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Abstract—Server farms are becoming increasingly energy-
hungry with the growing popularity of web-based applications
and services. Servers consume nearly 60% of peak power even
when operating at relatively low server utilization levels of around
30%. Unfortunately, most server farms are generally provisioned
to accommodate the peak load, and wasteful energy is often
spent on unnecessarily keeping the servers active. Recent work on
utilizing processor sleep states has mitigated the energy problem,
but more opportunities to optimize energy remain to be explored.
In this paper, we explore techniques that make smart use of
the processor deep sleep states through augmenting them with
dual delay timers for more effective energy management in the
multi-server environment. We find that our exploratory studies
on smarter use of processor sleep states with dual delay timers
show good promise in achieving higher energy savings on different
kinds of synthetic and real workloads. Our experimental results
show that our techniques achieve up to 71% savings in energy
over naive energy management without the use of low-power sleep
states, and up to 31% energy savings over a relatively smarter
energy management mechanism with just a single delay timer to
enter the sleep state. We also show that the normalized latency
of jobs on a server farm with our dual delay timer strategy is
almost similar to the one that is always ready to accept incoming
jobs.

Keywords—Server Farm; Energy Optimization; Processor Sleep
States; Dual Delay Timer

I. INTRODUCTION

Energy footprint of large-scale server farms, especially data
centers, has grown rapidly, accounting for nearly 2% of the US
domestic energy consumption [1], [2]. Increasing demand from
users for personalized and contextual retrieval of large volumes
of data and the associated computations have exacerbated the
energy issues [3]. Most server farms have traditionally been
provisioned for peak demand, and configured to operate at
capacities much higher than necessary. Studies by Barroso et
al. [4] have shown that the servers in data center environments
are typically utilized at only 30% of their potential while
drawing almost 60% of the peak power. This disproportionality
in server utilization versus energy consumption occurs largely
as a result of ineffective system-wide energy management
techniques and the over-provisioning of servers without un-
derstanding or even considering the workload characteristics.
Therefore, new and effective system-wide energy management
techniques, that are aware of workload characteristics, are
needed.

While several prior studies have considered DVFS (Dy-
namic Voltage Frequency Scaling) to achieve dynamic power

savings, at relatively low processor utilization levels seen in
many data center environments, utilizing processor sleep states
or low-power states to conserve system energy can be even
more effective. This is because, using the sleep states, the
processor could halt the operation of (i.e., de-activate) various
units on the chip or the motherboard to achieve both static and
dynamic power savings. However, we note that waking up a
processor to transition from a low-power state to active state
is not instantaneous and incurs high performance overheads.
Therefore, a smart use of processor sleep states is necessary to
achieve higher energy savings in the server farm environment.

Recent work (e.g., [5]) has explored the use of sleep states
in mitigating the energy issues; yet many more opportunities
exist for energy optimization. In this paper, we propose the
use of processor idle and deep sleep states combined with
dual delay timers to orchestrate the entry and exit from these
low-power states and maximize system energy savings across
different types of workloads. We also study the effectiveness of
our techniques for various job arrival patterns and real-world
workloads such as Wikipedia trace [6].

We note that the energy savings can be further enhanced
when our approach is used in conjunction with other features
such as DVFS. For clarity purposes and to minimize the im-
plementation complexity, we will limit our exploratory studies
in this work to primarily using just the processor sleep states.

Exploring autonomous frameworks that perform system-
wide energy management are essential for effective energy
management in server farms. As users increasingly turn to us-
ing modern computing environments such as cloud computing,
manual energy optimization or policy construction becomes an
impractical task. Also, while server-level energy optimization
strategies already exist, global energy management can pro-
vide much higher benefit than locally optimal energy saving
policies. Therefore, we envision that our framework will have
a direct benefit to data center operations.

In summary, the contributions of our paper are:

1) We propose a Dual Delay Timer based algorithm that
makes smart use of the existing processor and platform sleep
states to achieve higher energy savings in comparison to ex-
isting approaches that simply use a single delay timer strategy
to enter and exit sleep states.

2) We investigate the relationship between server utiliza-
tion and job service time combined with the use of processor
low-power states and delay timers. We explore the effects of



these various parameters on overall system energy manage-
ment.

3) We evaluate our energy-saving techniques for different
job arrival patterns – random job arrivals modeled using
Poisson Process, and bursty job arrivals modeled using Markov
Modulated Poisson Process (MMPP). We also show our frame-
work’s benefit with jobs of different sizes.

