hardware performance counters. Second, we show how
fine-grained energy for functions can be obtained using simple
hardware support and the energy regression model from the
first step. Essentially, our solution is able to estimate energy and
attribute them at the granularity of program functions without
requiring extensive hardware support.

We note that the first step (building the energy model) can
be done on many current processor platforms that have support
for hardware energy and performance counters (which can be
read using lightweight tools such as likwid [45]). However, the
second step of fine-grained profiling and attribution does not exist
in any modern processor platform to the best of our knowledge.
Therefore, to provide an accurate view of our energy profiler,
we implement the entire fine-grained energy profiling framework
using SESC [36], a cycle-accurate, out-of-order issue, multi-core
processor simulator in which we custom integrated the McPAT
energy model [29].

3.1. Energy model using performance counters

Current hardware support to measure energy and power
consumption [37] is at a very coarse granularity that cannot be
directly used by code optimizers. Therefore, to attribute energy
consumption to fine-grained regions of code (say functions), we
first build an energy model that estimates energy consumption
through regression on a set of hardware performance counters.

Prior works [21,33,22,10,9] have shown that linear regression
is an efficient solution to estimating processor energy with high
accuracy. The energy model builds a relationship between the
processor energy, denoted as E, and a set of key performance
metrics, denoted as P . Most modern processors have hardware
performance counters that can dynamically capture many critical
performance metrics made available through the performance
monitoring infrastructure. With this existing hardware support,
we build our energy model as follows: We choose a subset of
benchmarks from Splash-2 [49] and PARSEC-1.0 [3] to train our
energy model. In each benchmark run, for every 1 million cycle
windows, we gather CPU clock cycles, instruction count, L1 Data
cache access count, L2 cache access count, floating point operation
count through hardware performance counters. We also tabulate
the corresponding energy consumption within the observation
period from the energy counters. An alternative, but less efficient
approach is to use basic blocks as P as shown in our prior work [8],
which, nevertheless, requires training regression model over a
large number of parameters. Using the measured features, the
energy consumption E (in nanojoules) is estimated as a function
of the key performance metrics.

E = 1.347 ∗ CPUCycles + 0.484 ∗ InstCount
+ 0.867 ∗ L1DCacheAccess + 1.097 ∗ L2CacheAccess
+ 0.104 ∗ FloatOps.

A separate set of Splash-2 and PARSEC-1.0 benchmarks (non-
overlappingwith the training set) is used for testing and validation.
We calculate the relative error between the estimated core
energy and the ground-truth energy numbers for the core using
McPAT [29]. To assess the robustness of our trained energy model,
we adopt Ten-fold Cross-validation [28] method where 90% of
the samples are used as the training set and the remaining 10%
of them are used for validation. This step is repeated ten times
where a different validation set is selected during each time. In our
experiments, we found that the average cross-validation errors are
2.13%, and the worst-case absolute error to be less than 12%. To
calibrate the model on a different processor, the above modeling,
testing and validation steps should be performed again. Note that
our purpose of using the energy model is to identify fine-grained
functions that are energy-hungry, while measuring the whole
(end-to-end) programenergy consumption on a real processorwas
done using RAPL.

3.2. Attributing energy to program functions

To attribute energy back to the program source code, an
important question that needs to be answered is the granularity at
which energy should be attributed. Note that the program code can
be analyzed at different granularities, for example, instructions,
basic blocks, functions, or thewhole program.Attributing energy to
individual instructions and basic blocks is practically very difficult
because modern superscalar processors can execute multiple
instructions (and basic blocks) in an overlapped fashion. This
makes it very hard to accurately attribute energy back to each
of such entities. On the other hand, with the energy profile
information at larger granularities such as whole program level,



124 J. Chen, G. Venkataramani / J. Parallel Distrib. Comput. 96 (2016) 121–133
Fig. 1. Recording performance counters and PCs at function calls and returns.

Fig. 2. Storing performance counters and PCs to the hardware buffer.

we may not have meaningful feedback to effect code changes.
Therefore, we attribute energy to program functions, that already
have programmer-defined boundaries and have a more bounded
scope than the entire program (see Figs. 1 and 2).

To attribute the energy profiles to the corresponding functions,
during every function call, we record the (1) performance counters
from Section 3.1, (2) Program Counter (PC) at the caller site and
the (3) callee function address (that can be later attributed back
to program source code using well known tools such as GNU
addr2line utility [14]). Similarly, during function return, we also
record (1) the performance counters from Section 3.1, (2) the
PC at the return site and (3) the PC at the caller function after
return. At the end of the program execution, the corresponding
energy profiles of function fragments (due to possibly multiple
calls and returns between caller/callee pairs) are accumulated and
attributed back to individual functions in the program code.

We use a 16-entry hardware buffer to record the performance
counters and the PCs. The hardware buffer values are periodically
logged into a file that can later be analyzed further by software
modules. In particular, the logged values and the regression co-
efficients from Section 3.1 can be used to determine the energy
consumption by individual functions during program execution.
Since the hardware buffer is off the critical path, and has access la-
tency of 0.18 ns using Cacti 5.1 [25] (less than one CPU clock cycle
even on a 3 GHz processor), it is unlikely to adversely impact the
processor performance. We note that not all function calls are exe-
cuted through call instructions, for example, compilers may gener-
ate function calls using jmp instructions, e.g., virtual functions are
implemented using jump table in C++. In such cases, we can still
correctly identify functions by monitoring the execution of push
instructions (stack pushing operations) before jmp.

4. Automated recommendation system for energy optimiza-
tion

Once the profiler identifies the application code regions
(functions) that are behind high energy consumption, the next
logical step in energy debugging is to explore automated ways to
optimize energy. Frequently, this step lends substantial benefits in
large scale software development that involves a huge code base
and numerous input test samples.
To automate the process of energy optimization, we design
a genetic programming-based algorithm in our approach. This
algorithm uses artificial selection or guided mutation strategy to
create energy-improving program code mutants based on the
observed runtime profile.

In this section, we will first briefly describe the basics of
genetic programming, and then show the design of our algorithm
explaining why artificial selection is necessary.

4.1. Basics of genetic programming

Genetic programming (GP) [5] is the process of evolving
computer program code to inductively find preferable program
output given an input program. The process involves a series of
mutations (or code transformations) to the input program such
that we eventually arrive at a preferred output. Similar to animal
and plant species evolving through natural selection process, GP
applies a set of powerful genetic operators to randomly alter the
‘‘gene’’ (or code structure) in the program. These genetic operators
range from simple replication of the program code to random
variations on the inner parts of a program. Once the randomly
selected genetic operators are applied, GP breeds new mutants
that may or may not resemble the original program from which
they are mutated. GP usually tests if these new mutants are
qualified to remain in the evolving population using a fitness
test. The fitness test is defined by a function F which measures
the error distance between the mutant program output and
the preferred outcome. Examples of fitness tests include testing
for functional correctness (i.e., the mutant has the exact same
functional behavior as the original), performance improvement,
power reduction, or combinations of one or more of such factors. If
a mutant is deemed fit, it is usually retained and allowed to join
the evolution population (i.e., allowed to participate in the next
round/generation of mutations). The premise is that, by breeding
new programs from this dynamic pool, GP will find program
mutants that will ultimately have the preferred program output.

Note that fitness test is usually the most time consuming step
in the entire process of GP evolution. For example, if the fitness
test involves checking for functional correctness, a representative
range of possible input values have to be supplied to the program
to make sure that the original program and its mutant versions
behave alike on all of such representative inputs. As a result,
natural selection or unguided mutation could take several hours
to produce useful mutants, and is popularly dubbed as overnight
optimization [40].

