
POSTER: MORPH: Enhancing System Security
through Interactive Customization of Application

and Communication Protocol Features
Hongfa Xue

The George Washington University
Washington, DC, USA
hongfaxue@gwu.edu

Yurong Chen
The George Washington University

Washington, DC, USA
gabrielchen@gwu.edu

Guru Venkataramani
The George Washington University

Washington, DC, USA
guru@gwu.edu

Tian Lan
The George Washington University

Washington, DC, USA
tlan@gwu.edu

Guang Jin
Intelligent Automation Inc.
Rockville, Maryland, USA

gjin@i-a-i.com

Jason Li
Intelligent Automation Inc.
Rockville, Maryland, USA

jli@i-a-i.com

ABSTRACT
The ongoing expansion and addition of new features in software
development bring inefficiency and vulnerabilities into programs,
resulting in an increased attack surface with higher possibility of
exploitation. Creating customized software systems that contain
just-enough features and yet satisfy specific user needs is currently
an extremely slow, build-to-order process. In this paper, we propose
MORPH, an Interactive Program Feature Customization framework
to provide broad capabilities for automated program feature identifi-
cation and feature customization. Our preliminary results show that
MORPH can identify program features at an average accuracy of
92.7% and swiftly generate variations of self-contained, customized
programs in an unsupervised fashion.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Security and privacy → Software security engi-
neering;

KEYWORDS
Program customization; Debloating; Machine learning; Binary anal-
ysis
ACM Reference Format:
Hongfa Xue, Yurong Chen, Guru Venkataramani, Tian Lan, Guang Jin,
and Jason Li. 2018. POSTER: MORPH: Enhancing System Security, through
Interactive Customization of Application, and Communication Protocol
Features . In 2018 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’18), October 15–19, 2018, Toronto, ON, Canada. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3243734.3278518

1 INTRODUCTION
The rapid inflation of software features results in not only larger
software installation footprint, but also an increased attack sur-
face with higher possibility of vulnerabilities. This is especially
true in implementations of communication protocols. For exam-
ple, Simple Network Management Protocol (SNMP) is designed for
managing network devices, and Net-SNMP is a widely used SNMP

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5693-0/18/10.
https://doi.org/10.1145/3243734.3278518

implementation for both Linux and Windows. CVE-2014-3565 [2]
vulnerability discovered that an attacker can craft an SNMP trap
message to cause a Denial of Service (DoS) attack. While the trap
communication in the SNMP is used for network devices to report
events, it is never invoked under most practical scenarios.

In this paper, we propose MORPH, an Interactive Program Fea-
ture Customization framework to provide broad capabilities for
(i) identifying features from various programs and communica-
tion protocols and (ii) tailoring/removing (unnecessary) program
features and validating the correctness and compatibility of the
program customization. MORPH enables two different solutions to
identify program features automatically. First, when feature seed
information (such as functions and basic blocks that are unique
to target feature) are provided, starting from these seed informa-
tion, MORPH traverses the program Control Flow Graph (CFG)
and finds the features of interest. Second, when dynamic traces
(that execute different combinations of program features, e.g., as
invoked by test-cases) are available, MORPH leverages deep learn-
ing to traverse basic blocks in the traces and map them to features.
Next, by converting a program into its equivalent Intermediate
Representation (IR) of Low Level Virtual Machine (LLVM), MORPH
can modify the program for different needs. The modified program
can be compiled back into an executable binary for further evalua-
tion and validation. Further, MORPH will enable interactive feature
customization process and needs minimal user’s involvement. In
particular, it makes use of fuzzing technique to automatically test
the customized program while focusing on the removed features.
The test results are reported back to users to indicate potential
issues of improperly modified program.

To evaluate the effectiveness of MORPH, we provide a prelim-
inary implementation and select several real-world application-
s/protocols, including thttpd, LibreOffice and Openssl. We evaluate
the performance of MORPH’s deep learning algorithm for auto-
mated feature identification from dynamic execution trace. MORPH
achieves an average 92.76% accuracy for feature identification and
mapping to binary code. These preliminary results demonstrate
MORPH’s ability to swiftly create a large variation of self-contained,
customized programs in an unsupervised fashion.