4) We show our experimental results with four syn-
thetic workloads and a real system job trace from Wikipedia
servers [6] that has a random (unknown) job arrival distribu-
tion. Our experimental results show that our techniques achieve
up to 71% savings in energy over naive energy management
without the use of low-power sleep states, and up to 31%
energy savings over a relatively smarter energy management
mechanism with just a single delay timer to enter the sleep
state. We also show that the normalized job latency with our
Dual Delay Timer strategy is similar to the latency in the case
when the servers are always active and ready to execute jobs.

5) We explore the scalability of our proposed techniques
in server farms by varying the number of servers from 20 to
100. Our results show good promise for scaling as we increase
the number of servers.

II. SYSTEM MODEL AND SIMULATION PLATFORM

A. Processor Low Power Modes

Emerging from embedded devices, low-power states are
now an important feature targeted for power management in
modern computer systems. The Advanced Configuration and
Power Interface (ACPI) [7] provides a standardized specifi-
cation for platform-independent power management. ACPI-
defined interfaces have been adopted by several major operat-
ing system vendors [8], [9] and supported by various hardware
vendors such as Intel and IBM [10], [11]. ACPI uses global
states, Gx, to represent states of the entire system that are
visible to the user. Within each Gx state, there is one or
more system sleep states, denoted as Sx. For instance, S0
is the working state and S1 is the low-latency sleep state.
When a computer system is in the S0 state, the processor
is allowed to reside in a set of C states such as C0, C1
and C2. A higher-numbered C state typically indicates more
aggressive energy savings but also corresponds to longer
wake-up latency. Modern processors generally provide high
parallelism by integrating multiple cores within one package.
Typically, low-power sleep states are supported at both core
level and package level. The package C state is automatically
resolved to the shallowest sleep state among all the cores.
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Fig. 1: Server power states and their corresponding Transition
(TT) and Wakeup (WT) times (in seconds).

Components Active Idle Deep Sleep
C0S0a C0S0i G1S3

Cores [10], [5] 130 W 75 W 16 W
Chipset [5] 7.8 W 7.8 W 7.8 W
RAM [5] 23.1W 10.4 W 3.0 W
HDD [5] 6.2 W 4.6 W 0.8 W
NIC [5] 2.9 W 1.7 W 0.5 W
PSU [5] 70 W 35 W 1 W

Cooling [5] 10 W 1 W 0 W
Total Power 250 W 135.5 W 29.1 W

TABLE I: Power breakdown for an Intel Xeon-E5 based server.

In this paper, we use the low-power states from the Intel
Xeon E-5 processor [10] (shown in Figure 1). Table I shows
the power model illustrating the power consumption by various
units in a given low-power mode. Note that the C states
mentioned in our power model refer to package level C states.
We conservatively assume that the processor consumes peak
power in active state regardless of the actual number of busy
cores. Similar assumptions are also adopted in [12], [13].

B. Server, Job, and Workload Model

We model the server farm as a multi-server system of
homogeneous servers. Each server is equipped with an Intel
Xeon processor that can process four jobs at a time. In this
paper, we use four synthetic workloads with average workload
execution times shown in brackets next to them: Google search
(4.2 ms), Apache (75 ms), Mail (92 ms) and DNS query (194
ms) jobs [14], and one real system trace, Wikipedia, with
an average workload execution time of 3.5 ms [6]. The term
utilization factor ⇢ is defined as the fraction of time the server
is expected to be busy executing jobs.

We assume that a system-wide load balancer dispatches
jobs to the servers. The job latency is defined as the time
elapsed from when a job arrives to when the job completes
its execution and departs the server farm. In this paper, we
monitor the average job latency (normalized with respect to
the average expected execution time) and ensure that the worst
case job latency is within bounds to meet Quality of Service
constraints.