4.2. Artificial selection genetic programming

To overcome the challenges associated with natural (or un-
guided, random) selection based approach, we propose artificial
(or guided) selection for genetic operator selection. In biological
terms, artificial selection (also known as Selective Breeding) refers
to the process of human-controlled mutation and breeding that
accelerates the evolution of preferable traits, instead of relying on
slow natural selection. In our approach, we apply a set of code
transformations guided by heuristics derived from program code
structure or runtime profile. Our fitness function expects to see
lesser energy consumption in the offspring than the parent, while
making sure that functional correctness is preserved on a range of
inputs. In this vein, we name our algorithm as Artificial Selection
Genetic Programming (ASGP, for short).

4.3. ASGP algorithm

As a first step, a control data dependency graph (or CDDG)
is used to represent the profiler-identified high energy program



J. Chen, G. Venkataramani / J. Parallel Distrib. Comput. 96 (2016) 121–133 125
functions. Algorithm1 shows howour CDDGs are constructed from
the program assembly code. Our graph construction algorithm
goes through every constituent basic block and builds a data
dependency subgraph for each of them starting from the very
last instruction (branch) and proceeding backwards until the first
instruction in the block by tracing the dependency of data values.
A directed edge from node A to node Bmeans that node A depends
on node B’s output to compute its own output. After constructing
data dependency subgraphs, our graph construction algorithmwill
connect all of the subgraphs based on control dependencies, that
is, each basic block’s branch node will be connected to all its target
nodes in other subgraphs.

Algorithm 1: CDDG construction algorithm
input : Assembly code of the profiler-identified function
output: A Graph G that shows data and control dependencies

//Construct data dependency subgraphs for every basic block;
foreach basic block in the identified function do

Create an empty set S;
//Go through instructions in reverse order;
foreach instruction in the basic block do

//This if-else only applies to instructions that has
destination operand;
if Operand_dst is not in S then

Create a new node with label Operand_dst;
Add Operand_dst to S;

else
Delete Operand_dst from the S;
Delete memory operands derived from Operand_dst
from S;

end
Include Opcode in the node labeled with Operand_dst;
foreach Operand_src in the instruction do

if Operand_src is not in S then
Create a new node with label Operand_src;
Add Operand_src to S;

end
Create a directed data dependency edge from
Operand_dst to Operand_src;

end
end

end

//Connecting sub-graphs through branch nodes;
foreach branch node (with branch Opcode) do

Locate all target nodes in the graph;
Create a control dependency edge from target nodes to this
branch node;

end

To further assist the ASGP algorithm, certain nodes in the CDDG
are annotated with runtime profile information. For example,
the branch nodes are annotated with the taken frequency (from
which branch taken vs. non-taken ratio can be derived). We note
that these annotations based on runtime information are simply
to guide our ASGP algorithm to make decisions in an informed
manner rather than arbitrary, random choices.

We note that instruction operands can be immediate, register,
or memory. Among these, memory-type operands need special
attention due to unknownmemory dependencies at compile time.
In several popular ISAs such as x86, data is read or stored into a
particular memory address by using different memory addressing
modes, such as direct displacement, register indirect, base indexed.
Note that registers are specifically used as base or index registers
as part of the calculation of memory address where data is read or
written. In order for CDDG to track the true dependencies between
two memory-type operands, we monitor for changes to the
registers that are used as base and/or index inmemory addressing.
For example, wemark that amemory-typeOperand_dst node from
instruction A depends on a memory-type Operand_src node from
instruction B only if all the memory address-related registers used
in both A and B do not get updated by any other instructions
between A and B. In other words, if there is any update to a
register used as an index/base in another instruction’s operand,
we do not establish dependency between the instructions A and
B. In addressing modes, such as memory indirect, where it is more
complex to resolve memory dependencies prior to runtime, we
chose to represent these operands as two separate nodes in CDDG.
To address situations where multiple operands might write to the
same memory location using different base and index registers
(memory aliasing problem that are usually unresolved prior to
runtime), our CDDG algorithm flags all of the instructions that
have memory operands as destinations. Our genetic programming
algorithm, ASGP, can use this as a guide to prevent reordering
of instructions past these instruction boundaries and potentially
avoid memory conflicts. Note that our fitness test acts as a safety
net, and will fail if ASGP unintentionally created any memory
conflicts.

Algorithm 2: Artificial Selection Genetic Programming
Algorithm

input : Original program (assembly)
output: Lesser energy consuming program mutants

Initialize the population with the original program code and
mutants derived using neutral transforms;
Run the initial mutants and obtain their energy consumption;
repeat

Randomly select one mutant from the evolution population
as parent;
Mutate using one or more genetic operators with triggering
heuristics;
Apply fitness test on the evolved mutant code;
if the mutant passes the fitness test then

Replace its parent in the evolution population;
else

Discard the mutant from the evolution population;
end
At every fifth generation, discard mutants with energy
greater than original program;

untilmaximum number of generations is reached from all of the
initial mutants;
Output the mutant that consumes the least energy in the
evolution population;

Based on the information contained in the CDDG, the first
generation mutants are evolved using neutrally transformed
programmutants from CDDG. Neutrally transformed mutant refer
to a program version that preserves the functional equivalence
derived either by applying algebraic rules or via merging opcodes
already available from the ISA (see Section 4.4). This step helps
initialize the evolution population with multiple mutant samples
(with functionally equivalent versions to the original program)
such that the ASGP algorithm can do a more effective exploration
by applying its genetic operators on this population. Successive
generations of mutants are created by applying genetic operators
on the evolution population guided by triggering heuristics (see
Section 4.5). The fitness function tests whether the new mutant
preserves the functional equivalency on all of the available input
sets while potentially optimizing energy consumption over its
parent mutant, and then is added to the evolution population.
In other words, if the mutant is not functionally equivalent to
the original program or does not show the potential to improve
energy over its parent, the mutant is discarded from further



126 J. Chen, G. Venkataramani / J. Parallel Distrib. Comput. 96 (2016) 121–133
consideration.We determine functional equivalency by comparing
all of the registers (data, flags and program counters) and the set
of all memory locations modified by the original program and the
mutant in the region of interest (i.e., where the mutation operation
was applied). The potential for energy optimization is defined as the
mutant that already lowers energy consumption of the parent or
is within 5% above the parent’s energy consumption. We allow
this slight increase in energy consumption among the mutants to
avoid being stuck in local minimas and being unable to find more
energy optimizingmutants in the futurewithout exploring slightly
more energy-expensive mutants. However, to avoid the mutant
population from being polluted with higher energy consuming
variations, we periodically (after every five generations in our
implementation) remove themutants that consume energy higher
than the original input program.

After reaching a maximum number of generations starting
from all of the initial mutants, the algorithm stops. The maximum
number of generations is input by the user based on the number of
tries (or cost) that she is willing to pay for the ASGP algorithm to
explore the program mutants.

4.4. Neutral transforms

If unguided or natural selection process is used to create initial
mutants, most of them will likely not be functionally equivalent
to the original program, thus failing the fitness test. As a result,
a significant amount of computational time is wasted in evolving
these random programs. To avoid wasting time on evolving such
‘‘pure random’’ programs, our current implementation of enDebug
uses the following set of neutral transforms on the original CDDG
to populate the set of initial program mutants, and hence increase
the efficiency of our approach.

1. Sign conversion—This helps generate complements of num-
bers that can be primarily exploited to cluster certain types of
operations and reduce energy if such operations are supported
by the underlying ISA. For example, a − b + c + d can also be
represented a + (−b) + c + d that can be utilized by vector
operations to cluster operands with the same operator.