2 PROBLEM STATEMENT
2.1 Problem Statement and Challenges
In general, program customization involves two tasks: (i) identifying
program features from a binary, and (ii) rewriting the binary, in
accordance with user needs, to create customized programs. The
goal of feature customization creates customized software systems

https://doi.org/10.1145/3243734.3278518
https://doi.org/10.1145/3243734.3278518


that contain just-enough features to support specific use-cases and
can considerably reduce the software’s attack surface, as unwanted
features are eliminated even before zero-day exploits.

2.2 Definitions
Definition 1. Feature. A program feature is defined as a set

of basic blocks – denoted by Fi = {b1i ,b
2
i , ...,b

n
i } ⊆ F – which

uniquely represent an independent, well-contained operation, utility,
or capability of the program. A feature at the binary level may not
always correspond to a software module at the source level.

Definition 2. Control Flow Graph (CFG). A CFG, G = (B, J ),
is directed graph comprising a node set, B, and an edge set, J . In a CFG,
a node, bi ∈ B, indicates a basic block which represents a sequential
execution of instructions without any jump instructions. In a CFG,
an edge, ji ∈ J , connecting two basic blocks bn and bm indicates a
control flow change, ji = (bn ,bm ), meaning jump from bn to bm .

Identifying program features can be a very challenging problem,
because features often traverse multiple basic blocks/functions
across different regions of the binary, with the control flow not
possible to resolve statically.

3 SYSTEM DESIGN
Figure 1 shows a schematic of MORPH, that takes a program bi-
nary as input, and generates the program’s CFG in the IR of LLVM.
Feature customization in MORPH are done in an interactive and
closed-loop fashion. First, program features are automatically iden-
tified from seed information or dynamic trace. Second, after re-
viewing the identified features, a user guides MORPH on how to
automatically rewrite the program and remove selected features.
Third, MORPH generates a customized/feature-removed program
based on user’s directions, and feeds the program to an automatic
testing engine focusing on the removed feature. Then, the testing
engine evaluates the program and provides test results back to the
MORPH user. Based on the testing report, an MORPH user decides
whether the customized program meets the requirement and if
further iterations are needed.

Binaries
CFG in 

LLVM IR

Users

Customized 
Binaries

CFG Analysis

Program 
Rewriting

Validation

Seed 
Functions

Trace
Analysis

Feature Identification

Features

Feature Customization

Figure 1: MORPH framework Overview

3.1 CFG analysis
MORPH leverages the LLVM to facilitate the CFG generation and
additional analysis. MORPH produces the LLVM IR as the CFG
representation for the selected program implementation. Based on
the generated CFG, LLVM provides necessary utilities to traverse,
analyze and modify CFGs. MORPH will support customizing a pro-
gram base on its binary format. The output of CFG and Instruction
trace analysis allows MORPH to perform further analysis, identify
and remove program features.

3.2 Feature Identification
3.2.1 Feature identification by seed information. MORPH can take
seed basic blocks and functions as inputs that define unique feature
operations, capabilities, or system service accesses, traverse the

CFG, and identify all constituent basic blocks for each feature on the
CFG. With feature seed information available, we have evaluated
the ability of MORPH to identify and isolate different program fea-
tures in our prior work, DamGate [4] to show that the desired level
of feature isolation can be achieved with low runtime overheads.

3.2.2 Feature identification by trace analysis. Using test-cases avail-
able to invoke various program features, we can obtain dynamic
trace that contains the execution of different combinations of pro-
gram features, extract the related execution paths, and identify the
constituent basic blocks for each feature (or feature combination)
in the binary. To this end, we (i) apply trace splicing to extract dy-
namic execution paths (of invoked features) from the dynamic trace,
and (ii) map them to basic blocks in the binary code, to identify
program features through their constituent basic blocks. This is a
challenging problem because some code blocks in the application bi-
nary can have multiple entry points, and hence, the dynamic traces
could differ for the same code block. Finally, we consider this map-
ping problem as a multi-class classification problem, where each
function in the binary is considered as a class label, the function’s
execution path and basic blocks as samples of the class, and an exe-
cution path extracted from dynamic instruction trace as the testing
sample. Thus, we can employ Recursive Neural Network (RNN)
to obtain binary code vector embeddings at lexical level and train
a multi-class Convolutional Neural Network (CNN) classifier to
identity the feature-constituent functions.Note that another line of
work, such as tainting [9, 10], can be used for feature identification.
We consider this as future work.