C. Simulation Platform

We have built an in-house event-driven simulator to analyze
the energy savings of our approach. Even though several well-
known data center and cloud simulators exist (such as [15],
[16]), they do not fit our needs: we need a simulator that
provides fine-grained modeling of sleep states and control
of sleep state transitions as well as a basic framework to
manipulate server power states in a centralized manner. More-
over, to analyze a wide range of workloads and applications,
the simulator also needs to accept both synthetic workloads
and realistic workloads from system traces. Our simulator has
three major components: workload generator, server power
state/performance manager, and server farm job handler/load
balancer. The workload generator injects jobs into the system
based on either a stochastic process (for synthetic workloads
such as Google search, Apache, Mail, and DNS) or system
job arrivals/service time traces collected from realistic data
centers (for Wikipedia workload). The power state manager
models various sleep states and is responsible for coordinating



the servers to enter or wake up from a specific sleep state. For
example, the power state manager can request a server to enter
deep sleep (G1S3 state) immediately or after a certain delay
timer value. Our simulator reports detailed statistics including
the breakdown of server energy and performance measures
such as the job latency characteristics.

D. Simulation Setup

To exploit the use of sleep states for energy optimization,
we simulate a server farm with 50 four-core servers. In the
rest of the paper, unless otherwise noted, we assume this to be
our default configuration. We configure the duration of our
simulations to be long enough for the type of workload –
for example, the simulation length for DNS workload (with
largest job size) to be 20,000 seconds, which means roughly
40,000 jobs would be processed per server on average at server
utilization of 0.1 and an even higher number of jobs at higher
utilization levels. We then scale the execution time for other
workloads based on their job sizes. As a result, Mail, Apache,
and Google search would have simulation times of 10000,
8000, and 1000 seconds, respectively. These simulation lengths
are also configured to ensure that enough number of bursty and
non-bursty phases would be observed in our experiments where
we model non-uniform job arrivals (Section IV-C). Also, in all
of our experimental results, we report the steady state statistics
by disregarding the warm-up time period during the first 10000
jobs arrivals.

E. Workload Generation

We use three types of workload arrival models. By default,
we use Poisson Process for job arrivals, which is widely used
in prior works to model data center workloads [12], [14]. To
model bursty patterns in job arrivals that are also typically
seen in data center environments, we use Markov Modulated
Poisson Process, a well studied model to simulate workload
burstiness [17], [18], [19]. Aside from such analytical models,
we also use Wikipedia workload, a realistic system trace
available for public use [6]. For the first two cases, we
simulate three different levels of system utilizations (0.1 for
low utilization, 0.3 for average utilization [4], 0.6 for high
utilization).

Poisson-based job arrivals: The job service times are mod-
eled as a uniform distribution with a mean service time, 1/µ,
where µ is the service rate of a server. Uniform distribution,
rather than the usual exponential distribution, is assumed to
prevent the workload generator from producing very short jobs
that can severely deteriorate job latencies at the tail end. In
a multi-core based server farm, the relation between system
utilization ⇢ and job arrival rate � is: ⇢ = �

µ⇤nServers⇤nCores

,
where nServers is the number of servers and nCores is
number of cores per server.

MMPP-based bursty job arrivals: MMPP uses a
continuous-time Markov chain to model different stages
or states of the workload. Each state x corresponds to a
Poisson Process with job arrival rate �

x

. By orchestrating
the transitions among various states with high and low �s,
MMPP is able to model workload burstiness at a finer-grain
level. In our experiments, we use a 2-state MMPP model, in
which one state has a high job arrival rate �

h

representing

periods of bursty arrivals, and the other state has a low
arrival rate (�

l

) and models non-bursty periods of operation.
There are two approaches to tune the levels of burstiness –
increasing the ratio of job arrival rates between bursty and
non-bursty state, R

a

= �

h

/�

l

, or decreasing the proportion
of time the process stays in bursty state. Detailed exploration
of workload burstiness modeling is a rich area of study [17].
In our experiments to characterize burstiness, we define the
ratio between �

h

and �

l

, as well as the ratio between process
durations. The job arrival rates are then translated to different
utilization factors. �s in both states are computed and set so
that the bursty workloads generated would have an average
utilization factor of 0.1, 0.3, and 0.6, respectively. This is
done to compare our results to Poisson-based workloads with
the same system utilization factors. Table II illustrates the
high ⇢ and low ⇢ (corresponding to the two states of the
MMPP model) associated with different average utilization
levels.

Utilization levels High ⇢ Low ⇢ Window length
0.1 0.4 0.025 30 seconds
0.3 0.7 0.2 30 seconds
0.6 0.8 0.4 30 seconds

TABLE II: MMPP ⇢ values for bursty and non-bursty periods
to achieve a certain overall system utilization level.