2. Commutativity—Commutativity applies on arithmetic opera-
tions such as add andmultiply nodes, for example, a+b = b+a,
a × b = b × a. This can be used to group clusters of operands
in nearby memory locations and potentially improve spatial lo-
cality to save energy.

3. Distributivity—Distributivity also applies on arithmetic opera-
tions that helps to reduce the number ofmultiplication/division
operations in the program. For example, a × b + a × c =

a×(b+c), a/b+c/b = (a+c)/b, (a/b)/(c/d) = (a×d)/(b×c),
(a/b)/c = a/(b × c).

4. Merge—This serves to optimize energy consumption by com-
bining certain operations into ISA-supported more complex
types. Energy savings can be had from lesser number of instruc-
tion fetches and execution. Examples of merge operation in-
clude: 1. when nearby nodes in CDDG havemul.d and add.d, the
ASGP algorithm can consider replacing the nodewithmadd.d in
certain ISAs, 2. when nearby nodes in the CDDG have load and
address increment/decrement, a vector load can be applied.

In the benchmark suites that we studied in this work,
we have observed that a substantial amount of program
code involves algebraic computations. This provides us with
many code regions that are amenable to transforms using
algebraic rules (sign conversion, commutativity rule and
distributivity rule) and ISA-specific transforms (merge certain
operators intomore complex types).We note thatmore neutral
transformation rules could always be explored and used for
other applications.
4.5. Genetic operators and triggering heuristics

We first describe the four standard genetic operators [5] that are
used in our genetic algorithm, and then summarize the heuristics
that guide the usage of such operators on program mutants.

1. Delete—Delete operator serves to eliminate the CDDG nodes
that unnecessarily increase the program energy consumption.
As examples, 1. when a branch is always not taken for all inputs,
the branch instruction and all instructions that compute the
condition value for the branch can be deleted (see Fig. 3(a)),
2. certain subexpressions or instructions can be removed that
may be eventuallymoved to another place in the program code.

2. Copy—Copy operator works either on the block level or indi-
vidual instruction level. At the block level, copy operator can
potentially increase the ratio of useful code while reducing en-
ergy spent on meta code and the related control transfer in-
structions. When copy operator is applied, the subgraphs need
to be properly replicated (similar to loop unrolling)—memory
indices should be correctly adjusted, common registers should
be renamed, and the dependency edges be connected to the
right node. Potential example applications of this operator in-
clude the loop structures that were not able to be unrolled by
the optimizing compiler at static time; at the instruction level,
copy operator helps achieve physically moving an instruction
to another place. This movement of instruction requires copy
to be jointly used with delete operator.

3. Swap—Swap operator swaps the positions of two nodes (in-
structions) or subgraphs (blocks). This can be used to accom-
plish useful transforms such as code reordering. As examples:
1. If consecutive nodes exhibit long latencies due to stalls in in-
teger execution unit (resource contention), swapping this node
with an another node (that has a different set of operations not
competing for the integer execution unit) would alleviate the
energywasted over stall time. 2. In a if..elsif..else code, let us say
that the percentage of execution of if{}, elsif{} and else{} blocks
are 10%, 10% and 80% respectively. A swap of the else{} and
if{} blocks would save the unnecessary control transfer through
two basic blocks a majority of the time.

4. Crossover—Crossover operator takes subgraphs from two par-
ent mutants, and creates two new offsprings. For example, be-
tween two parent mutants A and B, exchanging subgraphs SG3
and SG6 results in an improved offspring, A (see Fig. 3(d)).
Specifically,we look formutants that show reduced energy con-
sumption compared to their parents, and mark the mutated
subgraphs (the portion of program code that was mutated in
the parent). Then a crossover operation is performed to check if
two mutants having marked subgraphs from different program
locations will create a new mutant that combines the energy
savings from both of its parental mutants.
Table 3 summarizes some of the possible heuristics that were

used by our ASGP algorithm to find programmutants that can lead
to better energy consumption. We note that this table shows a list
of heuristics used in our current implementation rather than being
exhaustive.

Tables 4 and 5 show the number of distinct mutants generated
by the unguided (natural selection) and guided (artificial selection)
algorithms assuming that the user has no limit on the maximum
number of generations. We found that the energy-optimized mu-
tants found by both the GP and the ASGP algorithmswere identical
for each of our benchmark. In each experiment, the mutants that
are not deemed fit by the fitness function either due to functional
incorrectness or not exhibiting the capability to reduce energy are
considered as discarded mutants (refer Section 4.3). Functional cor-
rectness was determined by comparing the outputs of the original
and themutant codes on all of the input sets made available by the
benchmark developers. All of the mutants that pass the fitness test



J. Chen, G. Venkataramani / J. Parallel Distrib. Comput. 96 (2016) 121–133 127
(a) Delete. (b) Copy. (c) Swap. (d) Crossover.

Fig. 3. Examples of genetic operator applications on CDDG.
Table 3
Triggering heuristics for genetic operators.

Operator/transform Triggering heuristics

Delete Always taken/not taken branches, redundant instruction
Copy High branch to non-branch instruction ratios, known iterator count values
Swap Skewed frequencies of execution in branch chains, cluster of instructions of similar type
Crossover Energy optimized mutants in two separate subgraphs among two different mutants
Table 4
Number of mutants for the un-guided natural selection GP algorithm.

Application # discarded mutants # kept mutants

Fmm 558 15
Ocean 440 20
Cholesky 40 19
Water-sp 290 33
Water-n2 290 33
Fluidanimate 275 11
Streamcluster 486 14
Libquantum 344 19
Sphinx3 427 22

Table 5
Number of mutant for our ASGP algorithm with triggering heuristics.

Application # discarded mutants # kept mutants

Fmm 13 11
Ocean 14 17
Cholesky 0 14
Water-sp 31 8
Water-n2 31 9
Fluidanimate 11 19
Streamcluster 5 7
Libquantum 7 12
Sphinx3 16 9

are kept mutants, i.e., considered part of the evolution population.
As seen in our experiments, the ASGP reduces the total number of
mutants anywhere from 4× (in Cholesky) to over 40× (in stream-
cluster). This helps to speedup the process of choosing energy op-
timized mutants of the program code.

Table 6 shows the execution time (in seconds) for an un-
guided natural selection GP algorithm and our guided, artificial
selection GP algorithm. We note that the execution time includes
the time to run the algorithm and fitness test for each of the
benchmarks. In every benchmark, functional correctness was
determined through multiple runs of all of the input sets made
available by the benchmark developers. We observe a speedup of
4.1× (in Cholesky) and up to 41.7× (in streamcluster).
Table 6
Execution time overhead comparison between the natural selection GP algorithm
and our heuristic-triggered ASGP algorithm.