3.3 Feature Customization
3.3.1 Interactively remove features . MORPH provides an inter-
active process for users to guide in the program customization.
An entry block within a feature has no incoming edge, while an
exit block has no outgoing edge. A feature may have multiple en-
try blocks and multiple exit blocks. Entry blocks defines the entry
points for a feature, while exit blocks defines potential return values
of the feature. To modify a binary executable and remove a feature,
MORPH has two options to remove features. (a) Rewriting exit
blocks: only modifies exit blocks can leave the original CFG mostly
intact, and thus may leave the vulnerability unchanged in the mod-
ified program. (b) Rewriting entry blocks: directly redefines the
internal logics of certain program APIs for the identified feature.
Modifying entry blocks can easily orphan other blocks (i.e., making
these block inaccessible either internally or externally). The orphan
blocks can then be clearly marked and removed. Since the basic
blocks in an identified feature are connected, these blocks can be
topologically sorted. MORPH will provide necessary interfaces for
users to specify how to modify an entry or exit block.

3.3.2 Validate customized programs. For the features preserved in
the customized programs, MORPH will not change the execution
trace of such features. After binary rewriting, standard program
fuzzing techniques [14] can be employed by MORPH to validate
if a customized program can still interact with an unmodified ap-
plication, and won’t crash even if the identified feature has been
removed. MORPH uses fuzzing to confirm the integrity of program
functionalities after customization.

4 PRELIMINARY RESULTS
4.1 Experiment Setup and Data Collection
We implemented each of the module in our system to collect early
experiment results. Our experiments are conducted on a 2.80 GHz
Intel Xeon(R) CPU E5-2680 20-core server with 16 GByte of main



91.13% 96.28% 93.36% 94.28% 88.75%

0%

20%

40%

60%

80%

100%

polymorph man bzip2 thttpd Openssl

A
cc

ur
ac

y

Figure 2: Accuracy of function mapping

man bzip2 thttpd Openssl Polymorph LiberOffice hmmer links
-1000

0
1000
2000
3000
4000
5000
6000
7000
8000

Va
ria

tio
ns

0

5

10

15

20

Fe
at

ur
e

Figure 3: Number of features and customized variations gen-
erated by MORPH, where the black dot line represents the
number of features for each benchmark and red line repre-
sents the number of customized programs correspondingly

memory. We select different sets of real world applications: (i) SPEC
2006 suite [1], bzip2 and hmmer; Bugbench suite bugbench [6],
polymorph and man and (ii) Interactive applications including a
light-weight web server thttpd, version beta 2.23, an open source
office suite LibreOffice and a web browser, links. (iii) A TLS and
SSL protocol, OpenSSL. In our trace analysis module, we collect
static execution paths using Depth First Search as training dataset
and dynamic execution paths as testing dataset for evaluating the
accuracy of the pre-trained models. We chose the hidden node size
as 500 in RNN and 200 maximum iterations for RAE.
4.2 Accuracy of function mapping
Figure 2 presents the accuracy of function mapping through trace
analysis in Feature identification. MORPH achieves an overall aver-
age accuracy of 92.76%, with the highest up to 96.28% in man from
bugbench. We note that the mapping accuracy of larger programs,
such as bzip2 and thttpd, is higher than that of smaller programs
like polymorph due to larger execution traces available for training
the CNN classifiers. For the applications with more functions, such
as OpenSSL, the overall accuracy can be as low as 88.75% since
there are more classes for classification. Further improving the
performances via deep learning or by introducing formal analysis
provides directions for interesting future work.
4.3 Feature Customization
Figure 3 shows the number of selected features for each bench-
mark and the number of customized programs we are able to create.
When the features are identified by users, MORPH produces multi-
ple customized binaries containing different feature combinations.
The number of customized programs is calculated after interactive
feature removal. Since each feature can contain both unique and
shared functions, there are some scenarios that multiple features
are tightly coupled and cannot be customized separately.

5 RELATEDWORK
Program de-bloating removes redundant code from programs. Most
prior works focus on source code. For example, Jred [5] proposes a
method to remove unused methods in JAVA program, which utilizes
call graph analysis and operates at IR level. Different from program

de-bloating, binary reuse is aimed at reconstruct program binary
from execution trace for further analysis. Moreover, none the above
works are aimed at program feature customization.

