
RePRAM: Re-cycling PRAM Faulty Blocks for Extended Lifetime

Jie Chen, Guru Venkataramani, H. Howie Huang
Department of Electrical and Computer Engineering,

The George Washington University, Washington DC, USA
{jiec,guruv,howie}@gwu.edu

Abstract—As main memory systems begin to face the scaling
challenges from DRAM technology, future computer systems
need to adapt to the emerging memory technologies like
Phase-Change Memory (PCM or PRAM). While these newer
technologies offer advantages such as storage density, non-
volatility, and low energy consumption, they are constrained by
limited write endurance that becomes more pronounced with
process variation. In this paper, we propose a novel PRAM-
based main memory system, RePRAM (Recycling PRAM),
which leverages a group of faulty pages and recycles them
in a managed way to significantly extend the PRAM lifetime
while minimizing the performance impact. In particular, we
explore two different dimensions of dynamic redundancy levels
and group sizes, and design low-cost hardware and software
support for RePRAM. Our proposed scheme involves minimal
hardware modifications (that have less than 1% on-chip and
off-chip area overheads). Also, our schemes can improve the
PRAM lifetime by up to 43× (times) over a chip with no error
correction capabilities, and outperform prior schemes such as
DRM and ECP at a small fraction of the hardware cost. The
performance overhead resulting from our scheme is less than
7% on average across 21 applications from SPEC2006, Splash-
2, and PARSEC benchmark suites.

Keywords-Phase Change Memory, Lifetime, Redundancy,
Main memory, Performance

I. INTRODUCTION

Modern processor trends toward multi-core systems exert
increasing pressure on DRAM systems to retain the working
sets of all threads executing on the individual cores. This
has forced greater demands for main memory capacity
and density in order for the computer systems to keep up
with performance scalability while operating under limited
power budgets. As a result, it becomes necessary to explore
alternative emerging memory technologies such as Flash
and resistive-memory types such as Phase Change Memory
(PCM or PRAM) to reduce the overall system cost and
increase the storage density.

PCM, in particular, has been shown to exhibit enormous
potential as a viable alternative to DRAM systems because
it can offer up to 4× more density at only small orders
of magnitude (up to 4×) slowdown in performance [22].
PCM is made of chalcogenide glass, which has crystalline
and amorphous states corresponding to low (binary 1) and
high (binary 0) resistances to electric currents. There have
been recent proposals that look at using PCM-based hybrid
memory for future generation main memory [21].

A major challenge when using PCM as a DRAM replace-
ment arises from its limited write endurance. PCM-based
devices are expected to sustain an average of 108 writes
per cell, when the cell’s programming element breaks and
the write operations can no longer change the values. Most
of the existing solutions focus on wear-leveling [20] and
reducing the number of writes to PCM [14], [34]. Some
recent studies have looked at resuscitating the faulty pages
that were normally discarded as unusable by the memory
controller [5], [9], [24], [26], [32]. In this paper, we adopt a
similar goal of extending lifetime of PCM beyond the initial
bit failures.

Our objective behind rejuvenating faulty PCM blocks is to
put faulty blocks (that would otherwise be discarded by the
memory controller) back into use, i.e., not having to retire
them prematurely. As PCM-based memory begins to find
widespread acceptance in the market, memory manufacturers
will need to take system engineering costs into account.
Frequent replacement of failed memory modules can be cost
prohibitive, especially for large scale data centers.

In this paper, we propose that instead of completely
discarding a PCM page as soon as it becomes faulty, a
group of faulty pages could be recycled and utilized in
a managed way to significantly extend the PCM lifetime
while minimizing the performance impact. To this end, we
design RePRAM (Recycling PRAM), that explores advanced
dynamic redundancy techniques, while minimizing the com-
plexity of finding compatible faulty pages to store redundant
information. We explore varying levels of redundancy as
bits begin to fail. First, we add a redundant (parity) bit
for a given number of data bits. We call it as Parity-based
Dynamic Redundancy (PDR). As the number of faults per
page increase, we add more redundancy where we have one
redundant (mirror) bit for every data bit. We call this as
Mirroring-based Dynamic Redundancy (MDR).

We explore the redundancy techniques along two dimen-
sions, redundancy levels and group sizes (defined as the
number of faulty PCM pages that form a group together
for parity). In the first dimension, we investigate using
different redundancy levels to get extra lifetime in PRAM.
We begin with PDR, and as the number of faults per
page begin to rise, we switch to MDR to minimize the
complexity associated with finding compatible faulty pages.
For the second dimension, we explore varying group sizes



within PDR. Specifically, we investigate the design trade-
offs by adopting two and three pages for a PDR group,
and the resulting effects on storage efficiency, performance,
and hardware complexity in the system. While exploring
redundancy, we follow two rules: (1) Any two PCM pages
are deemed compatible with each other only when the
corresponding pages do not have faulty bytes in the same
byte position. (2) The PCM pages are discarded once they
have at least 160 faults, because finding compatible pairs of
pages becomes exponentially harder beyond this limit [9].

Our main motivation behind exploring dynamic
redundancy-based techniques to improving the lifetime of
PCM is driven by three factors:

• Increase the space efficiency in the usage of faulty
pages: In MDR configuration, we mirror identical data
on two compatible faulty PCM pages that effectively
replicates data across both pages. As a result, both the
PCM pages together store a single page worth of data,
i.e., the storage density is 50%. In PDR configuration, a
group G of n faulty pages have a dedicated block P, that
stores the parity values for all of the n pages. Therefore,
the storage density for n+1 (including the parity) pages
is n

n+1 . For example, with group size of 3, the storage
efficiency is 75% (25% more efficient than MDR), and
for group size of 2, the storage efficiency is 67% (17%
higher than MDR). At higher values of n, we get better
efficiency in terms of storage density, although finding
compatible pages for larger groups become increasingly
difficult.

• Utilize off-the-shelf memory components without ex-
tensive hardware redesign: Prior techniques such as
ECP [24] have to custom design the PCM chip to
integrate their lifetime-enhancing techniques. Such de-
signs increase the hardware cost, and more importantly,
reduce the flexibility of switching to other lifetime-
enhancing techniques in the future. To counter such
drawbacks, our goal is to maximize the use of off-the-
shelf components and include techniques that would
enhance lifetime with minimum changes to hardware
design.

• Explore design choices that will offer flexibility to the
user: The end-users can make an informed choice that
is most suitable to their needs under a given cost budget.

To summarize, the main contributions of RePRAM are:

1) We explore dynamic redundancy techniques to resus-
citate faulty PCM pages and investigate the merits of
different design choices toward improving the lifetime
of PCM-based Main Memory systems.

2) We propose low-cost hardware that can be combined
with off-the-shelf PCM memory and show that only
minimal hardware modifications are needed to imple-
ment RePRAM schemes. We also study how relatively

small DRAM buffers can be used to store parity pages
and reduce the performance impact.

3) We evaluate our design and show that we can improve
the PCM lifetime by up to 43× over raw PCM without
any Error Correction Capabilities at less than 1% area
overhead both on-chip and off-chip. Also, we incur less
than 7% performance overhead (average case), and less
than 16% performance overhead (stress case) across
SPEC2006 [27], PARSEC-1.0 [1] and Splash-2 [30]
applications.