Application GP (s) ASGP (s) Speedup (times)

Fmm 701.6 28.1 25.1×
Ocean 705.1 47.6 14.8×
Cholesky 19.5 4.7 4.1×
Water-sp 145.7 17.6 8.3×
Water-n2 936.6 116.3 8.1×
Fluidanimate 1354.9 142.1 9.5×
Streamcluster 2881.5 69.2 41.7×
Libquantum 5227. 5 273.6 19.1×
Sphinx3 26994.2 1563.1 17.2×

In this work, we rely on developer-supplied input sets to
make sure that energy optimized mutants will work correctly
for user-specified inputs. Note that it is important for developers
to carefully select the most typical input sets such that ASGP is
optimizing energy for the most common usage scenarios of the
program. Using less-representative or completely random input
sets to ASGP may not yield intended energy benefits, and may
even adversely affect energy consumption leading to unproductive
optimizations to program code. For a given input test, our ASGP
algorithm uses hardware support to rigorously compare the values
produced by themutated code and the original code, which will be
described in Section 4.6. Exhaustively testing a program with all
possible inputs for correctness is not feasible even in unmodified
programs.Weassume that the programmerwhowants to optimize
her program for energy using our approach is aware of critical
input parameters and values for which the program correctness
needs to be preserved. Prior works such as [40] have made similar
assumptions to verify the correctness of the mutant code. In an
environment where function correctness has to be verified over a
wide range of inputs, automatic input testing tools can be deployed
to help ease the verification process before the mutant program
went for deployment. For example, random test input generation
tools, such asDART [15] and CUTE [41], can be used for the purpose.
Note that such extra tools may incur significant performance



128 J. Chen, G. Venkataramani / J. Parallel Distrib. Comput. 96 (2016) 121–133
Table 7
Energy reduction in benchmarks as measured by SESC simulator (Baseline: GCC -O3).

Application ASGP-evolved code region # code changes Energy reductiona Energy reductionb

Fmm interaction.C: line 398 16 3.7% 4.1%
Ocean jacobcalc.C: line 310 15 2.2% 4.3%
Cholesky numLL.C: line 436 & 473 44 1.2% 1.4%
Water-sp cshift.C: line 58 34 1.9% 2.7%
Water-n2 cshift.C: line 54 34 2.3% 1.3%
Fluidanimate parallel.cpp: line 689 12 4.3% 4.2%
Streamcluster streamcluster.cpp: line 159 31 18.0% 15.5%
Libquantum gates.c: line 74 29 3.6% 3.8%
Sphinx3 cont_mgau.c: line 575 12 1.1% 1.4%
a Running with input ref1.
b Running with input ref2.
Table 8
Changes in application-related performance events (positive number indicates reduction in the number of events;
negative number indicates increase in the number of events).

Application CPU cycles Inst count L1DCache access L2Cache access L2 misses Float Ops

Fmm 1.5% 9.1% −0.4% −0.1% 0.1% 0.0%
Ocean 2.1% 1.9% 2.5% 1.9% 0.0% 6.4%
Cholesky 0.7% 1.4% 1.1% −0.2% 0.0% 0.0%
Water-sp 2.3% 1.9% 0.4% 0.0% 0.0% 0.0%
Water-n2 3.8% 1.9% 0.8% 0.0% 0.2% 0.0%
Fluidanimate 5.1% 3.6% 5.7% 13.1% 3.0% 0.4%
Streamcluster 13.6% 11.2% 0.0% 0.0% 0.1% 0.0%
Libquantum 5.6% 0.1% 0.1% 0.1% 0.0% 0.0%
Sphinx3 1.4% 0.1% 0.1% −0.1% 0.0% 0.0%
overheads during programoptimization phasewithout necessarily
adding substantial benefits to the outcome.

4.6. System support for automated energy optimization

The energy regression function can derive its inputs from the
already available hardware performance counters. To attribute the
energy back to functions, we need to log information about the
performance counters and the corresponding program counters in
a separate hardware buffer.

Our ASGP algorithm can be implemented as a compile-time
optimizer with most mutations that can be applied during
compilation time. A few operations such as merging ISA supported
operations can be easily done during post-compilation phase.
On the hardware side, the algorithm needs support for three
modules, energy meter, functional correctness (fitness test)
and heuristics. For energy metering, an off-the-shelf energy
measurement interface such as Intel RAPL would suffice since
the objective is to obtain overall program energy. However, for
verifying functional equivalence, we need system support that will
compare the values produced bymutated regions of program code
and the original code. This requires hardware support to track all
of the registers (including data, flags and Program Counter) and
the set of memory locations altered by the program in themutated
region of program code. To this end, we design a small hardware
structure, hardware shadow buffer, that maintains a shadow copy
of the registers and the modified memory locations. Empirically,
we determined that the maximum number of memory locations
thatweremodified in energy critical code sequenceswere typically
less than 4 kB. Therefore, we design our shadow buffer to store
up to 4 kB memory locations. Using Cacti 5.3 [25], we found that
the area overhead was 0.31 mm2 and the shadow buffer’s per-
access latency was 0.26 ns. Start_log and Stop_log instructions are
added to the ISA for recording values. In this work, we annotate
the code regions that are transformed and check the register and
memory values at the entry and exit points of these annotated
regions. With further hardware support, we can do it at finer
granularities. Finally, most of our heuristics can be derived in
a relatively straightforward manner using existing performance
counters in most modern architectures such as branch taken/not
taken profile, and resource stalls [20].

5. enDebug evaluation

We evaluate over 30 Splash-2, PARSEC-1.0 and SPEC CPU2006
applications, and summarize the energy-related code optimiza-
tions that we found using our enDebug framework on eight such
representative cases below. We perform our first round of exper-
iments on SESC simulator with an integrated McPAT model. This
is due to ease of verifying the functional correctness of the mu-
tants through comparing all of the register andmemory values pro-
duced by the mutant with the original code. We were unable to
turn on profile guided optimizations (PGO) on our GCC cross com-
piler infrastructure for MIPS. Table 7 summarizes the observed en-
ergy savings on two different reference input setswith -O3 settings
without PGO. Our simulator experiments here model an Intel i7-
like processor (see configurations in Table 2) with a DRAM-based
main memory. We model an 8 GB DRAM with 8 banks (at 32 nm
technology node) andderive its dynamic energy numbers using the
CACTI tool [25].

To understand the implication of ASGP optimization on
hardware performance events, we measure changes in various
factors such as CPU cycles, instruction counts, L1 data cache
accesses, L2 cache accesses, L2 cache misses, and the number of
floating point instructions as a result of code optimization. The
results are summarized in Table 8 when applications are run using
one of the reference input sets (ref1 from Table 7). In terms of
instruction count, the highest reduction was seen in Streamcluster
(11.2%). In terms of floating point operations, Ocean had the
highest reduction (6.4%). For cache accesses, we observed highest
reduction in Fluidanimate (5.7% in L1 data cache, 13.1% in L2 cache,
and 3.0% in L2 cachemisses). We observed reduced number of CPU
cycles in all applications, this was mostly due to reduced number
of executed instructions and improved memory accesses.

1. Fmm—Fig. 4 shows the high energy consuming code region
found by our energy profiler. Using our profiler-guided
heuristics, the ASGP algorithm applied the copy operator based



J. Chen, G. Venkataramani / J. Parallel Distrib. Comput. 96 (2016) 121–133 129
on high branch to non-branch instruction ratio inside the tight
loop. After a few rounds of delete and some swap operations
among instructions, the algorithm outputs a mutant with least
amount of energy consumption.We found that the finalmutant
produced by ASGP algorithm did not have the if..else.. control
part, and the energy consumption had dropped at least 3.7%
during our fitness test. This code is functionally equivalent since
the COMPLEX_SUBworks on odd j, and COMPLEX_ADD on even
j values that is replaced by j and j + 1 during copy operation.

2. Ocean—Fig. 5 shows the high energy consuming code region
found by our energy profiler. Within this dense loop, eight local
variables (f 1 to f 8) are calculated, and then all of them are
added together to find t1c[iindex]. ASGP found that there was a
single node (load of t1a[iindex]) that was connected to another
8 nodes. After applying a few neutral transforms, deletions
and a crossover operation, the mutated program reduced the
instruction count by 13, and consumed up to 4.3% less energy
than the original program.