Learning-based approaches have been proposed for both static
and dynamic program analysis. StatSym [13] combines symbolic
execution and statistics analysis for vulnerability discovery. SIM-
BER [11] proposes a statistical inference framework to eliminate
redundant bound checks and improve the performance of appli-
cations without sacrificing security. Clone-Hunter [12] also takes
advantage of binary code clone detection for accelerated bound
check removal. In MORPH, deep learning-based methods are used
for trace analysis. Program bug analysis [8] and tuning [3, 7] have
been used alternatively for program customization.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose MORPH, an Interactive Program Feature
Customization framework to provide broad capabilities for auto-
mated program feature identification and feature customization.
MORPH enables users with two solutions for feature identifca-
tion and interactively remove program features with validation. In
our preliminary implementation and evaluation of MORPH, we
chose real-world applications and our preliminary results shows
that MORPH is able to identify features at an average accuracy of
92.7% and generate a large variation of self-contained customized
programs. As future work, we consider automation techniques for
fuzzing techniques.

ACKNOWLEDGMENTS
This work was supported by the US Office of Naval Research (ONR)
under Awards N00014-15-1-2210 and N00014-17-1-2786. Any opin-
ions, findings, conclusions, or recommendations expressed are those
of the authors, and do not necessarily reflect those of ONR.

REFERENCES
[1] 2006. SPEC CPU 2006. https://www.spec.org/cpu2006/.
[2] 2014. CVE-2014-3565. https://www.cvedetails.com/cve/CVE-2014-3565/.
[3] J. Chen, G. Venkataramani, and H. H. Huang. 2012. RePRAM: Re-cycling PRAM

faulty blocks for extended lifetime. In IEEE/IFIP International Conference on De-
pendable Systems and Networks.

[4] Yurong Chen, Tian Lan, and Guru Venkataramani. 2017. DamGate: Dynamic
AdaptiveMulti-feature Gating in ProgramBinaries. In Proceedings of theWorkshop
on Forming an Ecosystem Around Software Transformation.

[5] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. Jred: Program customization and
bloatware mitigation based on static analysis. In 40th Annual Computer Software
and Applications Conference.

[6] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou. 2005.
Bugbench: Benchmarks for evaluating bug detection tools. InWorkshop on the
evaluation of software defect detection tools.

[7] Jungju Oh, Christopher J. Hughes, Guru Venkataramani, and Milos Prvulovic.
2011. LIME: A Framework for Debugging Load Imbalance in Multi-threaded
Execution. In Intl. Conference on Software Engineering.

[8] Jianli Shen, Guru Venkataramani, and Milos Prvulovic. 2006. Tradeoffs in fine-
grained heap memory protection. In Proceedings of the 1st workshop on Architec-
tural and system support for improving software dependability. ACM.

[9] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos Prvulovic. 2009.
Flexitaint: A programmable accelerator for dynamic taint propagation. In IEEE
14th International Symposium on High Performance Computer Architecture.

[10] Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos Prvulovic. 2009.
MemTracker: An accelerator for memory debugging and monitoring. ACM
Transactions on Architecture and Code Optimization (TACO) (2009).

[11] Hongfa Xue, Yurong Chen, Fan Yao, Yongbo Li, Tian Lan, and Guru Venkatara-
mani. 2017. SIMBER: Eliminating redundant memory bound checks via statistical
inference. In IFIP International Conference on ICT Systems Security and Privacy
Protection.

[12] Hongfa Xue, Guru Venkataramani, and Tian Lan. 2018. Clone-hunter: accelerated
bound checks elimination via binary code clone detection. In 2nd ACM SIGPLAN
Intl. Workshop on Machine Learning and Programming Languages.

[13] Fan Yao, Yongbo Li, Yurong Chen, Hongfa Xue, Tian Lan, and Guru Venkatara-
mani. 2017. StatSym: vulnerable path discovery through statistics-guided sym-
bolic execution. In International Conference on Dependable Systems and Networks.

[14] Michal Zalewski. 2007. American Fuzzy Lop.

https://www.spec.org/cpu2006/
https://www.cvedetails.com/cve/CVE-2014-3565/

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Problem Statement and Challenges 
	2.2 Definitions

	3 System Design
	3.1 CFG analysis
	3.2 Feature Identification
	3.2.1 Feature identification by seed information
	3.2.2 Feature identification by trace analysis

	3.3 Feature Customization
	3.3.1 Interactively remove features 
	3.3.2 Validate customized programs


	4 Preliminary Results
	4.1 Experiment Setup and Data Collection
	4.2 Accuracy of function mapping
	4.3 Feature Customization

	5 Related Work
	6 Conclusion and Future Work
	References