II. BACKGROUND AND RELATED WORK

In this section, we present a brief overview of PCM main
memory or PRAM. We discuss prior research that have
studied extending PCM lifetime of PCM, and give a quick
review of redundancy based techniques to tolerate faults.

A. PCM based Main Memory and Wear-out Problem

DRAM, which has served as computer system main
memory for decades, is confronting scalability problems
as technology limitations prevent scaling cell feature sizes
beyond 32nm [18]. DRAM is also confronting power-related
issues due to high leakage caused by shrinking transistor
sizes. All of these have led to building main memory with
alternative emerging memory technologies such as Phase-
change Random Access Memory (PRAM).

An important consideration is PCM’s high operating tem-
peratures for set and reset operations that directly affect
the lifetime of PRAM devices. In particular, repeated reset
operations at very high temperatures cause to break the
programming circuit of phase change material, and perma-
nently reset the PCM cell into a state of high resistance.
This introduces limited endurance to PCM that significantly
restrains the use of PCM as a good replacement for DRAM-
based memory. Additional complications arise in PCM due
to process variation effects that could further decrease write
endurance in these devices.

B. Extending PCM Lifetime

To mitigate the effects of PCM’s limited endurance, prior
works have looked at better wear-leveling algorithms [20],
reducing write traffic to PCM memory through partial
writes [14], writing select bits [6], [33], randomizing data
placement [25], exploring intelligent writes [4], and using
DRAM buffers [21]. All these techniques focus on applying
their optimizations prior to the first bit failure. We note that
these techniques are complementary to our RePRAM, and
can contribute to even higher PCM lifetime when used in
conjunction with our techniques.

To the best of our knowledge, the first scheme to look at
reusing faulty pages was Dynamically Replicated Memory
(DRM) [9]. DRM forms pairs of faulty PCM pages that
do not have faults in the same byte position so that paired
pages can serve as replicas of one another. Redundant data



is stored in both pages to make sure that the system can
read a non-faulty version of the byte from at least one
of the pages. The idea behind pairing is that there is a
high probability of finding two compatible faulty pages and
hence, one could eventually reclaim what would otherwise
be a decommissioned memory space. While this is useful,
simply replicating the data in both pages can rapidly degrade
the effective capacity of the memory system. We note that,
by using replication scheme, DRM merely explores MDR
or mirroring. First of all, by using MDR for PCM pages
that have too few errors initially, DRM can waste a lot
of non-faulty bytes in the paired pages and unnecessarily
replicate the entire block. Secondly, writes need to update
both the mirror copies, which means that both pages will
endure increased wear, and subsequently result in expedited
aging of the pages contributing to their failures. In RePRAM,
we overcome the above disadvantages by exploring more
dynamic redundancy techniques like PDR, that reduce un-
necessary additional writes to PCM blocks. Further, we
combine several PDR configurations to explore design points
that will be most suitable to user’s needs.

Error Correcting Pointers (ECP) [24] is another tech-
nique that handles the errors by encoding the locations
of failed cells in a table and by assigning new cells to
replace them. The main disadvantage with this approach
is the complexity of changing PCM chip to accommodate
the dedicated pointers, as well as, the costs involved in
hardware redesign. ECP incurs a static storage overhead
of 12% to store these pointers. SAFER [26] dynamically
partitions the blocks into multiple groups, exploiting the
fact that failed cells can still be read and reuses the cell
to store data. LLS [10] is a line-level mapping technique
that dynamically partitions the overall PCM space into a
main space and a backup space. By mapping failed lines to
the backup, LLS manages to maintain a contiguous memory
space that provides easy integration with wear leveling.
When accessing a failed line, the request will be redirected
to access the mapped backup line through a special address
translation logic, which requires PCM chip redesign efforts
and also incurs extra latency and energy. LLS also relies
on intra-line salvaging, such as ECP, to correct initial cell
failures. RDIS [15] incorporates a recursive error correction
scheme in hardware to track memory cell locations that have
faults during write. In RePRAM, we use off-the-shelf PCM
storage and perform minimal changes to existing hardware,
which lowers the cost of redesign and helps us to minimize
the performance overheads.

FREE-p [32] performs fine-grained remapping of worn-
out PCM blocks without requiring dedicated storage for
storing these mappings. Pointers to remapped blocks are
stored within the memory block and the memory controller
adds extra requests for memory to read these blocks, which
results in additional bandwidth and latency overheads. As
the number of faults per block increase, this approach incurs

higher performance overheads due to sequential memory
reads and increased memory bandwidth demands. Whereas,
RePRAM incurs significantly lower performance overheads
as the memory requests to group blocks can be overlapped
and performed simultaneously (as shown in Section IV).

C. Redundancy-based Techniques

Storing redundant data to achieve high availability was
explored by Patterson, Gibson, and Katz for Redundant
Arrays of Inexpensive Disks (RAID) [17] in 1987, where
the original five RAID levels were presented as a low-
cost storage system. Since then, RAID has become multi-
billion dollar industry [12], and inspired many similar con-
cepts such as Redundant Arrays of Independent Memory
(RAIM) [8], Redundant Arrays of Independent Filesystems
(RAIF) [11], and so on. While our work leverages a number
of redundancy techniques, we actually aim to reuse faulty
PCM pages, whereas RAID was designed to recover the
data on a failed hard disk, which statistically has a higher
availability compared to average 108 writes per PCM cell.
In the context of PCM-based memory, we face a set of
new problems, such as mapping management, asymmetric
read/write performance, and limited write cycles. On the
very high level, our idea has similar spirit as HP AutoRAID
hierarchical storage system [29], where RAID 1 and 5 are
deployed at two different levels, with the former used for
high performance data access, and the latter for high storage
efficiency. In AutoRAID, the decision is made upon active
monitoring of workload access patterns and data blocks are
migrated automatically in the background. In contrast, our
RePRAM employs a unique redundancy level at different
stages of the PCM lifetime, which is selected to maximize
its usability and performance.

III. DESIGN OVERVIEW

In this section, we first describe the overview of our hard-
ware design and later show how our proposed modifications
can be incorporated into the multi-core processor hardware.
We also show the software support needed for RePRAM.

A. Incorporating Dynamic Redundancy Techniques into
PCM

In this paper, we assume that the PCM-based main
memory starts without any faults and has wear-leveling algo-
rithms in place to uniformly distribute the writes throughout
the pages. For each write to the page, a read-after-write is
performed to determine if the write succeeded. For cases
where Error Correcting Code (ECC) exists onchip, the
first few bit faults can be tolerated using these pre-built
schemes. In particular, SECDED (single-error correction,
double-error detection) ECC can correct one bit error, while
Hi-ECC [28] can correct up to four bit errors, both of
which can be utilized to tolerate errors before beginning to
use our RePRAM schemes. Note that this does not require



RePRAM intervention, and thus for the first few faults,
avoids performance impact on the applications. After the
point when the error correction capabilities can not tolerate
any more faults, the PCM-based main memory that did
not use any additional lifetime extension strategies, would
be forced to discard the faulty pages. Subsequently, this
would lead to a quickly diminishing capacity of the memory.
To maximize PCM lifetime with minimal overheads and
low cost, we propose RePRAM that recycles and leverages
advanced dynamic redundancy techniques in the context
of the PCM-based main memory. We devise a number of
hardware (and supporting software) techniques to realize the
full benefit of this new memory architecture.