3. Cholesky—Fig. 6 shows the high energy consuming code re-
gion found by our energy profiler. In this case, our ASGP al-
gorithm was able to make effective use of merge (a neutral
transform) and delete operators to find energy-optimized mu-
tant. The original code was written in a way that prevented the
compiler to generate more compact instructions like msub.d
(in MIPS). After applying algebraic laws on the original CDDG,
the resulting neutral transformsweremore conducive tomerg-
ing the adjacent nodes and forming madd.d. ASGP was able to
generate a programmutant that primarily usedmadd.d instruc-
tions, and reduced the overall program energy consumption by
slightly over 1%.

4. Water-sp and Water-n2—Fig. 7 shows the high energy con-
suming code regions found by our energy profiler. Our runtime
profile data indicated that two branches in this code region (see
sign macro in the source code line#2) were never taken for all
of the available program inputs. This was because the values
of a were always positive in all of the input sets. Based on the
branch frequency heuristic, the ASGP algorithm generated two
separate mutants by deleting the blocks corresponding to the
first two branches, and then a crossover from these twomutant
versions resulted in an energy optimized code. The overall en-
ergy savings in water benchmarks were around 2%.

5. Fluidanimate—Fig. 8 shows the high energy consuming code
region found by our energy profiler. This loop contains very
intensive arithmetic operations. Note that Vec3 is a structure
that has three double elements, for which + = and / = have
been overridden. The energy reduction came from the initial
neutral transform and delete operators. Our ASGP moved the
/ = around through commutative and distributive rules, which
deleted certain expensive (long pipeline cycles) division in-
structions. Our experiments show up to 4.3% energy savings.

6. Streamcluster—Fig. 9 shows the high energy consuming code
region found by our energy profiler. Based on the runtime pro-
file data, the ASGP algorithm chose to apply copy genetic op-
erator. Even at O3 compiler optimization level, this loop could
not be unrolled by the compiler since the range or actual values
of iteration count (function parameter dim is unknown at com-
pile time).We found that dim is a fixed number during program
execution. This mutant version improved the energy savings by
about 18% since this loopwas a prominent kernel in streamclus-
ter benchmark.

7. Libquantum Fig. 10 shows the high energy consuming code re-
gion found by our energy profiler. In this case, the ASGP chooses
to apply the copy and delete genetic operators based on high
branch to non-branch instruction ratio inside the tight loop.We
found that the energy-optimized program mutant essentially
reduces the ratio of branch code overheads in the loop. Thismu-
tant version improves the energy by about 3.8%. Note that at O3
Fig. 4. Fmm code snippet.

Fig. 5. Ocean code snippet.

compiler optimization level, this loop in the original program
could not be unrolled because the loop iteration count size is
unknown.

8. Sphinx3 We found a case similar to Libquantum in Sphinx3.
Fig. 11 shows the high energy consuming code region found by
our energy profiler. Based on the runtime profile data, the ASGP
algorithm applies copy to the for loop. This mutant version im-
proves the energy savings by about 1.4%. Note that this loop in
the original program was not able to be unrolled by the com-
piler because the loop iteration count veclen is unknown.

We have also tried our best to manually optimize the above
code regions independently. For all the cases, we find that the
energy saving achieved by the manually optimized program is
on par with that of ASGP generated energy-optimized mutant.
We note that applications from PARSEC-1.0, Splash-2 and SPEC
CPU2006 have been heavily optimized over the years by their
developers. Energy savings obtained by ASGP algorithm are al-
ready on top of the application developers’ optimization.



130 J. Chen, G. Venkataramani / J. Parallel Distrib. Comput. 96 (2016) 121–133
Fig. 6. Cholesky code snippet.

Fig. 7. Water-sp/Water-n2 code snippet.

Fig. 8. Fluidanimate code snippet.

5.1. Validation on a real system

By conducting experiments on a real system, we validate the
energy-optimized mutant programs generated by our prototype
enDebug framework implemented on SESC simulator with McPAT
power model. We note that these energy-optimized mutant ver-
sions have already passed the fitness test for both functional accu-
racy and energy optimization. Our goal is to see if similar energy
savings can be observed on a real-world system. Our test environ-
ment is a Dell Latitude E6520 workstation laptop with 8 GB mem-
ory, and 4-core Intel(R) Core(TM) i7-2720QM processor (Sandy
Bridge) run at 2.2 GHz with turbo mode at 3.3 GHz using RAPL in-
terface. Each benchmark is run three times to obtain the average
energy consumption using the largest input sets (native inputs in
PARSEC-1.0, reference inputs in Splash-2 and SPEC CPU2006).

Table 9 shows the energy savings in our real system experi-
ments on two baseline settings: 1. with -O3 optimization level,
2. with both -O3 and GCC’s PGO. To enable PGO, we use -fprofile-
generate and -fprofile-use flags. Note that -fprofile-generate en-
ables -fprofile-arcs, -fprofile-values and -fvpt flags that include
Fig. 9. Streamcluster code snippet.

Fig. 10. Libquantum code snippet.

Fig. 11. Sphinx3 code snippet.

value profile transformations and program flow arcs. The flag -
fprofile-use enables -fbranch-probabilities, -funroll-loops, -fpeel-
loops, -ftracer that include tracking probabilities of branches and
removal of small loops with constant number of iterations. The re-
sults show that, at -O3, the energy savings trend is fairly similar
to our experiments on SESC (Table 7). With PGO enabled, we find
that ASGP is still able to achieve fairly high energy savings (above
5%) in benchmarks such as Fluidanimate, Libquantum, Water-sp
and Ocean due to its ability to apply mutations such as copy, dele-
tion, swap and crossover that the compiler normally does not han-
dle. We note that PGO optimizes some additional parts in the
program source code based on profile, which makes the total en-
ergy consumption of the program a bit smaller than that compiled
with just ‘‘GCC -O3’’. So when computing energy reduction per-
centages, we have smaller denominators which make reduction
percentages higher in Ocean, Water-sp, and Water-n2 under the
column of ‘‘Baseline: GCC -O3 and PGO’’. In other benchmarks such
as streamcluster, the savings are diminished due to the advanced
optimization settings in the compiler that can achieve a similar



J. Chen, G. Venkataramani / J. Parallel Distrib. Comput. 96 (2016) 121–133 131
Table 9
Energy reduction on a real system (Intel Core i7).

Application Energy reduction (Baseline: GCC -O3) Energy reduction (Baseline: GCC -O3 and PGO)

Fmm 7.1% 4.6%
Ocean 4.0% 5.7%
Cholesky N/A N/A
Water-sp 5.1% 5.7%
Water-n2 2.1% 2.2%
Fluidanimate 10.4% 7.0%
Streamcluster 17.6% 1.6%
Libquantum 6.2% 6.1%
Sphinx3 3.4% 3.2%
outcome as our ASGP algorithm. Overall, we find that our enDebug
framework can be extremely useful in finding energy-optimized
mutants of program code even after extensive optimizations by the
compiler.

6. Related work

We discuss prior works in two broad categories—energy
estimation and optimization.

6.1. Energy estimation

Isci et al. [21] propose runtime power monitoring techniques
for processor core and functional units. Some recent works
demonstrate the feasibility of using a limited set of metrics to
estimate processor component power [33,22,4]. These works do
not explicitly address how to attribute energy back to the program
code. In contrast to these prior schemes, we investigate ways to
attribute energy to fine-grained code.

Tiwari et al. [44] developed an energy model using instruction
counts, and assume a pre-determined cost for various instruction
types. This ignores dynamic hardware effects such as parallelism
and interference that occur in most modern architectures. Alter-
native strategies that use a specific set of hardware events (such
as cache misses) [1,42] for energy estimation often fail to include a
comprehensive view of application execution and ignore system-
level effects and interactions with other instructions (e.g., pipeline
stalls, pipeline flushes due to mispredicted instructions). In con-
trast to these prior approaches, our methodology uses largely ex-
isting hardware (with simple modifications) to accurately gather
the total energy consumed by fine-grained sections of code (func-
tions).