F. Job Handler

Our job handler uses the following algorithm: First, we
check if an active server has an idle core. If so, the job
handler schedules the job on a server with least number of
idle cores. If multiple such servers exist, the handler picks one
of them randomly and schedules the job on one of its cores.
Second, if none of the active servers have any available cores
to accommodate an incoming job, we check if an idle server
exists. If so, we randomly wake up one of the idle servers
and schedule the job on one of its cores. Third, if there are
no active or idle servers to accommodate an incoming job, we
check if a sleeping server exists. If so, we randomly wake up
one of the sleeping servers and schedule the job on one of
its cores. Fourth, if there are no available servers, the job is
buffered until a server becomes available.

III. EXPLOITING SLEEP STATES AND DELAY TIMERS FOR
ENERGY OPTIMIZATION

Sleep states have been implemented in most modern pro-
cessors to reduce energy consumption, especially when the
processor utilization levels are low. For example, when the
processor operates at 10% of its peak capacity, the pro-
cessor should ideally stay active for 10% of the time. For
the remaining 90% of the time, the system should enter
one of the low-power states or sleep states (that consumes
significantly less power compared to the active mode), and
ultimately approach energy proportionality. While sleep states
are designed to lower the system energy consumption, one
has to use them judiciously to effectively take advantage of
their energy-saving benefits. To illustrate this, we perform
motivational experiments that study the energy consumption
of server farms under different workloads using three different
server power configurations described below.
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Fig. 2: Energy breakdown for various workloads using three different server power configurations. Average Normalized Latency
(N.L.) is shown above the bars normalized to the workload execution times.

1) A-I is a power configuration where the server alternates
between active and idle states. A server is active when at least
one of the four cores within the server has a job to process.
The server enters idle state if none of its cores has a job to
process.

2) A-I-S (⌧ = 0) is a power configuration where the server
transitions between three states – active, idle, and sleep. ⌧

denotes the delay timer for transition from processor idle to
sleep state. The server is active when at least one of the four
cores within the server has a job to process. The server enters
the idle state when none of the cores within the server have
jobs to process, and then, it immediately goes to deep sleep
since the delay timer ⌧ is set to zero. In other words, the server
goes to deep sleep immediately whenever there are no jobs to
be processed by the server.

3) A-I-S (⌧ = c) is a power configuration that is identical
to the above, except that the server goes to deep sleep from
idle after a delay timer expires. In other words, the server
waits for ⌧ = c seconds before transitioning to deep sleep state
after entering the idle state. If a job arrives before the delay
timer reaches zero, the server gets back to active state. The

optimal ⌧ value is chosen based on an exponential sampling of
⌧ values and the associated energy savings. We note that prior
studies [13] and [20] have considered timer-based strategies
to conserve energy. In [20], the authors used delay timers
to transition between hypothetical sleep states, and in [13],
the servers are completely switched off to conserve energy.
As we show later in the paper, our new dual timer strategy
significantly improves the energy savings over the single delay
timer approach.

Figure 2 shows the results of our experiments for various
workloads. In each workload, we study the A-I, A-I-S (⌧ = 0)
and A-I-S (⌧ = c) configurations for two different processor
utilization levels of 0.1 (low server utilization in data centers)
and 0.3 (average server utilization in data centers observed by
Barroso et al. [4]). The corresponding energy consumption (in
millions of Joules) are shown on the y-axis with breakdown
between processor active, idle, sleep, and wakeup cycles.
Average normalized job latency is shown above each power
configuration at a certain server utilization level. We note that
in a majority of cases, A-I-S (⌧ = 0) configuration does not
significantly improve energy, and in fact, the idle energy spent
in A-I configuration is simply translated into wakeup energy



for the processor to transition from sleep to active state in
A-I-S (⌧ = 0). This phenomenon actually diminishes the
effectiveness of sleep state to save energy. Worse still, the
latency impact of using A-I-S (⌧ = 0) is extremely high,
especially for workloads with short execution times such as
Google search where we observe 22⇥ performance slowdown
at a utilization level of 0.1, 13⇥ performance slowdown at a
utilization level of 0.3, and Wikipedia with a 48⇥ performance
slowdown.

For A-I-S (⌧ = c) configuration where c is the optimal ⌧
value, we find the following optimal values for ⌧ : ⌧ = 0.5
seconds for short latency jobs such as Google search and
Wikipedia, and ⌧ = 5.0 seconds for long latency jobs including
Apache, Mail and DNS. In general, we note that A-I-S
(⌧ = c) configuration significantly reduces the overall energy
consumption while keeping the average normalized job latency
to be almost the same as that for A-I configuration. Through
our experiments, we measured the normalized job latency to
be 1.0 in A-I-S (⌧ = c).