In RePRAM, when the first fault in the PCM page k oc-
curs (beyond the tolerance limit of already incorporated error
correction schemes), we temporarily decommission this page
and place it in a separate pool of PCM pages POOLPDR,
where the faulty pages are waiting to be matched with other
compatible faulty pages. At this point, we disable the ECC
computation, an operation supported by most ECC-based
memory controllers [19]. We reuse the parity bits to store the
faulty byte vector within the already built-in parity support,
i.e., for each byte we have a bit to indicate whether it is
faulty or not. We start with the redundancy level of PDR,
in which a dedicated parity block is associated with a group
of data pages. Basically, we group multiple faulty PCM
pages that are compatible (i.e., do not have faults in the
same byte position) and use a separate high-performance
DRAM buffer to store the corresponding parity to minimize
the performance impact. The number of data pages per group
(n) is determined based on the matching complexity. Note
that for higher values of n, it becomes exceedingly difficult
to find compatible faulty pages.

When we decommission the PCM page k, we copy its
contents into one of the reserve PCM pages, which serve
to store the data in the faulty pages until the matching is
done. By default, we assume that there are 10,000 such
reserve PCM pages. To start, we randomly pick a group G
of compatible faulty pages from POOLPDR. Alternatively,
a low-cost approximate pairing algorithm similar to one in
DRM [9] can be used to assemble the group G of compatible
faulty pages from POOLPDR. The mapping information is
stored as tuples MAPPDR = {k1, k2, ..., kn, P}, where n is
the group size and P is the parity page, which are managed
by the Operating System (OS) (described in III-C). For
example, in a PDR group size of three, a tuple of the form,
{k1, k2, k3, P} is stored, where k1, k2, k3 are the compatible
faulty pages and P is the parity page. In the remainder of
this paper, we use a default group size of three for PDR
configuration as it is relatively less complex than higher
order matching, while offering much better data to parity
storage ratio than PDR with the group size of two.

We note that matching process (finding compatibility)
is much easier with pages that have fewer number of

!"
#"
$"
%"
&"

'!"
'#"
'$"
'%"
'&"
#!"

(
)
*
+,
-.
'
/"
'
!
0"

(
)
*
+,
-.
'
/"
#
!
0"

(
)
*
+,
-.
'
/"
1
!
0"

(
)
*
+,
-.
'
/"
$
!
0"

(
)
*
+,
-.
'
/"
2
!
0"

(
)
*
+,
-.
'
/"
%
!
0"

(
)
*
+,
-.
'
/"
3
!
0"

(
)
*
+,
-.
'
/"
&
!
0"

(
)
*
+,
-.
'
/"
4
!
0"

(
)
*
+,
-.
'
/"
'
!
!
0"

(
)
*
+,
-.
'
/"
'
'
!
0"

(
)
*
+,
-.
'
/"
'
#
!
0"

(
)
*
+,
-.
'
/"
'
1
!
0"

(
)
*
+,
-.
'
/"
'
$
!
0"

(
)
*
+,
-.
'
/"
'
2
!
0"

(
)
*
+,
-.
'
/"
'
%
!
0"

#56)7"8),9:;<="

156)7"8),9:;<="

Figure 1. Average number of random trials needed for the two-way
and three-way matching between faulty pages. Each pair of bars show the
number of tries needed for matching within the fault bounds indicated in
the x-axis. Faults are assumed to be randomly distributed within the 4 KB
PCM pages.

faults. This is especially true when using PDR, as the
cost associated with finding the three-way compatible pages
beyond a certain number of bit faults increases sharply. To
empirically evaluate the mapping process, we simulate the
trials needed for 2-way and 3-way matching under PDR.
Figure 1 presents the average number of the trails in both
cases. These experiments were done by assuming a pool
of one million 4KB pages and we averaged over 10,000
samples. We also tried a pool of 10,000 4KB pages with
over 1,000 samples and observed similar results. In the two-
way matching, we randomly pick two faulty pages and check
if they are compatible. If not, we repeat with another new
randomly picked page until we find a compatible set of
pages. The average number of tries needed is recorded. We
repeat our experiments by bounding our faults in various
ranges as shown in Figure 1. The same set of experiments
was done for the three-way matching for compatibility of
pages. Beyond 80 faults (we refer to this as three-way fault
threshold), we notice that the number of trials needed for
three-way matching is at least twice as the number of the
two-way trials and steeply increases from there. Therefore,
continuing to operate in PDR with group size of three
beyond the three-way fault threshold will be expensive for
matching algorithm that forms groups of compatible faulty
pages.

In order to bound the complexity associated with match-
ing, we explore two design dimensions after a faulty page
incurs the number of errors that is greater than the three-way
fault threshold:

1) Dim-1: Switch to MDR that employs the mirroring-
based dynamic redundancy technique, where we store
two identical copies of the data onto two different PCM
pages.

2) Dim-2: Reduce the PDR group size to two and continue
to operate under parity-based dynamic redundancy
mode to tolerate future faults.

We choose to explore the above two dimensions primarily
to provide more user-friendly options and allow the users to



Proc

L1 cache

L2 cache

Faulty page Bloom Filter

Map Cache
PDR

Map Cache
MDR

Not 
Faulty

Faulty

Proc

L1 cache

PCM Memory DRAM Buffer
(parity)

PDRMDR

Disk

2 31 1

(a) Dim-1

Proc

L1 cache

L2 cache

Faulty page Bloom Filter

Map Cache
PDR

Not 
Faulty

Faulty

Proc

L1 cache

PCM Memory DRAM Buffer
(parity)

PDR

Disk

1 2 or 3 1 

(b) Dim-2

Figure 2. Hardware modifications and structures (shown in gray boxes) needed to incorporate RePRAM into the processor hardware. The number of
memory requests issued to the memory structure is shown next to the arrows (e.g., PDR always issues 3 PCM requests in Dim-1 for a group size of 3;
whereas in Dim-2, the number of requests (2 or 3) depends on the current group size).

decide what is for their best interests. Our experiments quan-
tify the resulting lifetime and the associated performance
impact. We note that the end users should be able to choose
the configuration that suits their needs.

Dim-1: We switch to MDR mode when one of the newly
occurring fault in an already matched PCM page (in PDR)
surpasses the three-way fault threshold and renders the group
pages incompatible. This new fault will be detected by
the read-after-write operations in PCM-based memory [31].
When this happens, we reassign the faulty PCM page to
a new pool POOLMDR, where pages are waiting to be
matched with other compatible faulty pages in the mirroring
fashion. We use the MDR technique to tolerate bit faults
for the remaining portion of the pages’ lifetime and their
corresponding mappings are stored in MAPMDR, managed
by the OS. Similarly, the mappings can be represented as
tuples of {k1, k2} where k1 and k2 are compatible faulty
pages that mirror the content of each other. It is worthy to
point out that even after MDR mapping is adopted for some
PCM pages, other pages that are currently in MAPPDR

will continue to be in PDR mode until there is a need for
remapping these faulty pages.