6.2. Energy optimization

Microarchitecture—Hardware modifications have been pro-
posed to minimize energy consumption by the microarchitectural
units. For instance, to reduce cache energy, priorworks have inves-
tigated reconfigurable cache with variable associativity or number
of banks [52,32], bypassing expensive tag check operations [48],
trading cache capacity for low supply voltage [47], and reducing
redundant writes to the memory [7]. For issue logic and load/store
queues that rely on energy-expensive structures such as Content
Address Memory (CAM), researchers have studied dynamically
adjusting issue or load/store queue sizes and avoiding wasteful
wake-up checks [13,6,23]. Recent works have started investigat-
ing custom hardware accelerators for specific types of applications
[46,16,51]. Prior works also consider optimizing processor
pipelines for low power and energy [12,39,18].

Dynamic voltage and frequency scaling (DVFS)—Prior works
have shown how to exploit slack time in the running thread to
put the processor core in a sleep state [30], or run at a low
voltage/frequency level [35,2]. DVFS has also been demonstrated
to do system-level power and energy management [27]. Since our
approach is complementary to this line of work, wemay gain even
further energy savings by applying DVFS to our energy-optimized
program mutants.

Power/energy aware compilation—Compiler techniques have
been studied for energy-aware instruction scheduling and code
generation. [44,38] have studied the energy impact of instruction
scheduling by using instruction-level energy cost based on electric
current measurements. In modern day processors with heavily
overlapped instructions and shared functional units, this type of
per-instruction energy accounting is difficult, if not impossible.
Tuning voltage and frequency settings using generated program
code to reduce program energy have also been studied by
[19,31,50]. [53,26] have studied the energy impact of loop centric
optimization techniques such as loop permutation, loop tiling,
and loop fusion. Our enDebug framework optimizes energy on
compiler generated code and provides further energy reduction.

Automated Code Optimization—As software inefficiency increas-
ing becomes the dominant source of wasteful energy consump-
tion, there is a strong urge to develop energy-aware program code.
Chen et al. [10] explored hardware–software support for pinpoint-
ing the code and root causes for high power peaks while program
is running. Recently, Schulte et al. [40] proposed a post-compiler
software optimization technique. In this work, authors designed
a genetic optimization algorithm that exhaustively searches for
program variant with functional correctness and lesser energy
consumption. Although both of our works broadly use genetic
programming for mutating program code, our enDebug differs
from [40] in the following ways: 1. enDebug incorporates a fine-
grained energy profiler in hardware that estimates energy for pro-
gram functions to apply targeted optimizations, while [40] uses an
energy model that estimates energy at the process level. 2. enDe-
bug applies mutant operations only on the most energy consum-
ing code region, while [40] approach variates the entire program,
whichmaymake the search space become prohibitively expensive
for large scale programs 3. enDebug adopts a guided (artificial se-
lection) approach by taking advantage of heuristics derived from
program code structure or runtime profile, while [40] selects mu-
tation operators randomly which is not performance friendly as
shown in Table 6.

7. Conclusions

In this paper, we showed the need to understand application
energy profile. We show the design of our solution approach,
enDebug, that has two major components—1. energy profiler,
and 2. automated recommendation system for program energy
optimization.

We designed an energy profiler using largely existing hardware
support that measures the energy of program functions. We
explored an automated recommendation system that incorporates
artificial selection genetic programming algorithm to generate
program mutants that minimize energy consumption. In contrast
to prior approaches, we adopt a guided approach to mutant
generation that reduces the search space and quickens the time



132 J. Chen, G. Venkataramani / J. Parallel Distrib. Comput. 96 (2016) 121–133
(4×–41×) to arrive at energy-optimized program mutants. We
show case studies from several Splash-2, PARSEC-1.0 and SPEC
CPU2006 benchmarks, and demonstrate energy savings of up to 7%
beyond the highest compiler optimization settings when tested on
real-world Intel Core i7 processors.

Acknowledgment

This material is based upon work supported by the National
Science Foundation under CAREER Award CCF-1149557.

References

[1] F. Bellosa, The benefits of event: Driven energy accounting in power-sensitive
systems, in: Proceedings of the 9th Workshop on ACM SIGOPS European
Workshop: Beyond the PC: New Challenges for the Operating System, EW 9,
2000.

[2] A. Bhattacharjee, M. Martonosi, Thread criticality predictors for dynamic
performance, power, and resource management in chip multiprocessors, in:
Proceedings of ISCA, 2009.

[3] C. Bienia, S. Kumar, J. Singh, K. Li, The PARSEC benchmark suite: Characteri-
zation and architectural implications, Princeton University Technical Report
TR-811-08, 2008.

[4] W. Bircher, L. John, Complete system power estimation using processor
performance events, IEEE Comput. (2012).

[5] M. Brameier, W. Banzhaf, Linear Genetic Programming, Springer, 2007.
[6] A. Buyuktosunoglu, T. Karkhanis, D.H. Albonesi, P. Bose, Energy efficient co-

adaptive instruction fetch and issue, in: Proceedings of ISCA, 2003.
[7] J. Chen, R.C. Chiang, H.H. Huang, G. Venkataramani, Energy-aware writes

to non-volatile main memory, SIGOPS Oper. Syst. Rev. 45 (3) (2012)
48–52. http://dx.doi.org/10.1145/2094091.2094104. URL: http://doi.acm.org/
10.1145/2094091.2094104.

[8] J. Chen, G. Venkataramani, A hardware–software cooperative approach
for application energy profiling, Comput. Archit. Lett. 14 (1) (2015) 5–8.
http://dx.doi.org/10.1109/LCA.2014.2323711.

[9] J. Chen, G. Venkataramani, G. Parmer, The need for power debugging in the
multi-core environment, IEEE Comput. Archit. Lett. (2012).

[10] J. Chen, F. Yao, G. Venkataramani, Watts-inside: A hardware–software
cooperative approach for multicore power debugging, in: 2013 IEEE 31st
International Conference on Computer Design, ICCD, 2013, pp. 335–342.
http://dx.doi.org/10.1109/ICCD.2013.6657062.

[11] eBay Inc., Digital service efficiency. http://dse.ebay.com/.
[12] D. Ernst, N.S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T.

Austin, K. Flautner, T. Mudge, Razor: A low-power pipeline based on circuit-
level timing speculation, in: Proceedings of MICRO, 2003.

[13] D. Folegnani, A. González, Energy-effective issue logic, in: Proceedings of ISCA,
2001.

[14] Free Software Foundation, Inc, GCC, the GNU compiler collection. http://gcc.
gnu.org.

[15] P. Godefroid, N. Klarlund, K. Sen, Dart: Directed automated random testing,
SIGPLAN Not. 40 (6) (2005) 213–223. http://dx.doi.org/10.1145/1064978.
1065036. URL: http://doi.acm.org/10.1145/1064978.1065036.

[16] V. Govindaraju, C.H. Ho, K. Sankaralingam, Dynamically specialized datapaths
for energy efficient computing, in: Proceedings of HPCA, HPCA’11, 2011.

[17] S. Hao, D. Li,W.G.J. Halfond, R. Govindan, Estimatingmobile application energy
consumption using program analysis, in: Proceedings of ICSE, 2013.

[18] M. Hayenga, V. Reddy, M.H. Lipasti, Revolver: Processor architecture for
power efficient loop execution, in: Proceedings of the 20th IEEE International
Symposium on High Performance Computer Architecture, HPCA 2014, 2014.