1) At average server utilization levels of 0.1, we observe
as much as 55.4% energy reduction for Apache and up to
55.7% energy reduction in Mail workloads compared to their
corresponding A-I configuration. We note that such significant
energy savings are possible because a majority of servers now
enter deep sleep state (consuming 88.4% less power than active
mode). Most sleeping servers are rarely woken up and remain
in deep sleep mode due to the incoming jobs being serviced by
the servers in the idle/standby mode with a delay timer ⌧ = c.

2) At average server utilization levels of 0.3, we observe
less energy savings compared to utilization level of 0.1 due
to a higher rate of incoming jobs. We measure about 32.4%
energy reduction in Mail and 30.1% energy reduction in DNS
workloads compared to the corresponding A-I configuration.
Beyond active energy (that is spent on actually servicing the
jobs), we note that servers remain idle most of the time, thus
leading to overall energy reduction.

3) In Wikipedia workload trace, we observe 29.2% reduc-
tion in A-I-S (⌧ = 0.5) compared to A-I configuration.

IV. DUAL DELAY TIMERS: A NOVEL STRATEGY FOR
FURTHER ENERGY OPTIMIZATION

In Section III, we observed that A-I-S (⌧ = c) is able
to achieve significant energy savings over A-I while having
similar performance in terms of job latency. However, when
the system utilization is low (say 0.1), short latency workloads
such as Google search still consume around 30% of the peak
energy. This is due to many servers still remaining in the idle
mode after they are done servicing their jobs.

To explore the possibility of further savings in system
energy consumption, we devise Dual Delay Timers or Dual ⌧ .
Dual ⌧ is based on the following intuition: instead of keeping
⌧ values to be the same for all the servers, further energy
reduction could potentially be had by grouping the servers into
two pools: one pool of servers with relatively high ⌧ that offers
to be the standby machines for the incoming jobs, and the
second pool of servers with small ⌧ values which can quickly
go to deep sleep state. The best case scenario is when a small
number of servers with high ⌧ continue to stay in the standby

mode to maximize the chances of accepting all of the incoming
jobs, and the rest of servers with low ⌧ quickly go to sleep
resulting in optimizing the overall energy consumption.

A. Dual Delay Timer Algorithm

The power management policy for Dual Delay Timer aug-
ments the A-I-S configuration by designating a small fraction
of the server pool with high ⌧ values, while others have low
⌧ values.

Symbol description
V

ai

set of servers in active or idle state
V

s

set of servers in deep sleep
⌧

h

high ⌧ value
⌧

l

low ⌧ value
t

w

threshold for waking up a sleeping server

TABLE III: Notations in the Dual Delay Timer Algorithm.

Algorithm 1: Dual Delay Timer Algorithm
Input: tw, n (total number of servers)

1 Initialization: Vai = {s1, s2, ..., sn};
/

*

By default, all servers are placed in

Vai and set into idle state

*

/

2 for i in [1, n] do
3 power state of si  idle
4 end
/

*

arrived jobs are first placed in the

queue

*

/

5 while there are unfinished jobs in queue do
6 pick a new job j from the head of the queue;
7 if at least one server with a free core exists in Vai then
8 find set of servers S in Vai with highest utilization;
9 if multiple servers exist in S then

10 give preference to a server with ⌧h;
11 randomly pick a server, ssch in S for scheduling;
12 end
13 schedule job j on a free core from ssch;
14 continue;
15 end
16 else
17 compute the number of pending jobs in queue, p;
18 if p > tw then
19 pick a server ssch from Vs;
20 give preference to a server with ⌧h;
21 add ssch to Vai;
22 set ssch to active state;
23 end
24 end
25 end

Algorithm 1 presents our Dual Delay Timer approach that
accepts the incoming jobs and assigns them to servers. The
corresponding notations are listed in Table III. Our dual delay
timer approach designates a small set of servers with high ⌧

and the rest of the servers with a low ⌧ . The candidate servers
in the two pools are rearranged periodically based on load
balancing and fairness among all of the servers. When a new
job arrives, the job handler will first try to assign this job to
one of the schedulable servers, which could either be an active
server with available cores or a server in idle state, denoted
as V

ai

. The algorithm will choose a server from V

ai

with the
highest utilization. This is done to favor the less utilized servers
to enter idle state rapidly. If there are multiple servers with high