Dim-2: In this case, throughout the lifetime of the device,
we continue to operate in the PDR mode where a group
of PCM pages have an associated parity page. The only
distinction is when a newly occurring fault surpasses the
three-way fault threshold and renders the already existing
group incompatible, where we downgrade the group size to
two. This results in the need for configuring the memory

controller to monitor for the group sizes corresponding
to faulty PCM page and MAPPDR tables to handle the
relevant group size information.

On a read to a main memory page k1, we first determine
whether the target page is faulty or not. If k1 is not faulty,
the memory request proceeds as usual. If it is faulty, we
determine whether k1 is in MAPPDR or in MAPMDR. The
accesses to MAPPDR and MAPMDR can be performed
in parallel. As the result, we obtain the corresponding
information on this group of blocks k2, k3, and P for PDR,
or alternatively, the information about the group block, k2
for MDR. Extra memory requests are issued by the memory
controller for the corresponding group blocks depending on
the PDR/MDR mapping. Upon reading the blocks, we use
the faulty byte vector (reused ECC parity bits) to determine
the locations of faulty bytes. Once the memory requests are
satisfied, the data block for k1 is reconstructed based on the
PDR parity or the MDR mirror. We note that these extra
requests could potentially lead to a performance bottleneck
by saturating the bus bandwidth and delaying the reads that
are on the critical path. In order to reduce the performance
overheads, additional optimizations such as a temporary
read buffer that stores reconstructed memory blocks shall
be used. Such optimizations can offer faster read accesses
to otherwise faulty memory blocks, however, care should
be taken to ensure that write accesses properly update the
actual PCM and parity blocks, keeping them consistent at
all times. To ensure data consistency, every write operation
should make sure to invalidate or update the appropriate read



buffer entries. Since writes are off the performance-critical
path, lazy invalidate or update schemes can be used for read
buffer entries.

On a write to a main memory page k1, we also determine
whether the target page is faulty or not. If faulty, we find
the corresponding group blocks from the mapping tables.
In case of MDR, we issue two memory requests to k1 and
k2. For PDR, we need to update only k1 and corresponding
parity, P . Therefore, the number of memory requests needed
for a write under RePRAM is always two, instead of (n+1)
memory requests needed for a read.

B. Hardware Implementation

The primary goal for RePRAM implementation is to
lower the cost and complexity of hardware design. Also, the
performance impact resulting from our proposed hardware
changes should not adversely affect the normal processor
performance. Figure 2 shows the hardware structures that
are needed to implement the RePRAM scheme in a cost-
effective manner with low performance overheads.

The first task is to find out whether a page is pristine or has
faults. A naive approach to detecting faulty pages is to make
memory controller perform additional readback after a write
to determine whether the write succeeded [9]. However,
performing repeated read-after-write requests during every
write operation can be time consuming and hence, we use
compact structures such as Bloom Filters [2] to record
information about the faulty pages. Once we determine the
faulty/pristine status of the page, we can allow the pristine
(fault-free) pages to directly access the memory as usual,
while the faulty pages can be directed to lookup one of the
MAP structures. One caveat with using structures such as
Bloom Filters is that they have a potential for false positives,
i.e., a page may be reported to be faulty when it actually
does not have faults. Fortunately, our experiments show a
negligible rate of false alarms, and usually such cases can
be addressed by checking if the page has an entry in one
of the MAP tables or by directly reading the faulty byte
vector associated with the PCM page.

Once the pages are determined to be faulty, the next
step is to check the associated mapping under MAPPDR

(and MAPMDR too for Dim-1). This is to reconstruct the
original data page for a read or update the necessary parity
information on a write corresponding to the faulty PCM
page. The mapping information is managed by the OS and
frequent invocation of the OS for mapping lookups can result
in expensive overheads. Hence, to speedup this process, we
use limited-entry caches, CACHEPDR and CACHEMDR

to temporarily store MAPPDR and MAPMDR respectively.
In our current implementation, we use two small 1024-entry
buffer caches to store the mappings. This organization is
similar to Translation Lookaside Buffers (TLB). Upon a
miss in both the mapping caches, the OS service routine
is invoked and a mapping lookup is performed. An entry is

created in the corresponding mapping cache depending on
the dynamic redundancy scheme under which the requested
page is mapped. We may remove an entry from the mapping
caches for the following reasons: (1) when one of the PCM
pages has suffered permanent failure (more than 160 bit
errors) and needs decommissioning, or (2) when PDR to
MDR remapping needs to be done due to increased matching
complexity associated with PDR. Note that, under Dim-
2, we would continue to remain in PDR mode, but with
different group sizes. However, due to decreasing group size
from three to two, previously formed groups may need to be
reorganized and would require us to flush the corresponding
entries from CACHEPDR.

We use a separate DRAM buffer to store the parity for
faster access by the multi-core processor, which we believe
is more cost-effective than simply investing on additional
PCM capacity for parity. This is mainly motivated by two
facts: (1) DRAM provides fast data access and does not
suffer from write endurance problem. Note that the parity
information needs to be accurate and cannot have errors in
order to recover the data from faulty PCM block. DRAM
buffer offers a much better alternative to PCM in this regard.
(2) The parity information is much smaller than data itself -
for a group of n data pages, there is only one corresponding
parity page. So, DRAM buffer can be a lot smaller than
the actual PCM-based RAM. A caveat, however, is that
parity information could be lost during power failure as
DRAM buffer only offers volatile storage. To counter this
problem, prior techniques such as Brant et al. [3] have
proposed a low cost, battery-powered Flash RAM backup
to store the contents of DRAM. As we will observe in our
evaluation (Section IV), fast accesses to parity offered by
DRAM buffers can easily outweigh the demerits of using
DRAM buffer (that can be handled through other low-cost
mechanisms). In this work, we use off-the-shelf components
in our hardware design without extensive modifications to
the hardware structures. We note that both the data and parity
pages would share the lower level disk for backup storage.

Finally, we would need to discard pages that have more
than 160 bit errors and decommission these pages for per-
manent failure. To do so, during rematching of pages (when
pages become incompatible upon errors in the corresponding
same byte position), we determine if the candidate pages
have more than 160 bit errors. We permanently mark such
pages for removal, and invoke the remapping algorithm to
reconstitute the other group pages associated with the failed
page under MDR or PDR.

C. Software Support for RePRAM

In RePRAM, the OS is responsible for managing the
mapping of faulty PCM pages, as well as parity pages.
The OS maintains two lists, the free list for DRAM parity
buffer, and the candidate list for faulty PCM pages. In the
beginning, the free list contains all the pages in the DRAM



buffer. Upon forming a new group of compatible faulty PCM
pages, one entry from DRAM buffer free list is allocated for
storing parity and this information is maintained in the OS.
When the group is disbanded due to incompatibility among
the pages, the OS will put the corresponding parity page
back into the free list. When the free list is empty, the OS
will stop the matching process.