[19] C.-H.Hsu, U. Kremer, The design, implementation, and evaluation of a compiler
algorithm for cpu energy reduction, in: Proceedings of the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation, PLDI’03,
ACM, New York, NY, USA, 2003, pp. 38–48. http://dx.doi.org/10.1145/781131.
781137. URL: http://doi.acm.org/10.1145/781131.781137.

[20] Intel Corporation, Intel R⃝ 64 and IA-32 Architectures Optimization Reference
Manual, no. 248966-018, 2009.

[21] C. Isci, G. Contreras, M. Martonosi, Live, runtime phase monitoring and
prediction on real systems with application to dynamic power management,
in: Proceedings of MICRO, 2006.

[22] H. Jacobson, A. Buyuktosunoglu, P. Bose, E. Acar, R. Eickemeyer, Abstraction
and microarchitecture scaling in early-stage power modeling, in: Proceedings
of HPCA, 2011.

[23] T.M. Jones, M.F.P. O’Boyle, J. Abella, A. Gonzalez, Software directed issue queue
power reduction, in: Proceedings of HPCA, 2005.

[24] R. Jotwani, S. Sundaram, S. Kosonocky, A. Schaefer, V. Andrade, G. Constant,
A. Novak, S. Naffziger, An x86-64 core implemented in 32nm soi cmos, in:
Proceedings of ISSCC, 2010.

[25] N.P. Jouppi, et al. Cacti 5.1. http://quid.hpl.hp.com:9081/cacti/.
[26] M. Kandemir, N. Vijaykrishnan, M.J. Irwin, W. Ye, Influence of compiler

optimizations on system power, IEEE Trans. Very Large Scale Integr. Syst. 9
(6) (2001) 801–804. http://dx.doi.org/10.1109/92.974893.
[27] W. Kim, M. Gupta, G.-Y. Wei, D. Brooks, System level analysis of fast, per-
core dvfs using on-chip switching regulators, in: IEEE 14th International
Symposium on High Performance Computer Architecture, 2008. HPCA 2008,
2008.

[28] R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation
andmodel selection, in: Proceedings of the 14th International Joint Conference
on Artificial Intelligence—Vol. 2, IJCAI’95, 1995.

[29] S. Li, J.H. Ahn, R.D. Strong, J.B. Brockman, D.M. Tullsen, N.P. Jouppi, Mcpat: an
integrated power, area, and timing modeling framework for multicore and
manycore architectures, in: MICRO, 2009.

[30] J. Li, J.F. Martinez, M.C. Huang, The thrifty barrier: Energy-aware synchroniza-
tion in shared-memory multiprocessors, in: Proceedings of HPCA, 2004.

[31] G. Magklis, M.L. Scott, G. Semeraro, D.H. Albonesi, S. Dropsho, Profile-
based dynamic voltage and frequency scaling for a multiple clock domain
microprocessor, in: Proceedings of the 30th Annual International Symposium
on Computer Architecture, ISCA’03, ACM, New York, NY, USA, 2003, pp. 14–27.
http://dx.doi.org/10.1145/859618.859621. URL: http://doi.acm.org/10.1145/
859618.859621.

[32] M.D. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, K. Roy, Reducing set-
associative cache energy via way-prediction and selective direct-mapping, in:
Proceedings of MICRO, 2001.

[33] M.D. Powell, A. Biswas, J. Emer, S. Mukherjee, B. Sheikh, S. Yardi, Camp: A
technique to estimate per-structure power at run-time using a few simple
parameters, in: Proceedings of HPCA, 2009.

[34] A. Rallo, Data center efficiency trends for 2014. http://www.
energymanagertoday.com/data-center-efficiency-trends-for-2014-097779/.

[35] K.K. Rangan, G. Wei, D. Brooks, Thread motion: fine-grained power manage-
ment for multi-core systems, in: Proceedings of ISCA, 2009.

[36] J. Renau, et al. SESC. http://sesc.sourceforge.net.
[37] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, E. Weissmann, Power-

management architecture of the intel microarchitecture code-named sandy
bridge, IEEE Micro (2012).

[38] J. Russell, M. Jacome, Software power estimation and optimization for
high performance, 32-bit embedded processors, in: International Conference
on Computer Design: VLSI in Computers and Processors, 1998. ICCD’98.
Proceedings, 1998, pp. 328–333.

[39] J. Sartori, B. Ahrens, R. Kumar, Power balanced pipelines, in: Proceedings of
HPCA, 2012.

[40] E. Schulte, J. Dorn, S. Harding, S. Forrest, W. Weimer, Post-compiler software
optimization for reducing energy, in: Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2014.

[41] K. Sen, D. Marinov, G. Agha, Cute: A concolic unit testing engine for
c, in: Proceedings of the 10th European Software Engineering Confer-
ence Held Jointly with 13th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE-13, ACM, New York, NY,
USA, 2005, pp. 263–272. http://dx.doi.org/10.1145/1081706.1081750. URL:
http://doi.acm.org/10.1145/1081706.1081750.

[42] K. Shen, A. Shriraman, S. Dwarkadas, X. Zhang, Z. Chen, Power containers: An os
facility for fine-grained power and energy management on multicore servers,
in: Proceedings of the Eighteenth International Conference on Architectural
Support for Programming Languages andOperating Systems, ASPLOS’13, 2013.

[43] Standard Performance Evaluation Corporation, SPEC Benchmarks.
http://www.spec.org.

[44] V. Tiwari, S. Malik, A. Wolfe, M.T. Lee, Instruction level power analysis and
optimization of software, J. VLSI Signal Process. Syst. 13 (2–3) (1996).

[45] J. Treibig, G. Hager, G. Wellein, Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments, in: Proceedings of
the 2010 39th International Conference on Parallel Processing Workshops,
ICPPW’10, IEEE Computer Society, Washington, DC, USA, 2010, pp. 207–216.
http://dx.doi.org/10.1109/ICPPW.2010.38.

[46] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, M.B. Taylor, Conservation cores: reducing the energy of mature
computations, in: Proceedings of ASPLOS, 2010.

[47] C. Wilkerson, H. Gao, A.R. Alameldeen, Z. Chishti, M. Khellah, S. Lu, Trading off
cache capacity for low-voltage operation, IEEE Micro (2009).

[48] E. Witchel, C.S. Larsen, S. Ananian, K. Asanović, Direct addressed caches for
reduced power consumption, in: Proceedings of MICRO, 2001.

[49] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The splash-2 programs:
characterization and methodological considerations, in: Proceedings of ISCA,
1995.

[50] Q.Wu,M.Martonosi, D.W. Clark, V.J. Reddi, D. Connors, Y.Wu, J. Lee, D. Brooks,
A dynamic compilation framework for controlling microprocessor energy and
performance, in: Proceedings of the 38th Annual IEEE/ACM International Sym-
posium onMicroarchitecture, MICRO 38, IEEE Computer Society, Washington,
DC, USA, 2005, pp. 271–282. http://dx.doi.org/10.1109/MICRO.2005.7.

[51] V.J.R. Yuhazo Zhu, Webcore: Architectural support for mobile web browsing,
in: Proc. of International Symposium on Computer Architecture., 2014.

[52] C. Zhang, F. Vahid, W. Najjar, A highly configurable cache architecture for
embedded systems, in: Proceedings of ISCA, 2003.