Dual-⌧
Workload Utilization Energy Reduction Energy Reduction 50%-ile N.L. 90%-ile N.L. 95%-ile N.L. High ⌧ Low ⌧ Num. servers with

over A-I over A-I-S (opt ⌧ ) High ⌧

Google

0.1

+61.05% +21.49% 1.00 1.12 1.23 0.50 0 6
Apache +63.90% +16.71% 1.00 1.18 1.30 1.0 0 6

Mail +63.90% +15.35% 1.00 1.18 1.29 1.0 0 6
DNS +63.90% +15.37% 1.00 1.18 1.29 10.0 0 6

Google

0.3

+39.86% +23.74% 1.00 1.00 1.03 5.0 0 18
Apache +41.48% +14.40% 1.00 1.07 1.13 5.0 0 17

Mail +41.49% +12.89% 1.00 1.07 1.13 5.0 0 17
DNS +39.86% +10.05% 1.00 1.03 1.13 5.0 0 18

Google

0.6

+11.15% +10.08% 1.00 1.10 1.16 5.0 0 32
Apache +18.81% +11.75% 1.00 1.10 1.16 5.0 0 32

Mail +18.95% +11.11% 1.00 1.10 1.16 5.0 0 32
DNS +17.89% +9.82% 1.02 1.29 1.40 5.0 0 32

TABLE IV: Energy Reduction for Dual ⌧ in various workloads and dual delay timer values compared with A-I and A-I-S (opt
⌧ : lowest energy). Job arrivals are modeled as Poisson Process, and Normalized Latencies (N.L.) are calculated with workload
execution times as baselines.

Dual-⌧
Workload Utilization Energy Reduction Energy Reduction +50%-ile N.L. 90%-ile N.L. 95%-ile N.L. High ⌧ Low ⌧ Num. servers with

over A-I over A-I-S (opt ⌧ ) High ⌧

Google

0.1

+62.33% +23.95% 1.00 1.05 1.10 5.00 0.05000 2.00
Apache +62.26% +17.30% 1.00 1.14 1.24 5.00 0.20 2.00

Mail +62.17% +17.74% 1.00 1.18 1.31 5.00 0.20 2.00
DNS +61.96% +15.64% 1.00 1.11 1.19 5.00 0.50 2.00

Google

0.3

+38.92% +21.94% 1.00 1.03 1.07 5.00 0.05 8.00
Apache +40.18% +13.00% 1.00 1.20 1.36 5.00 0.20 7.00

Mail +39.84% +13.78% 1.00 1.29 1.57 5.00 0.20 7.00
DNS +40.36% +12.64% 1.00 1.15 1.27 5.00 0.50 8.00

Google

0.6

+15.95% +15.54% 1.00 1.01 1.05 5.00 0.05 18.00
Apache +18.32% +9.05% 1.00 1.12 1.18 5.00 0.20 18.00

Mail +18.23% +9.08% 1.00 1.15 1.24 5.00 0.20 18.00
DNS +18.19% +8.46% 1.00 1.18 1.28 5.00 0.50 18.00

TABLE V: Energy Reduction for Dual ⌧ in various workloads and dual delay timer values compared with A-I and A-I-S (opt
⌧ : lowest energy). Job arrivals are modeled as MMPP, and Normalized Latencies (N.L.) are calculated with workload execution
times as baselines.

utilization, a server with ⌧

h

is prioritized in order to favor the
servers with ⌧

l

to enter idle state state rapidly. If none of the
servers in V

ai

has an idle core, the incoming job is queued
and a server in sleep state is woken up to enter active state.
However, waking up a sleeping server every time when a job
is queued can be suboptimal since the transition penalty for an
asleep server is high. To address this issue, we add a simple
threshold t

w

. Only when the current number of pending jobs in
queue is greater than t

w

would a server in deep sleep be woken
up. The t

w

threshold is a tunable parameter that guides how
conservatively the job handler wakes up a server. Throughout
our experiments, t

w

is set to be the product of the number of
cores per server and the number of ⌧

h

servers; This effectively
avoids unnecessary server wake-ups. Note that our algorithm
assumes that the servers are capable of processing one job per
core at a time without loss of generality. If the core is capable
of running multiple jobs concurrently due to techniques like
Simultaneous Multi-Threading, we could assign multiple jobs
per core until it is fully occupied.