The OS invokes the matching algorithm every time when
the memory controller detects a new faulty page or if
a page becomes incompatible with its group pages. This
new faulty PCM page is inserted into the candidate list
where compatible pages can be paired. The OS performs
random selection from the candidate list to quickly form a
group of the compatible pages. After a page is successfully
matched, it will be removed from the candidate list. Note
that our experiments show that not every fault result in
incompatibility between the group pages (see Section IV-D).
Remapping happens far less frequently than the number of
faults occurring in pages, which greatly reduces the OS
overhead for page remapping.

The OS manages the mapping between faulty PCM pages
using a hash table that is stored in a reserved area of the
memory address space. Assuming that we need to maintain
the mapping information for every page, the worst case
storage overhead for a 4GB PRAM with 4KB pages would
only be 2.5MB (20 bits per page for 1M pages). Also, that
the OS interventions for accessing and updating the mapping
information should be kept minimal in order to avoid high
performance overheads. As we show in Section IV, with
the help of mapping caches and dynamic redundancy levels,
RePRAM is able to minimize performance impacts on a
wide range of the benchmarks.

IV. EVALUATION

We first perform the experiments to analyze the extended
lifetime that can be achieved through RePRAM, and next
study the performance impact arising from our proposed
hardware changes. Finally, we present the sensitivity studies
that show the performance of our system under various
configurations. To present fair comparison results with prior
schemes, our configuration parameters are similar to, and
derived from earlier works such as DRM [9] and ECP [24].

A. Lifetime

Figure 3 compares the lifetime (measured as the total
number of writes that can be performed to the PCM) along
with the diminishing effective capacity left in the PCM
device. We show the results corresponding to both Dim-
1 and Dim-2 design choices, and contrast them with prior
schemes such as Fail Stop (that does not have any Error
Correction capabilities and discards a PCM block as soon as
the first fault occurs), DRM and ECP schemes. We assume
a baseline of 4GB PCM memory with 4KB page size, and
write operations happen on a granularity of 64Byte blocks.

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 

Ef
fe

ct
iv

e
 C

ap
ac

it
y 

Writes to PCM memory (trillions) 

FAIL STOP 

DRM 

Dim-1 

ECP 

Dim-2 

(a) variance=0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

Writes to PCM memory (trillions)

FAIL STOP

DRM

Dim1

ECP

Dim2

(b) variance=0.2

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0 5 10 15 20 25 30 35 40 45 50 55 

Ef
fe

ct
iv

e
 C

ap
ac

it
y 

Writes to PCM memory (trillions) 

FAIL STOP 

DRM 

Dim-1 

ECP 

Dim-2 

(c) variance=0.3

Figure 3. Effective capacity versus the total number of writes issued to
the PCM main memory.

In addition, we assume a 50% probability that any single
write operation would flip a particular bit. We model the
PCM cell lifetime to follow a normal distribution with a
mean of 108 and three different process variation factors of
0.1, 0.2, and 0.3 (shown in Figure 3).

Our experiments show that with a 4KB page size, there is
a high probability of at least one byte having a lifetime at the
tail-end of the normal distribution. This makes the Fail Stop
scheme quickly decommission all of the pages within a short
window of writes before the PCM’s effective capacity drops



to zero. This effect is especially more pronounced at higher
levels of process variation, as shown in our experimental
results. Although DRM is able to tolerate up to 160 faults in
each page before decommissioning the page for permanent
failure, the main disadvantage with DRM is that replicated
writes to two different pages speeds up the aging process
of both pages. DRM offers an extended lifetime of approx-
imately 0.13× to 22× over Fail Stop scheme depending on
the process variation factor. The third scheme, ECP, can
tolerate up to 6 faults in each 64 Byte block and a 4KB
PCM page is decommissioned as soon as the seventh fault
occurs in one of its constituent 64 Byte blocks. This lets ECP
achieve a lifetime improvement of 0.26× (variance=0.1) to
41× (variance=0.3) over Fail Stop.

Our RePRAM schemes achieve the lifetime results that
are comparable to, or better than, the ECP scheme at a small
fraction of the ECP’s hardware cost. In both dimensions, we
first deploy PDR that stores parity separately from PCM data
pages. Therefore, under PDR, PRAM capacity shrinks only
when PCM pages have reached 160 bit failures. This lets
the PRAM capacity to degrade gracefully in PDR. However,
under MDR, PRAM pages are mirrored onto each other and
the PRAM capacity degrades more rapidly. In Dim-1, we
initially deploy PDR with the group size of 3 to tolerate
faults, and after the PCM blocks begin to exhibit 80 faults
(three-way fault threshold shown in Figure 1), we switch
to MDR for the rest of PCM block’s lifetime. We can see
that Dim-1 design yields the lifetime results that are slightly
worse than ECP (1% when the variance is 0.1 to 9.5% when
the variance is 0.3). This shows a good trade-off from the
hardware cost perspective, as our design involves using most
off-the-shelf components versus the extensive modifications
to main memory design needed by ECP. Under Dim-2, we
also deploy PDR with the group size of 3 in the initial
stages, and after the PCM blocks begin to exhibit 80 faults,
we switch to PDR with the group size of 2 for the rest
of PCM bock’s lifetime. We find that Dim-2 exhibits better
lifetime than ECP (0.5% for the variance=0.1 to 4.4% when
the variance=0.3). Overall, the proposed RePRAM schemes
achieve good lifetime improvements for PCM, ranging from
0.26× (when the variance is 0.1 in Dim-1) to 43× (for the
variance of 0.3 in Dim-2) over Fail Stop.

One might argue about why low-cost schemes such as
RePRAM should be advantageous over ECP, when both
schemes have comparable lifetime results. We note that
ECP requires custom PRAM design, and offers a hardwired
solution at about 12% memory overhead where there is
less flexibility for users to upgrade to further lifetime-
enhancement techniques. In contrast, RePRAM uses off-the-
shelf modules and minimizes hardware changes for easier
adoption and for future upgrades.

B. Performance Impact

We evaluate the performance impact resulting from
RePRAM using SESC [23], a cycle-accurate, execution-
driven simulator. Our baseline system models an Intel
Nehalem-like four-core processor [7] running at 3GHz, 4-
way, out-of-order core, each with a private 32KB, 8-way set-
associative L1 and a shared 4MB, 16-way set-associative L2.
The L1 caches are kept coherent using the MESI protocol.
The block size is 64Bytes in all caches. We model 4GB PCM
main memory with 4KB pages with read access latency of
50ns and write access latency of 1µs [16]. For storing parity,
we include an additional 16MB DRAM that can accessed
simultaneously during the PRAM accesses. When DRAM
buffer is full, we model a 96000 cycle (32µs) latency to
write parity information to disk.

To model RePRAM effects, every L2 access first queries
a bloom filter, that has a three-cycle latency to deter-
mine whether the page is faulty or not. We use 1024-
entry CACHEMDR and CACHEPDR in our experiments,
where we observe an average miss rate of 3% (and 8%
worst case). Note that we do not assume fixed latencies for
memory lookups corresponding to MDR or PDR. Our con-
figuration setup has a common memory bus between cores
to fully model memory read/write latencies and bandwidth.