[53] Y. Zhu, G. Magklis, M.L. Scott, C. Ding, D.H. Albonesi, The energy impact of
aggressive loop fusion, in: Proceedings of the 13th International Conference on
Parallel Architectures and Compilation Techniques, PACT’04, IEEE Computer
Society, Washington, DC, USA, 2004, pp. 153–164. http://dx.doi.org/10.1109/
PACT.2004.28.

http://refhub.elsevier.com/S0743-7315(16)30035-1/sbref4
http://refhub.elsevier.com/S0743-7315(16)30035-1/sbref5
http://dx.doi.org/10.1145/2094091.2094104
http://dx.doi.org/10.1145/2094091.2094104
http://dx.doi.org/10.1145/2094091.2094104
http://dx.doi.org/10.1145/2094091.2094104
http://dx.doi.org/10.1145/2094091.2094104
http://dx.doi.org/10.1145/2094091.2094104
http://dx.doi.org/10.1145/2094091.2094104
http://dx.doi.org/10.1145/2094091.2094104
http://doi.acm.org/10.1145/2094091.2094104
http://doi.acm.org/10.1145/2094091.2094104
http://doi.acm.org/10.1145/2094091.2094104
http://doi.acm.org/10.1145/2094091.2094104
http://doi.acm.org/10.1145/2094091.2094104
http://doi.acm.org/10.1145/2094091.2094104
http://doi.acm.org/10.1145/2094091.2094104
http://doi.acm.org/10.1145/2094091.2094104
http://dx.doi.org/10.1109/LCA.2014.2323711
http://refhub.elsevier.com/S0743-7315(16)30035-1/sbref9
http://dx.doi.org/10.1109/ICCD.2013.6657062
http://dse.ebay.com/
http://gcc.gnu.org
http://gcc.gnu.org
http://gcc.gnu.org
http://gcc.gnu.org
http://dx.doi.org/10.1145/1064978.1065036
http://dx.doi.org/10.1145/1064978.1065036
http://dx.doi.org/10.1145/1064978.1065036
http://dx.doi.org/10.1145/1064978.1065036
http://dx.doi.org/10.1145/1064978.1065036
http://dx.doi.org/10.1145/1064978.1065036
http://dx.doi.org/10.1145/1064978.1065036
http://dx.doi.org/10.1145/1064978.1065036
http://doi.acm.org/10.1145/1064978.1065036
http://doi.acm.org/10.1145/1064978.1065036
http://doi.acm.org/10.1145/1064978.1065036
http://doi.acm.org/10.1145/1064978.1065036
http://doi.acm.org/10.1145/1064978.1065036
http://doi.acm.org/10.1145/1064978.1065036
http://doi.acm.org/10.1145/1064978.1065036
http://doi.acm.org/10.1145/1064978.1065036
http://dx.doi.org/10.1145/781131.781137
http://dx.doi.org/10.1145/781131.781137
http://dx.doi.org/10.1145/781131.781137
http://dx.doi.org/10.1145/781131.781137
http://dx.doi.org/10.1145/781131.781137
http://dx.doi.org/10.1145/781131.781137
http://dx.doi.org/10.1145/781131.781137
http://dx.doi.org/10.1145/781131.781137
http://doi.acm.org/10.1145/781131.781137
http://doi.acm.org/10.1145/781131.781137
http://doi.acm.org/10.1145/781131.781137
http://doi.acm.org/10.1145/781131.781137
http://doi.acm.org/10.1145/781131.781137
http://doi.acm.org/10.1145/781131.781137
http://doi.acm.org/10.1145/781131.781137
http://doi.acm.org/10.1145/781131.781137
http://quid.hpl.hp.com:9081/cacti/
http://dx.doi.org/10.1109/92.974893
http://dx.doi.org/10.1145/859618.859621
http://dx.doi.org/10.1145/859618.859621
http://dx.doi.org/10.1145/859618.859621
http://dx.doi.org/10.1145/859618.859621
http://dx.doi.org/10.1145/859618.859621
http://dx.doi.org/10.1145/859618.859621
http://dx.doi.org/10.1145/859618.859621
http://dx.doi.org/10.1145/859618.859621
http://doi.acm.org/10.1145/859618.859621
http://doi.acm.org/10.1145/859618.859621
http://doi.acm.org/10.1145/859618.859621
http://doi.acm.org/10.1145/859618.859621
http://doi.acm.org/10.1145/859618.859621
http://doi.acm.org/10.1145/859618.859621
http://doi.acm.org/10.1145/859618.859621
http://doi.acm.org/10.1145/859618.859621
http://www.energymanagertoday.com/data-center-efficiency-trends-for-2014-097779/
http://www.energymanagertoday.com/data-center-efficiency-trends-for-2014-097779/
http://www.energymanagertoday.com/data-center-efficiency-trends-for-2014-097779/
http://www.energymanagertoday.com/data-center-efficiency-trends-for-2014-097779/
http://www.energymanagertoday.com/data-center-efficiency-trends-for-2014-097779/
http://sesc.sourceforge.net
http://refhub.elsevier.com/S0743-7315(16)30035-1/sbref37
http://dx.doi.org/10.1145/1081706.1081750
http://doi.acm.org/10.1145/1081706.1081750
http://www.spec.org
http://refhub.elsevier.com/S0743-7315(16)30035-1/sbref44
http://dx.doi.org/10.1109/ICPPW.2010.38
http://refhub.elsevier.com/S0743-7315(16)30035-1/sbref47
http://dx.doi.org/10.1109/MICRO.2005.7
http://dx.doi.org/10.1109/PACT.2004.28
http://dx.doi.org/10.1109/PACT.2004.28
http://dx.doi.org/10.1109/PACT.2004.28
http://dx.doi.org/10.1109/PACT.2004.28
http://dx.doi.org/10.1109/PACT.2004.28
http://dx.doi.org/10.1109/PACT.2004.28
http://dx.doi.org/10.1109/PACT.2004.28
http://dx.doi.org/10.1109/PACT.2004.28
http://dx.doi.org/10.1109/PACT.2004.28


J. Chen, G. Venkataramani / J. Parallel Distrib. Comput. 96 (2016) 121–133 133
Jie Chen is a Senior Performance Engineer at MathWorks,
Inc. He received his Ph.D. in Computer Engineering from
George Washington University in 2015. His general re-
search interests are in the areas of computer architec-
ture, hardware systems, and software engineering. He is
especially interested in hardware and software support
for improving application performance, power efficiency,
memory system reliability, and solutions for mitigating
hardware security vulnerabilities. He received Best Poster
award in IEEE/ACM PACT 2011, and has an invited article
in ACM OS Review as an author of Best of HotPower 2011

workshop.
Guru Venkataramani is an Associate Professor of Elec-
trical and Computer Engineering at George Washington
University since 2009. He received his Ph.D. from Georgia
Institute of Technology, Atlanta in 2009. His research area
is computer architecture, and his current interests are
hardware support for energy/power optimization, debug-
ging and security. He is a recipient of NSF Faculty Early Ca-
reer award in 2012, Best Poster award in IEEE/ACM PACT
2011, has an invited article in ACMOS Review as an author
of Best of Hotpower 2011 workshop, and ORAU Ralph E.
Powe Junior Faculty Enhancement Award in 2010. He is a

senior member of both IEEE and ACM.


	enDebug: A hardware--software framework for automated energy debugging
	Introduction
	The need for energy debugger
	Fine-grained energy profiling
	Energy model using performance counters
	Attributing energy to program functions

	Automated recommendation system for energy optimization
	Basics of genetic programming
	Artificial selection genetic programming
	ASGP algorithm
	Neutral transforms
	Genetic operators and triggering heuristics
	System support for automated energy optimization

	enDebug evaluation
	Validation on a real system

	Related work
	Energy estimation
	Energy optimization

	Conclusions
	Acknowledgment
	References