B. Exploration of Dual Timers for Poisson Job Arrivals

The parameter exploration space for Dual ⌧ is large due to
combinational exploration of two ⌧ values and the partitioning
of servers into two ⌧ categories. To reach the solution faster, we
first conduct a uniform sampling of the three major parameters:
high ⌧ , low ⌧ , and the number of servers with high ⌧ . Due
to space constraints, we are unable to present all of our
results. We summarize a few important observations from our
experiments below:

1) The number of high ⌧ servers that maximizes energy

savings is approximately ⇢ * total number of servers. This
finding confirms our intuition that when using dual ⌧ , the
system is able to utilize a minimal number of active/standby
servers while putting the majority of servers to deep sleep.

2) Having relatively large high ⌧ values and setting low ⌧

to zero (the server immediately goes to sleep state when idle)
maximizes energy savings at all utilization levels relative to
A-I and A-I-S (⌧ = c) configurations.

Table IV summarizes the results of our experiments. We
show the energy reduction with Dual Delay Timers compared
to A-I and A-I-S along with the normalized percentile job
latencies. We note that dual ⌧ can achieve further energy
savings of up to 16.7% beyond the A-I-S (optimal ⌧ ) especially
at server utilization levels of 0.1.

C. Exploration of Dual Timers for MMPP Job Arrivals

We conduct experiments for MMPP-based workloads and
utilize a Markov chain-based predictor for burstiness detection.

We perform parameter space exploration for ⌧ values
and number of servers with high ⌧ . Table V summarizes
the results of our experiments demonstrating the savings in
energy over A-I and A-I-S (optimal ⌧ : lowest energy) and the
corresponding ⌧ values and the number of servers with high ⌧ .
From the table, we can see that our Dual Delay Timer is able
to save nearly 25% energy over optimal A-I-S configuration
with single ⌧ . Also, the number of active servers (with high
⌧s) are now much smaller than the expected ⇢ * number
of servers. This is because of short periods of high server
utilization levels after which even the active servers can go



Dual-⌧
Workload Utilization Energy Reduction Energy Reduction 50%-ile N.L. 90%-ile N.L. 95%-ile N.L. High ⌧ Low ⌧ Num. servers with

over A-I over A-I-S (opt ⌧ ) High ⌧

Wikipedia ? +71.20% +31.36% 1.00 1.37 1.53 5 0.002 2

TABLE VI: Energy reduction for Dual-⌧ in Wikipedia trace for dual delay timer values compared with A-I and A-I-S (opt ⌧ :
lowest energy). Normalized Latency (N.L.) is calculated with workload execution time as baseline.

to deep sleep without affecting performance. Unlike Poisson-
based job arrivals, MMPP workloads have a small, non-zero
low ⌧ value to service the jobs during bursty phases.

D. Exploration of Dual Delay Timer for Wikipedia trace

We performed exploration of dual delay timer values ⌧ for
real world workload traces from Wikipedia. Table VI shows
that setting low ⌧ = 0.002 seconds and high ⌧ = 5 seconds
reduces system energy consumption by 31% over A-I-S (opti-
mal ⌧ ) configuration. Note that the Wikipedia trace is a slowly
varying workload with ultra low utilization (ranging from 5%
to 10%). Detailed statistics in our experiments showed that
under such scenario Dual Delay Timer is able to maintain the
exact number of servers to be active without waking up even
a single server prematurely after a short warm-up period. The
results again show that Dual Delay Timer is especially effective
under low system utilization levels.

V. SCALABILITY WITH NUMBER OF SERVERS

In this section, we study the energy reduction benefits of
Dual Delay Timer strategy by varying the number of servers.
We adopt the same procedure for parameter exploration as
we did in Section IV while exploring the optimal dual ⌧

values that minimize energy consumption. We repeat the
experiments for three different numbers of servers: 20, 50, and
100. Figure 3 shows energy savings of our Dual Delay Timer
strategy compared with the corresponding A-I configuration.
For each server farm size, the four synthetic workloads are
simulated under three utilization levels of 0.1, 0.3, and 0.6.
From the scalability trend, we can see that when the server
farm size increases from 20 to 50, the relative energy savings
for all workloads increase at the scale of 10% to 20%. With
100 servers, the energy saving benefits are slightly better in
comparison to 50 servers, and the benefits are significantly
higher against the corresponding A-I configuration. For exam-
ple, at server utilization of 0.1, energy saving benefits of dual
delay timer is about 50%, and at server utilization level of 0.3,
the corresponding energy savings are well over 30% for all of
the workloads. In summary, about 45% to 63% energy is saved
at average server utilization 0.1 depending on the size of the
server farm, 28% to 40% energy is saved at server utilization
of 0.3, and 10% to 20% energy is saved at server utilization of
0.6. Our mechanism shows good scalability and energy saving
potentials as server farm size increases.