For faulty pages, in Dim-1, we access CACHEMDR

and CACHEPDR simultaneously each of which have a 2
cycle latency. In Dim-2, we just access CACHEPDR. On
a mapping cache miss, we model an additional latency of
500 cycles to perform mapping lookup from lower levels
of memory hierarchy and store it in the mapping cache for
future use. Upon receiving all the pages in a group, we have
a 20 cycle penalty for parity reconstruction and recovering
faulty bytes from mirror copies.

We show performance overheads on two sets of scenarios
for Dim-1 and Dim-2 configurations:

• average case: In this scenario, we assume that a ran-
domly picked page has 50% probability that it is faulty.
Therefore, a randomly picked 50% of the PCM pages
are considered to be faulty. Of these, 50% of faulty
pages (25% of the total pages) are mapped under PDR
(group size = 3), and 50% (25% of total pages) are
under MDR in Dim-1 and under PDR (group size =
2) in Dim-2. The remaining 50% of total pages are
assumed to be non-faulty.

• stress case: In this scenario, we assume that a randomly
picked page is always faulty. Of these, a randomly
picked 50% of the PCM pages are mapped under PDR
(group size = 3). The remaining 50% pages are under
MDR in Dim-1, and under PDR (group size = 2) in
Dim-2.

We use 21 different memory-intensive and CPU-intensive
application mix from SPEC2006 [27], PARSEC-1.0 [1] and
Splash-2 [30] benchmark suites with reference input sets.



0% 
1% 
2% 
3% 
4% 
5% 
6% 
7% 

as
ta

r 

b
zi

p
2

 

gc
c 

go
b

m
k 

lib
q

u
an

tu
m

 

m
cf

 

o
m

n
et

p
p

 

p
er

lb
en

ch
 

xa
la

n
cb

m
k 

ca
ct

u
sA

D
M

 

G
em

sF
D

TD
 

so
p

le
x 

sp
h

in
x3

 

SP
EC

 a
vg

 

b
la

ck
sc

h
o

le
s 

fl
u

id
an

im
at

e 

sw
ap

ti
o

n
s 

st
re

am
cl

u
st

er
 

b
o

d
yt

ra
ck

er
 

PA
R

SE
C

 a
vg

 

b
ar

n
es

 

ch
o

le
sk

y ff
t 

ra
d

ix
 

w
at

er
-n

2
 

w
at

er
-s

p
 

fm
m

 

o
ce

an
 

ra
d

io
si

ty
 

ra
yt

ra
ck

 

lu
 

vo
lr

en
d

 

SP
LA

SH
 a

vg
 P

e
rf

o
rm

an
ce

 o
ve

rh
e

ad
 

Dim-1 

Dim-2 

SPEC2006 PARSEC SPLASH2 

(a) Average case

0% 
2% 
4% 
6% 
8% 

10% 
12% 
14% 
16% 
18% 

as
ta

r 

b
zi

p
2

 

gc
c 

go
b

m
k 

lib
q

u
an

tu
m

 

m
cf

 

o
m

n
et

p
p

 

p
er

lb
en

ch
 

xa
la

n
cb

m
k 

ca
ct

u
sA

D
M

 

G
em

sF
D

TD
 

so
p

le
x 

sp
h

in
x3

 

SP
EC

 a
vg

 

b
la

ck
sc

h
o

le
s 

fl
u

id
an

im
at

e 

sw
ap

ti
o

n
s 

st
re

am
cl

u
st

er
 

b
o

d
yt

ra
ck

er
 

PA
R

SE
C

 a
vg

 

b
ar

n
es

 

ch
o

le
sk

y ff
t 

ra
d

ix
 

w
at

er
-n

2
 

w
at

er
-s

p
 

fm
m

 

o
ce

an
 

ra
d

io
si

ty
 

ra
yt

ra
ck

 

lu
 

vo
lr

en
d

 

Sp
la

sh
2

 a
vg

 P
e

rf
o

rm
an

ce
 o

ve
rh

e
ad

 

Dim-1 

Dim-2 

SPEC2006 PARSEC SPLASH2 

(b) Stress case

Figure 4. Performance Overheads of RePRAM on Spec2006, PARSEC-1.0 and Splash-2 applications.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

Writes to PCM memory (trillions)

60 faults

80 faults

100 faults

120 faults

140 faults

Figure 5. Lifetime comparison for various configurations of Dim-1 (at
variance=0.2). For each configuration, we use PDR until the specified
number of faults, and later we switch over to MDR for the rest of the
PCM block’s lifetime.

For SPEC2006 and PARSEC applications, we fast forward
the first five billion instructions and simulate the next one
billion in detail. For Splash2 applications, we simulate them
from start to end. In addition, we run SPEC2006 benchmarks

as single-core applications individually one at a time. For
PARSEC and Splash2 benchmarks, we spawn four parallel
threads, one each on every core that share L2 and lower
level memory substructures.

Figure 4(a) shows the performance impact of our
RePRAM schemes in the average case scenario. We see
that, all 21 of our applications show the overheads less
than 7%, and the highest performance overhead (6.2%)
occurs in cactusADM, followed by 5.9% for gcc in Dim-
2. Under Dim-1, we notice an average of 1.87%, 0.8%, and
1.5% across SPEC2006, PARSEC and Splash2 respectively,
whereas the corresponding averages under Dim-2 are 2.2%,
0.8%, and 1.7%. We notice an increased memory access
rate in Dim-2 (due to continuous use of PDR configuration)
along with a higher rate of misses in mapping caches
contribute to increased performance impact than Dim-1. This
effect is especially pronounced in benchmarks such as gcc,
cactusADM, and mcf. Also, issuing multiple requests for
group pages creates contention for memory bus bandwidth
and degrades performance in benchmarks such as fft, ocean,
and volrend.



0% 

3% 

6% 

9% 

12% 

15% 

18% 

21% 

24% 

as
ta

r 

b
zi

p
2

 

gc
c 

go
b

m
k 

lib
q

u
an

tu
m

 

m
cf

 

o
m

n
et

p
p

 

p
er

lb
en

ch
 

xa
la

n
cb

m
k 

ca
ct

u
sA

D
M

 

G
em

sF
D

TD
 

so
p

le
x 

sp
h

in
x3

 

b
la

ck
sc

h
o

le
s 

fl
u

id
an

im
at

e 

sw
ap

ti
o

n
s 

st
re

am
cl

u
st

er
 

b
o

d
yt

ra
ck

er
 

b
ar

n
es

 

ch
o

le
sk

y ff
t 

ra
d

ix
 

w
at

er
-n

2
 

w
at

er
-s

p
 

fm
m

 

o
ce

an
 

ra
d

io
si

ty
 

ra
yt

ra
ck

 

lu
 

vo
lr

en
d

 

P
e

rf
o

rm
an

ce
 o

ve
rh

e
ad

 
4MB 16MB 32MB 

SPEC2006 PARSEC SPLASH2 

Figure 6. Performance overheads for different sizes of DRAM buffer in PDR (average case).