VI. RELATED WORK

Bridging the gap between data center server utilization
and relatively high power/energy is a widely studied topic.
Prior work [21], [22], [23] has used DVFS-based mechanisms;
however, at low server utilization, static power dominates
and DVFS is not effective. Also, due to device scaling, the
headroom for voltage scaling is largely shrunk. As a result,
prior work [14], [24] has proposed architectural support to
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Fig. 3: Energy reduction of A-I-S Dual ⌧ compared to A-I
in various workloads and server utilization levels for different
numbers of servers – 20, 50, and 100.

facilitate sleep state management on multi-core servers that
include scheduling policies to delay, pre-empt and execute
requests, and artificially create common idle and busy periods
across cores of a server. Lo et al. [3] leverage Running Average
Power Limit to dynamically adapt the runtime power of data
center according to job latency feedback. The trends in server
energy proportionality are analyzed by Ryckbosch et al. [25].
Sleepscale [5] utilizes speed scaling and server sleep states
jointly to reduce the average power for single server systems
while satisfying the QoS constraints of normalized request
latency. We note that other approaches such as Knightshift [26]
have explored more specialized approaches such as exploiting
heterogeneity of processor cores to improve energy. In Knight-
shift, two execution modes are utilized – one providing high
performance while consuming higher power, the other being
an active low power mode for low-utilization periods to save
power. The model is extended in [27] to provide cluster-wide
energy proportionality. However, to preserve generality of our
solution and study the applicability of our techniques on many
current warehouse-scale systems, we model homogeneous
servers and cores with same capability. We note that when
we combine our proposed approach with energy improvement
solution approaches on heterogeneous servers, we can further
boost energy savings.

Gandhi et al. propose a delayed-off mechanism, AutoScale,
in [13] that turns off a server after it is idle for a preset period
of time. AutoScale reduces power consumption of the multi-
server system by controlling the number of on servers while
satisfying the response time SLA. In [20], the authors study the
effectiveness of utilizing hypothetical sleep states with a power
management policy, SoftReactive, which is similar to delayed
off. In our work, the baseline approach A-I-S is a variant of
the SoftReactive policy except that we use hardware-supported
sleep states and realistic power profiles.

Other prior works have utilized job scheduling to deal
with the interference between co-located workloads that might
result in performance loss [28], [29]. Through accurately
predicting the performance degradation between co-located
workloads, the utilization of the cluster can be improved within
the QoS constraints. Delimitrou et al. [30] use classification
techniques to find the impact of server heterogeneity and inter-
ference between co-located workloads for resource assignment



while satisfying the performance requirements. A cluster man-
agement mechanism that maximizes resource utilizations while
meeting the QoS constraints for each workload is presented
in [31]. The authors of [32] design scheduling algorithms
to minimize power consumption for bag-of-tasks applications
with deadline constraints, while [33] studies the tradeoff be-
tween power management and performance in datacenters. The
comparison in [33] indicates the need for a comprehensive
sleep state control algorithm, which is what we have presented
in this paper.

VII. CONCLUSION

In this paper we presented a novel Dual Delay Timer
technique to judiciously use the processor sleep states to
optimize server farm energy consumption. We evaluate the
effectiveness of our approach using five different workloads
including four synthetic (Google search, Apache, Mail, and
DNS) and one real workload trace (Wikipedia). We study the
workloads using two different job arrival patterns – Poisson for
non-bursty arrivals and Modulated Markov Poisson Process
for bursty arrivals. Our experimental results show that our
techniques achieve up to 71% savings in energy over naive
energy management without the use of low-power sleep states,
and up to 31% energy savings over a relatively smarter energy
management mechanism with just a single delay timer to enter
the sleep state. We also show that the normalized latencies of
jobs on a server farm with our Dual Delay Timer strategy are
almost the same as the job latencies in the case when servers
are always ready to accept incoming jobs.
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