Figure 4(b) shows the performance impact of our
RePRAM schemes in the stress case scenario. We see that,
all 21 of our applications show the overheads less than 16%,
and the highest overhead (15.5%) occurs in gcc, followed
by 12.4% for cactusADM in the Dim-2 design. In Dim-1,
we notice an average of 3.78%, 1.64%, and 2.65% across
SPEC2006, PARSEC and Splash2 respectively, whereas the
corresponding averages in Dim-2 are 4.66%, 2.71%, and
3.16%. Due to multiple memory accesses (depending on
the group size) and demand for mapping cache entries, we
notice an increased average performance impact in Dim-2
than Dim-1 across various benchmark suites. Particularly,
this effect is seen in benchmarks such as gcc, mcf, and
fluidanimate. Similarly, issuing multiple requests incurs per-
formance impact in benchmarks such as cactusADM, fft,
and ocean.

C. Area Overheads

We use Cacti 5.3 [13], an integrated model for cache
and memory access time, cycle time, area, leakage and
dynamic power. We use this tool to model our two 1024-
entry mapping caches, and a compact bloom filter that
has space to store 1 million PCM page entries inside the
processor chip. We assume that these hardware structures
would be integrated with an on-chip memory controller. We
use 45 nm technology node in our experiments.

Table I shows the area estimates of our proposed
RePRAM hardware. We find that our area overheads both
on-chip and off-chip are less than 1% and our proposed
hardware can be easily integrated into the existing processors
with minimal changes. We note that this is much cheaper
than prior works such as ECP [24] that incur substantial
area overheads to store replacement bits along with addi-
tional circuitry like row-decoders in order to store the error
correcting pointers.

Processor Die 263 mm2 [7]
Bloom Filter 2.25 mm2

CACHEPDR 0.08 mm2

CACHEMDR 0.08 mm2

On-chip area overhead 0.92%
16 MB DRAM Buffer overhead
(compared to 4GB PRAM) <0.5%

Table I
AREA OVERHEADS OF ON-CHIP MAPPING CACHES, BLOOM FILTER AND

OFF-CHIP DRAM BUFFER IN REPRAM.

D. Sensitivity Experiments

In this subsection, we present further analysis to show how
our RePRAM schemes behave under various parameters and
possible configurations. We show that such analyses present
key insights to the user along with experimental justification
for choosing user-desirable set of parameters toward building
the RePRAM system.

1) Lifetime vs. Redundancy Levels: In Dim-2, PDR is
used throughout the lifetime of PCM device. An advantage
of using just PDR is that every PCM block incurs only
the write operations directly intended for them, i.e., the
use of PDR configuration itself does not impose additional
writes to the PCM blocks. However, in Dim-1, we switch
to MDR beyond a specific point in time and this may likely
accelerate the wear-out of PCM blocks. Since mirroring
duplicates the writes to two different PCM blocks, every
write ages two separate PCM blocks, contributing to the
diminishing capacity of the PCM device. Therefore, we seek
to investigate when to switch to MDR during the lifetime of
the PCM block.



0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

M
at

ch
in

g 
al

go
ri

th
m

 in
vo

ca
ti

o
n

s 

Normalized block lifetime 

(a) variance=0.1

3

4

5

6

7

8

9

10

M
a

tc
h

in
g

 a
lg

o
ri

th
m

 i
n

v
o

ca
ti

o
n

s

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
a

tc
h

in
g

 a
lg

o
ri

th
m

 i
n

v
o

ca
ti

o
n

s

Normalized block lifetime

(b) variance=0.2

3

4

5

6

7

8

9

10

M
a

tc
h

in
g

 a
lg

o
ri

th
m

 i
n

v
o

ca
ti

o
n

s

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
a

tc
h

in
g

 a
lg

o
ri

th
m

 i
n

v
o

ca
ti

o
n

s

Normalized block lifetime

(c) variance=0.3

Figure 7. Frequency of invocation of matching algorithm through PRAM
block’s lifetime.

Figure 5 presents comparison of lifetime for various
configurations of Dim-1. In each case, we begin with PDR
with group size of 3. After we cross a “specific number
of faults” shown in each configuration, we switch to MDR
where data is mirrored onto two PCM blocks. It is important
to note that, as we begin to operate in PDR mode with
higher number of faults, the cost associated with three-way
mapping increases sharply (Section III-A). For example,
the average number of random trials to complete a three-
way matching for PCM blocks with up to 80 faults is

one more than three-way matching for up to 60 faults and
the corresponding lifetime improvement is 2.1%; whereas,
the number of trials to do three-way matching for PCM
blocks with up to 140 faults is ten-fold compared to the
blocks with up to 60 faults and the corresponding lifetime
improvement is 5.2%. Our experiments clearly show that
there are diminishing returns in PCM lifetime improvement
if we try to remain longer under PDR with higher order
group sizes.

2) Sensitivity of PDR to DRAM Buffer Size: A factor that
could be critical to minimizing the performance impact in
PDR is the size of DRAM buffer (that we use for parity
lookup). To investigate this effect, we present additional
experiments to determine the size of DRAM buffers needed
for storing the parity in our benchmarks. Due to smaller ratio
of parity to PCM data pages, we find that relatively smaller
DRAM buffer sizes (compared to PCM main memory)
work very well toward minimizing the overall performance
impact. Figure 6 shows the overheads experienced by PDR
when we experiment with 3 different DRAM buffer sizes,
viz., 4MB, 16MB and 32MB. Our results show that 16MB
is sufficient to keep the performance overheads at less than
7% (average case), while the 4MB DRAM buffer incurs
high performance overheads of up to 23% in libquantum
and xalancbmk benchmarks. A 32MB DRAM buffer shows
negligible benefit over 16MB for performance overheads in
almost every benchmark, indicating that DRAM capacity
(above 16MB) is no longer a bottleneck beyond the initial
compulsory misses to parity information. This result shows
that the amount of DRAM buffer needed to maintain low
performance overheads across the three benchmark suites is
just 1

256 th of the capacity invested in PCM main memory.
Furthermore, this 16MB DRAM buffer has shown less than
16% overheads even for the stress case (seen in Figure 4(b)).

3) Frequency of Matching Algorithm Invocations: To
understand the OS and software overhead, we perform the
experiments to quantify the average number of times that
matching algorithm needs to be invoked during a PRAM
block’s lifetime. Figure 7 presents the results for process
variation factors of 0.1, 0.2 and 0.3. In this test, we count
the number of writes (presented as normalized lifetime), that
has been performed to a PRAM block, before the block
encounters the first bit fault. Now that the block is no longer
pristine, the matching algorithm is invoked to find a group
of compatible blocks. As additional writes are performed to
this block and its group pages, they incur more bit faults,
and eventually become incompatible due to faults in the
same byte positions. At this point, the matching algorithm
needs to be invoked again to find a new set of compatible
pages for this faulty PCM block. We repeat this matching
process until the PRAM block has exceeded 160 bit faults
(when we discard the block permanently). From Figure 7,
we can see that matching algorithm invocations are often
clustered towards the end of PRAM block’s lifetime for



process variation of 0.1, while it is more spaced out for
process variation of 0.3. In all of the cases, we find that
average number of matching algorithm invocations is less
than 10 throughout the PRAM block’s lifetime. Clearly,
the matching algorithm accounts for a small fraction of
performance overhead in comparison to the actual writes
performed on the PRAM block.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we explore a number of dynamic redundancy
techniques to resuscitate faulty PCM pages and improve the
lifetime of PCM-based main memory systems. We explore
different design choices along two dimensions namely, 1)
switching from PDR to MDR, and 2) reducing the group size
in PDR from three to two. We show that, by intelligently
combining the use of PDR and MDR schemes, the lifetime
of PRAM can be improved by upto 43× over Fail Stop.

As future work, we plan to extend RePRAM to incorpo-
rate application-specific characteristics and system energy
awareness. We will focus on capturing the key features of
the memory-intensive applications, and tune the hardware to
adjust to the performance demands and energy constraints.
Furthermore, we will extend this work by investigating
other resistive memory technologies, as well as, system-
level effects needed to tolerate failures resulting from write
endurance limitations inherent in some of these devices.

VI. ACKNOWLEDGMENTS
This material is based upon work supported in part by the

National Science Foundation under CAREER Award CCF-
1149557, and grants CCF-1117243 and OCI-0937875.

REFERENCES
[1] C. Bienia, S. Kumar, J.P. Singh, and K. Li. The PARSEC

Benchmark Suite: Characterization and Architectural Impli-
cations. Princeton University Technical Report TR-811-08,
January 2008.

[2] Burton H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Commun. ACM, 13:422–426, July 1970.

[3] William A. Brant, Michael E. Nielson, and Edde Tin-Shek
Tang. Power failure responsive apparatus and method having
a shadow dram, a flash rom, an auxiliary battery, and a
controller. In US Patent 5,799,200, 1998.

[4] Jie Chen, R. C. Chiang, H. Howie Huang, and Guru
Venkataramani. Energy-aware writes to non-volatile main
memory. SIGOPS Oper. Syst. Rev., 45(3):48–52, January
2012.

[5] Jie Chen, Zachary Winter, Guru Venkataramani, and
H. Howie Huang. rpram: Exploring redundancy techniques
to improve lifetime of pcm-based main memory. In Pro-
ceedings of the 2011 International Conference on Parallel
Architectures and Compilation Techniques, 2011.

[6] Sangyeun Cho and Hyunjin Lee. Flip-n-write: a simple
deterministic technique to improve pram write performance,
energy and endurance. In MICRO, 2009.

[7] Intel Corporation. Intel core i7-920 processor.
http://ark.intel.com/Product.aspx?id=37147, 2010.

[8] Dave Hayslett. System z redundant array of independent
memory. In IBM SWG Competitive Project Office, 2011.

[9] Engin Ipek, Jeremy Condit, Edmund B. Nightingale, Doug
Burger, and Thomas Moscibroda. Dynamically replicated
memory: building reliable systems from nanoscale resistive
memories. In ASPLOS, 2010.

[10] Lei Jiang, Yu Du, Youtao Zhang, B.R. Childers, and Jun Yang.
Lls: Cooperative integration of wear-leveling and salvaging
for pcm main memory. In DSN, pages 221 –232, june 2011.

[11] Nikolai Joukov, Arun M. Krishnakumar, Chaitanya Patti,
Abhishek Rai, Sunil Satnur, Avishay Traeger, and Erez Zadok.
Raif: Redundant array of independent filesystems. MSST,
0:199–214, 2007.

[12] Randy H. Katz. Raid: A personal recollection of how storage
became a system. Annals of the History of Computing, IEEE,
32(4), 2010.

[13] HP Labs. Cacti 5.3. http://quid.hpl.hp.com:9081/cacti/, 2010.
[14] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger.

Architecting phase change memory as a scalable dram alter-
native. In ISCA, 2009.

[15] Rami Melhem, Rakan Maddah, and Sangyeun Cho. Rdis: a
recursively defined invertible set scheme to tolerate multiple
stuck-at faults in resistive memory. In Proceedings of the
International Conference on Dependable Systems and Net-
works, 2012.

[16] Numonyx. Phase change memory: A new memory
to enable new memory usage models. White Paper
http://www.numonyx.com/, 2009.

[17] David A. Patterson, Garth Gibson, and Randy H. Katz. A case
for redundant arrays of inexpensive disks (raid). In SIGMOD,
pages 109–116, 1988.

[18] Devices Process Integration and Structures. International
technology roadmap for semiconductors. http://www.itrs.net,
2007.

[19] Feng Qin, Shan Lu, and Yuanyuan Zhou. Safemem: Ex-
ploiting ecc-memory for detecting memory leaks and memory
corruption during production runs. In HPCA, 2005.

[20] Moinuddin K. Qureshi, John Karidis, Michele Franceschini,
Vijayalakshmi Srinivasan, Luis Lastras, and Bulent Abali.
Enhancing lifetime and security of pcm-based main memory
with start-gap wear leveling. In MICRO, 2009.

[21] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and
Jude A. Rivers. Scalable high performance main memory
system using phase-change memory technology. In ISCA,
2009.

[22] S. Raoux, G. W. Burr, M. J. Breitwisch, C. T. Rettner, Y.-C.
Chen, R. M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L.
Lung, and C. H. Lam. Phase-change random access memory:
a scalable technology. IBM J. Res. Dev., 52, July 2008.

[23] Jose Renau et al. SESC. http://sesc.sourceforge.net, 2006.
[24] Stuart Schechter, Gabriel H. Loh, Karin Straus, and Doug

Burger. Use ecp, not ecc, for hard failures in resistive
memories. In ISCA, 2010.

[25] Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee.
Security refresh: prevent malicious wear-out and increase
durability for phase-change memory with dynamically ran-
domized address mapping. In Proceedings of the 37th annual
international symposium on Computer architecture, 2010.

[26] Nak Hee Seong, Dong Hyuk Woo, Vijayalakshmi Srinivasan,
Jude A. Rivers, and Hsien-Hsin S. Lee. Safer: Stuck-at-fault
error recovery for memories. In MICRO, 2010.

[27] Standard Performance Evaluation Corporation. SPEC Bench-
marks. http://www.spec.org, 2006.

[28] Chris Wilkerson, Alaa R. Alameldeen, Zeshan Chishti, Wei
Wu, Dinesh Somasekhar, and Shih-lien Lu. Reducing cache
power with low-cost, multi-bit error-correcting codes. In
ISCA, 2010.

[29] John Wilkes, Richard Golding, Carl Staelin, and Tim Sullivan.
The hp autoraid hierarchical storage system. ACM Trans.
Comput. Syst., 14, February 1996.

[30] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta.
The splash-2 programs: Characterization and methodological
considerations. In ISCA, June 1995.

[31] B. Yang, J. Lee, J. Kim, J. Cho, S. Lee, and B. Yu. A
low power phase change random access memory using a data
comparison write scheme. In ISCAS, 2007.

[32] Doe Hyun Yoon, Naveen Muralimanohar, Jichuan Chang,
Parthasarathy Ranganathan, Norman P. Jouppi, and Mattan
Erez. Free-p: Protecting non-volatile memory against both
hard and soft errors. In HPCA, February 2011.

[33] Wangyuan Zhang and Tao Li. Characterizing and mitigating
the impact of process variations on phase change based
memory systems. In MICRO, 2009.

[34] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. A
durable and energy efficient main memory using phase change
memory technology. In ISCA, 2009.


